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Calculations of total energy as a function of lattice
constant, and of some other properties, have been made for
metallic beryllium, by a self-consistent field method. Since
such calculations have not been made before for any but
monovalent metals, the principal object was to find out
how far the various assumptions which are usually made
in them remain valid for higher valencies, and to test the
practicability of certain methods of making the calcula-
tions. The theoretical values of binding energy, lattice
constant, and compressibility agree reasonably well with
experiment. The calculated work function, however, could
be made to coincide with the experimental value only by
assuming a surface double layer of over 5 volts, which
seems impossibly large. This suggests a very large deviation
of the exchange energy from the value for completely free
electrons. An investigation of the behavior of the exchange
energy yields an expression for the deviation from the free
electron value which is valid for low electron densities,
but not for those which occur in beryllium. The distribution
of the electronic states in energy is found to be of the sort

needed to account for the diamagnetism of beryllium.
Concerning methods of calculation, it is shown that a
rather complicated procedure is necessary to obtain quanti-
tative results when a Hartree ion core field is used (as was
done in the present case), and that construction of an
empirical field is preferable. The assumption Eq = Eo
+nk'k2/2m, for the energy of an electron with wave vector
k, cannot be used for calculations of lattice constant or
compressibility for a divalent metal; it is therefore neces-
sary to calculate directly the energies of states near the
Fermi surface. This was done by the "orthogonalized
plane wave" method, which is shown by tests to be
capable of fairly high accuracy, though laborious. This
method suggests a simple qualitative way of understanding
a number of features of the electronic energy spectrum of a
metal and its manner of variation with lattice constant.
Incidental results include a proof that the interaction of the
1s shells is entirely negligible, and a calculation of the elec-
trostatic interaction energy of the ions as a function of
the c/a ratio.

1. INTRODUCTION

HF. quantum theory of metals, in the form
developed by Wigner and Seitz, ' has proved

rather successful in the explanation and quanti-
tative calculation of a number of properties of
alkali metals, such as binding energy, lattice
constant, compressibility, ' and work function. '
So far no attempt has been made to calculate
any of these properties for a divalent metal;4
moreover, all the metals for which calculations
of electronic energy bands' have been made have
been cubic. The present work on beryllium was
undertaken with several objects, of which the

* National Research Fellow, 1937—39. At Princeton
University during completion of this work, 1939—40.' E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933) and
46, 509 (1934); F. Seitz, Phys. Rev, 47, 400 (1935).' J. Bardeen, J. Chem. Phys. 6, 367, 372 (1938).

3 E. Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935);
J. Bardeen, Phys. Rev. 49, 653 (1936).

4 In addition to the calculations which have been referred
to, there are in the literature calculations of the electron
energy levels of a number of solids, made by the cellular
method of Slater, Phys. Rev. 45, 794 (1934).Two of these
are for metals with more than one valence electron per
atom: M. F. Manning and H. Krutter, Phys. Rev. 51, 761
(1937), (Ca); M. F. Manning and M. I, Chodorow, Phys.
Rev. 56, 787 (1939) (W). However, in none of these cases
has an attempt been made to calculate the total energy of
the crystal.

most important was that of finding out how far
the various assumptions usually made in the
application of the theory to monovalent metals
remain valid for higher valencies. We also wanted
to become familiar with the technique of calcu-
lating electronic energies in a crystal of this sort,
and in particular to see what additional diffi-
culties are introduced by the fact that the metal
is divalent, and by the fact that it has a hex-
agonal lattice. Finally, we hoped to make a
fairly detailed test of the practicability and
accuracy of the "orthogonalized plane wave"
method of calculating electronic energies and
wave functions in crystals, recently described by
one of us. '

Since the calculations which had to be made
for beryllium were considerably more compli-
cated than those which have been made for
monovalent metals, and were in addition of an
unfamiliar sort, it was not thought wise to try
to carry them through with as high a precision
as can be attained for alkalis. Nevertheless,
sufficient accuracy had to be maintained so that
a comparison of the results with experiment

' C. Herring, Phys. Rev, 57, 1169 (1940).
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would throw light on the validity of some of the
more fundamental assumptions made in the
course of the work. It was therefore thought at
the beginning that the most convenient thing to
do would be to make a Hartree self-consistent
field solution for the electrons in the metal by
using for the core wave functions the 1s wave
functions given by Hartree and Hartree' for
Be++. This self-consistent field solution was
obtained, and our final results are based on it;
however, the calculation of the total energy from
the Hartree wave functions turned out to be
rather more laborious than we had anticipated,
and in fact both theory and computation would
have been much simplified by constructing at
the outset an empirical field of the sort used by
Seitz' for lithium. Section 2 consists in the
derivation of the formula (28) for the total
energy of a beryllium crystal, in the Hartree
approximation; if an empirical field had been
Used these lengthy calculations would not have
been necessary. Section 3 describes the approxi-
mately self-consistent potential field used for the
calculations. The next four sections are devoted
to the problem of finding the Hartree energy
parameters EI„. for the continuous distribution of
valence electron states. The quantities directly
calculated for this purpose are: (1) the energy

of the lowest val ence electron state, ob-
tained by the method of Wigner and Seitz
(2) a = (m/fP) [O'El/Bk']& 0, obtained by the
method of Bardeen P and (3) energies Ek of a
number of states near the surface of the Fermi
distribution, obtained by the orthogonal ized
plane wave method. ' The distribution of the
electronic states in energy can be estimated from
these quantities by a graphical method. It is of
less interest to know the number of states per
unit range of E than the number per unit range
of the quantity g defined by (29), since the latter
is more closely connected with the ionization
energies of the individual electronic states; conse-
quently the distributions are calculated in Sec-
tion 7 for g rather than for E. The difference
between g~ and E~ consists of a number of terms,
which can be calculated if the wave function pI„.

is known. The graphical calculations of Section 7

are aided by the use of rough values of
' D. R. Hartree and W, Hartree, Proc. Roy. Soc. London

A149, 210 (1935);A150, 9 (1935).

P = (m/k') (O'E~/rlk'), computed for the same
wave vectors k for which the energies EI„. men-
tioned above were calculated. In Section 8 a
brief investigation is made of the validity of the
assumption, usually made in calculations of this
sort, that the exchange energy of the valence
electrons in the metal is the same as that of a
free electron gas of the same density. Section 9
contains all the results of the present work, and
a discussion of their significance.

2. TQTAl. ENERGY IN THEi HARTREE

APPROXIMATION

'I he notation employed in this and the follow-

ing sections is for the most part the same as
that of reference 5. Atomic units will be used,
energies being measured in rydberg units and
distances in units of the Bohr radius k'/me'. For
mathematical convenience periodic boundary
conditions will be imposed it will be assumed
that the crystal is of practically infinite extent,
but that all the wave functions, potentials, etc.
are trebly periodic in space, with periods N, t„,
N~t~, N,,t, , where t, t~, t„are three fundamental
translations of the crystal lattice, and N„Nt„N, ,

are three very large integers. The parallelepiped
defined by N.t., N&t&, N, t, , will be called the
"fundamental vol ume" 0; we assume it to
consist of N unit cells each of volume 00 and
each containing n atoms (n=2 for beryllium).
It will be assumed that each unit cell can be
divided up into "atomic cells" each of volume
Qo/n and all alike except for orientation. Mention
will frequently be made of an "s sphere": this is
a sphere with center at an atomic position and
radius r,. so chosen that its volume equals the
volume of an atomic cell. The symbol (P&, $2)
will be used for the scalar product J'„P&*/~dr of
any pair of wave functions.

When periodic boundary conditions are ens-

ployed one cannot speak of the electrostatic
potential due to a charge distribution unless the
integral of the charge density over 0 vanishes.
So if we want to break up the electrostatic
potential in the crystal, or the electrostatic self-
energy, into contributions from different sources,
we must use some artifice. For the potential due
to any charge distribution satisfying our periodic

~ M. Born, Ency. Math. Wiss, 5, iii, p, 587; M. Born and
J. H. C. Thompson, Proc. Roy. Soc. A147, 594 (1934).
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boundary conditions we shall accordingly use
what may be called the "neutralized potential"
of the distribution. ' If p is such a charge dis-
tribution and p is its average value over 0, the
neutralized potential 4 due to p is defined as
that solution of

IIO ———V'-' —+2Z/D(r —R„)+c;
V

(2)

here Z is the nuclear charge (4 for beryllium),
R„runs over the position vectors of all nuclei in

the fundamental volume, and c is a constant
fixing the zero for R;, which we are free to
choose as we please. It will be a sufficiently good
approximation to assunae that when j is a core
state y; is the same as the Hartree 1s function
for a free Be++ ion (hence that p; is localized
about a particular atom); when j is a valence
electron state y; will be taken to be a Bloch waveo

This conception is similar to that used when electro-
static potentials are calculated by the method of Ewald.
See for example the article of M. Born and M. Goppert-
Mayer in the IIandbuch der I'hysik (Berlin, 2nd ed. , 1933),
Vol. 24/2, p. 711.We use periodic boundary conditions and
neutralized potentials, rather than working with a finite
crystal, because it is desirable to be able to break up the
electrostatic energy into parts without the danger that some
of the parts may depend on the size and shape of the crystal.' F. Bloch, Zeits. f. Physik 52, 555 (1929).

V'4 = —4m. (p —p),

which satisfies the periodicity conditions and has
average value 0. In other words, 4 is the potential
due to the combination of p with a homogeneous
charge distribution of such sign and density as
to neutralize p over Q. It is not hard to see that
the final electrostatic energy per atom of a
neutral crystal will be independent of whether
neutralized or ordinary potentials are used in

calculating it. To make the analogy with the
usual electrostatic potential as close as possible,
we shall write 2Z/D(r) for the neutralized
potential, in rydbergs per electron, due to a
charge Z times the electronic charge located at
the origin: thus D(r) is practically the same as r
whenever r is small compared with the dimen-
sions of the fundamental volume.

If V; is the neutralized potential due to the
charge distributions of all the Hartree eigen-
functions except y„, the Hartree functions
will satisfy

(IIp+ U;) (p; =F;p;,
where

of the form exp (ik; r)uA, .(r), where uq has the
translational periodicity of the lattice. In both
cases q; is assumed normalized to 1 over 0,
which for the core state is practically infinite.
With wave functions of this form. V; is practi-
cally the same for all valence electron states,
but is different for the core states. Wigner and
Seitz have pointed out that the potential for a
valence electron inside any s sphere is approxi-
mately

v(r) + (3X/r, Xr—'/r, '), (3)

3
c=— t [v(r)+2X/r jdr 3X/5r„— (5),

4mr, ' ~„

provided we assume v(r) = —2X/r for r&~ r, .

Since the y; for valence electron states are
eigenfunctions of a single Hamiltonian, they are
all orthogonal to one another. But since the
Hamiltonian for the core states is different, the

p; for valence electron states will not be orthog-
onal to those for the core states. The customary
procedure' in determining the total energy by
the Hartree method commences by replacing the
Hartree eigenfunctions by a set of orthogonal
linear combinations of them. Accordingly we
shall define the functions

4i = pi+ ~v'i (6)

to be such an orthogonal and normal set. We
may specify hrp, =0 when j is a core state (this
implies neglect of the small overlap of core
functions of different atoms"); and when j is a

"D. R. Hartree and M. M. Black, Proc. Roy. Soc.
London A139, 311 (1933).

"The eEect of such overlapping on the total energy
gives just the Heitler-London value for the potential energy
of the repulsive force between the ions. It is shown in
Appendix I that this repulsive force must be negligible,
although no attempt has been made to calculate it for the
Hartree wave functions.

where v(r) is the potential due to the ion at the
center, and where the second term is the potential
due to a charge of X electrons uniformly dis-
tributed over the volume of the s sphere (X= 2

for beryllium). When j is a valence electron state
we may writ'e

(FIO+ U;) = —P + Uo. (4)

The average value of Uo is equal to c, and it will

be convenient to choose c equal to the average
of (3) over an s sphere: this may be written
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valence electron state

oo;(r) —Pa;(v) on~, (r —R„)
V

(r) =
1 —Q }a;(v) }'

where a;(v) =(oat, „, rpj) is the scalar product of
the 1s function on the vth nucleus with p, In

the Hartree approximation the total energy WI&

relative to widely separated Be++ ion s and
electrons consists of three parts: the kinetic
energy of the valence electrons, the electrostatic
energy of the crystal relative to the decomposed
state, and the exchange energy minus the
exchange energy in the decomposed state. Fach
of these three must be calculated with the P;.

In calculating the sum of these three terms we need not for the present restrict ourselves to the
case of beryllium, and accordingly Eq. (13) below will hold for any values of Z, X, and n. The electro-
static term may be broken up into the neutralized interaction energy of the ions, that of the valence
electrons, and that of the ions with the valence electrons. In calculating the neutralized interaction
energy of two different ions p, and v, it is convenient to picture each ion as composed of a positive
point charge equal to the charge X carried by an ion, and a neutral distribution consisting of the
core electrons and a positive point charge (Z —X).The interaction energy of the neutral distributions
of p and v is zero, if we neglect overlapping. The energy of the neutral distribution of p in the neutral-
ized potential due to the point charge X at R„ is

pX
[p(}r —R„})+2X/}r—R„}]dr

where —X/0 is the constant charge density used in forming the neutralized potential of the point
charge X, and the quantity in brackets is the negative of the (ordinary, not neutralized) potential
due to the neutral distribution on p. Adding twice this to the interaction energy 2X'/D(R„—R„)
of the point charges gives the neutralized interaction energy of the two ions. We can now write

Electrostatic part of 8'jq = -,' g 2X'/D(R„—R,)+2X/&Jr [s(r)+2X/r]dr
iu, p v

f f;*(r)P„*(r')2';(r) P;(r') drdr'
+o

i, j valence~ g~ g D(r —r')

—2Z
+ 2 t }pj(r) }'2 + 2 ~

——dr' dr. (8)
j valence' s " D(r —R„) i core on v s D(r —r')

In the summations in (8) and henceforth, unless otherwise stated, states i or j with the same orbital
wave function but different spins are to be counted separately.

Let us introduce the abbreviations C;;(P) for the double integral in the second term of (8), and
A, , (P) for the corresponding exchange integral. Then remembering (1), (2), and (5), the total
energy is

~H = Q (4;, 1&o4;)+[a Q + Q 7G;(0)
j valence i, j valence i corej valence

+ P ]A;j(tt)+,'- +2X'/D(R„—R„)+3nNX' /Sr, (9)-
i, j valence i core p Qp

spins jj j valence
spins jj

We shall now investigate the consequences of inserting (6) in (9). In the first term of (9) we have,
using (1)

(4'j 1&ogj) =(4'j, }~o+&e —I g}0&)

= —(o„ I';o;) —2(~p;, ~;p;) —(~o I'~o»)

+L,[1+2tft(o, , ~&,c)]+ (~&,, {Iso+V; }~&;), (ln)
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where the symbol S. means "real part of." Since P; and y; are both normalized

2@(v» ~v») = —(~v», ~v;)

The second term of (9) is, with neglect of terms containing three or more Dy's,

Lk 2 + 2 j~'(0) =f2 2 + 2 3~'(v)
~,j valence ~ core i,j valence i corej valence j valence

+2@ 2 (~~;, I';v»)+ 2 (~~~ I'~~&'~)
j valence j valence

& I' 2L2~~'(r') ~'*(r')lL2+~ pl(r) A*(r)j
+-,'- Q I drd, (12)

i, j valence g& g D(r r')—
where C;;(q) is a double integral like the one in (8), but with the p's replaced by rp's. Thus the first
term of (12) is just

(v;, I' v»).
j valence

The combination of (9), (10), (11), and (12) gives, to the order of accuracy of (12)

&;—2 2 ~*;(~)—2 Z ~* (4)
j valence i,j valence i, j valence

spins }}

A;, (P)+ Q (hp;, }IJo+V; F-;}Aq;)—
i corej valence

spins }I

j valence

+Q+-,' Q 2X'/D(R„—R,) +3nEX'/Sr„(13),
p gv

where Q stands for the last term of (12). In (13),which applies to any metal with sufficiently compact
core wave functions, the erst three terms are the only ones which would be present if the Hartree
Beld were used in the same way as the empirical helds used by signer and Seitz' for sodium, and by
Seitz' for lithium. The fourth term is the exchange between valence electrons and cores. The fifth

term, whose physical meaning is less directly obvious, will be shown below to give important con-
tributions to the binding energy of beryllium. Moreover, since it contains two Ap s, which vary with

lattice constant on account of the normalization of the wave functions, this term has quite an im-

portant effect on lattice constant and compressibility. The term Q was expected for the same reason
to have an appreciable effect on the compressibility; numerical calculation however showed it to
be almost negligible. The neglected terms with three and four Aq's are smaller still.

Ke shall now specialize to the case of beryllium, and with the aid of a few approximations which

are safe in this case it will be possible to put the fourth, fifth, and sixth terms of (13) into a form which

can be used for numerical calculation. The exchange energy A;, (P) of a valence electron state f,
with a core state P, may be evaluated by expanding P; into spherical harmonics about the nucleus
on which P, is localized. The part involving each spherical harmonic gives a contribution to A, ;(P)
which can be expressed as a double integral containing the radial coefficient of that spherical har-

monic. "Ke shall retain only the terms 1=0 and 1, writing

P; = q;+ Ay; = Ro(r)+ Q Ri (r)Pi"(cos 0) exp (fm p)
m= —I

plus terms in higher harmonics which we neglect. Now the negative potential near the nucleus is

practically spherically symmetrical, and is large compared with the width of the valence electron
band and large compared with the variation of the potential with lattice constant. It is therefore
reasonable to expect that near the nucleus the s part of p; can be well approximated by a constant

"The method of calculating these exchange terms has been described by J. C. Slater, Phys. Rev. 34, 1293 (1929).
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times a fixed function happ independent of j and of lattice constant. For happ we shall choose the eigen-
function of the lowest valence electron state, for the observed value of the lattice constant; in the
approximation of Wigner and Seitz, which we use in Section 4, this wave function is simply a 2s
function whose radial derivative vanishes on the boundary of the s sphere. Since the quantity a;(r)
occurring in (7) depends only on the s part of p; around the vth atom, and since in all cases the a, (v)
are so small that the second term of the denominator of (7) is ~0.01, we may set in (14)

o;(0)
Ro(r) = —Woo(r),

o oo(0)
(15)

where goo is the function obtained by putting oo, = q oo in (7). Numerical calculations have shown that
the error in the approximation (15) affects the contribution of Ro to A;;(P) in the most unfa. vorable
cases by only a few percent. We may approximate to R& near the nucleus by a similar expression:

Rg„(r')
R~.,(r) = lim ——R,,(r),

r' o R„(r')
(16)

where R„(r) is the radial part of some standard solution, with /=1, of the wave equation in the
central field which approximates the field around the nucleus. We shall choose for R„ the radial part
of the p function calculated in the same central field used for happ with an energy parameter so chosen
that the boundary condition R„=O is satisfied on the surface of the s sphere for the observed lattice
constant; the scale of R„will be made definite by assuming that

rs

2X/3J 47rr'R 'dr =1
0

for r, =2.37 Bohr units, corresponding to the observed lattice constant. This corresponds roughly to
assuming that a function defined in each atomic cell as R„cos 0 is normalized to 1 over Q.

If the higher harmonics as in (14) are neglected, the approximations (15) and (16) yield, " for any
valence electron state j,

Here

P 2;;(P) = 2s, Go+ o P;G&.
s core

spin ]f j
o»(R.) '

s, =average on v of
O oo(R,)

R~».(lr —R„l)
P;=average on v of P lim

»=-~ .-R, Rp(~r —R„~)

(17)

(18)

where R~„(~ r —R„~) is meant to refer to the p part of P, near the vth nucleus; and

r "P&,(r)P&, (r')Pq, (r')P (ro)

Go ——
~ J

drdr',
0 0

(20)

ra
G~ = t P~, (r) P o(r') P~, (r') P o(r) drdr', — (21)

where r„and r& are, respectively, the smaller and larger of r and r', and where

and
P&, (r) = r(4~) "p&,(r), P&,'(r) = r(87r&) lPoo(r),

P», (r) = r(87r1V/3) '*R„(r)
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are the radial s and p functions. Thus

P2," and P2„are nornialized to
p

2.87

P'dr =1

and the former has been orthogonalized to P~, .
An approximation of the same nature as (15) may also be used in the fifth term of (13). If we

neglect the second term in the denominator of (7),

aq, = —Pa;(v) q ~.(r —R,), (22)

and if the s part of p; is nearly a constant multiple of goo near each nucleus,

p;(R„)
+ (~) =— (PL-, V o~)

v Oo(R„)
If we set

a/(2N) l=(qi-, goo) (23)

and use (18), the fifth term of (13) becomes (neglecting of course overlap of core functions on different
atones)

a' P s;(pg, , {
—V'+ Uo E;}pg, ). — (24)

j valence

Ke shall assume p~, to be localized about an atom at the origin, and shall use the approximate ex-
pression (3) for Uo, "' with

v(r) = —2Z/r+2v~. ,

where v&, is the potential due to one is electron on the free Be++ ion. If —e is the Hartree is energy
parameter for the free ion, we have

( —V'+ U& —E;)p~, ——( —V'- 2Z/r+v~, +~+v~,—. a+6/r, . 2r'/r, ' —E;)—p~, —

Since y~, is the Hartree eigenfunction for the free ion, the first four terms in the parenthesis operate
on it to give zero. The integral of vr, r I rp~,

~

is just twice the quantity Fo(1s, 1s) calculated by Hartree
and Hartree, ' and the integral of 2r'/rP

~
&p~,

~

' is so small that it can be neglected. Therefore

Fifth term of (13)=a' P s;( —e —E;+2FO+6/r, ). (25)
j valence

The small sixth term of (13) can be transformed by using approximations of the same nature as
those which we have described for the two preceding terms. As the term is unimportant we shall give
only the result:

Q = 16Na'8'8
where

8=1/4N Q s;
j valence

is the average of s; over all occupied states, and where

(26)

(P„P2, 3ar g'/r, ')drp-
a=2 t"

0 r
" 1 his approxiniat~on gives r&sc to only a very snIall error, Cf. Wigner and Scitz, refcrcncc j. , Appendix II.

(27)
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with P~, as defined under (20) and (21), while P2,.(r) =r(8mN)'*goo is the radial 2s wave function not
orthogonalized to I'I,

We are now ready to combine the expressions for the various terms of (13).The most useful way
of grouping the terms would be to find out how much the energy is changed by removal of an electron
from each state j, and then to express the total energy as a sum of these "ionization" energies plus
whatever additional terms are necessary. If this has been done one can for example find the location
of the Fermi surface from the requirement that the ionization energies of all electrons on the Fermi
surface must be the same, and the requirement that the number of quantum states with ionization
energies below that of the Fermi surface must equal the number of electrons. Now to find the precise
ionization energies of the different states the change in the second and third terms of (13) due to
removal of a particular electron would have to be calculated. To a good approximation the second
term of (13) is zero, because it is the self-energy of the almost uniform charge distribution of the
valence electrons minus its average value. "So it will not do much harm to neglect the change of this
term when an electron is removed. But the third term of (13) is more troublesome. If the electron
wave functions were plane waves and the filled region a sphere in momentum space, the change of
this term on removal of an electron could be calculated rather easily: it is a function of the momentum
of the electron, which has been given explicitly by Brillouin. "It will be shown in Section 8, however,
that the exchange contributions to the ionization energies of the various electrons probably differ
quite appreciably from these free electron values, and the differences are hard to calculate. We shall
therefore leave untouched the third term of (13), as well as the second, and shall define a quantity
g; as the contribution of all the other terms of (13) to the ionization energy of the jth electron.
From (13), (17), (25), and (26) we find

We —— Q q, -,' Q— C;;(p) —
2 Q A;;Q) —16%a's'8+ 2 P — +24K/—Sr, (28),

j valence i, j valence i,j valence D(R„—R„)
spins Jf

where
Y/

' =E '+ S [6 ( E —F; '+ 2 Fo+6/r, +8Bs) —2G,j——3p;G, . (29)

Of the quantities occurring in (28) and (29), five are independent of the lattice constant and of which
quantum states are occupied, and it will be convenient to list their numerical values here; e and Fp
are given by Hartree and Hartree, ' and the others are calculated from the 2s and 2p wave functions
of Section 4:

0= 0 096
e = 11.344

Fp =2.278
Go =0.0284
GI =0.0364.

To obtain the binding energy we must first subtract from W&1 the "correlation energy'""' due to
the fact that the electrons tend to avoid one another in a way not taken into account by the Hartree
or Fock approximation; the binding energy per atom of the crystal is then the difference between
the resulting total energy, divided by 2N, and the energy of a neutral beryllium atom relative to
the doubly ionized state. Now it would not be correct to take for this energy difference between
Be++ and Be the value given by a Hartree field calculation, if we include the correlation term in
the energy of the crystal, since the tendency of the two valence electrons to avoid each other is not
taken into account in the Hartree calculation for the atom. On the other hand, the correlation term
is much too important to be omitted from the energy of the crystal. We shall therefore take for the
energy difference between Be++ and Be the experimental value 2.024 rydbergs. This will tend to
make our calculated binding energy too small, since it includes, in addition to correlation between the
valence electrons, the effect of all other imperfections in the Hartree method.

"The deviation of this term from zero is roughly estimated in Appendix II.
'5 L. Brillouin, J. de phys. et rad. 5, 413 (1934)."E.%'igner, Phys. Rev. 46, 1002 (1.934); Trans. Faraday Soc. 34, 678 (1938).
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TABLE I, Tke potential due to an ion and an s sphere. TABLE II. Values of E0(r,) and a.

r —Ui(r, 2.37)

0.04 182.7
0.08 83.14
0.12 50.48
0.16 34.59
0.20 25.35

r —Ut(r, 2.37)

0.28 15.44
0.36 10.46
0.44 7.59
0.60 4.556
0.76 3.008

r —Ui(r, 2.37)

0.92 2.067
1.08 1.446
1.40 0.667
1.72 0.256
2.04 0.057
2.36 0,000

2.07
2.37
2.67

E(Uy, rs)

0.167
0.100
0.067

I-'0(r.)

0.333
0.102—0.017

1.154
1.124
1.104

0.422
0.616
0.697

3. THE I' IEI.D

If we define v(r) to be —4/D(x) for r &~ r„ instead of —4/r as before, the potential U, defined by
(4) may be written

6
Uo ——Qv(r —R„)——+v ., (,

JI Sr,
(30)

where v, i is the neutralized potential due to the valence electron distribution. It would undoubtedly
be sufficiently accurate to assume v„&——0 in (30), since the charge distribution of the valence electrons
is almost uniform; if necessary, a first-order perturbation correction could be applied to the energies
calculated using this assumption.

What was actually done was to get a rough approximation to v, & for r, =2.37, and for other values
of r, to assume v, i to vary in the same way near each ion as for r, =2.37. More explicitly, for r, = 2.37
the valence electron distribution in a given s sphere was assumed to consist of a charge of one electron
distributed with a density proportional to

~
goo~, plus a charge of one electron with a density pro-

portional to ~R„~, where &ppp and R„are the functions mentioned in the preceding section. The
potential due to an ion and an s sphere containing the charge distribution just described will be
called U&(r, 2.37). This function, values of which may be found from Table I, was determined so
that the happ and R„calculated from it were the same as those used in it: in this sense it is "self-
consistent. " If we define v~ as the dilference between U~(r, 2.37) and the neutralized potential due to
a sphere of radius 2.37 containing a charge of two electrons uniformly distributed, we have

v&(r) = U~(r, 2.37) —6/2. 37+2r'/2. 37' for r & 2.37
= —4/D(r) for r & 2.37.

(31)

The potential U which was actually used in calculating" the valence electron y; and 2, is now defined
for all values of r, by

6
U(r) = Pv~(r —R„)——,

P sr.
'

and we have for the zeroth I'ourier coefficient

(32)

I 4
U[01= v~(r) +—dr = c = Uoc 0],

(4/3) r, ' „,r
(33)

as a comparison with (5) shows. Since (32) differs slightly from (30), especially when r, /2. 37, th, ere
will be a correction to the total energy resulting from the first-order perturbation corrections to
the 8;; this is roughly estimated along with the Coulomb energy in Appendix II.

4. DETERMINATIQN QF 2p AND A

Wigner and Seitz' have shown that the energy parameter Bp for the lowest valence electron state
in a metal can be determined with remarkable accuracy by integrating the radial wave equation

'7 The potential (32) is used directly' in Sections 5 and 6; in Section 4 the wave functions are calculated in the field
UI(r, 2,37) and their energies then corrected for the difference between this and (32).
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for an s function in a single atomic cell, and hnding the energy for which the radial derivative of
the wave function vanishes at the radius r, . Accordingly, s functions yo were determined for several
energies by numerical integration, in the field U~(r, 2.37) of the preceding section, and the energies
for which the radial derivative vanished at r, =2.07, 2.37, and 2.67 were found by graphical interpola-
tion. These energies are listed in Table II in the column headed Z(Ui, r,).

The desired energy parameter Eo(r,) is rather accurately given by Z(Ur, r,) plus the average over
an atomic cell of

I
pal'U minus the average over an s sphere of

I
qol'Ui(r, 2.37). As it will be of

interest in Section 6 to have a rather precise value of Eo to compare with the value calculated by the
orthogonalized plane wave method, we shall evaluate this energy correction with greater accuracy
than is needed for the other purposes of this paper. In analogy to (31) let us define for r &~r,

Ui(r, r,)=v, (r) +.6/r, 2r'/r—,'

By (33) the average of U over an atomic cell then equals the average of Ui(r, r,) over an s sphere.
Also

36
spherical average of U= Ui(r, r,)+ Q'v&(R„) ——,

5r,,
(35)

the constant term in brackets being small (it is calculated numericaHy in Section 9). If yo is normal-
ized over an s sphere we can now write

&o(r.) =&(Ui r.)+J LI vol' —
I ~o(r.) I'jUd.

atomic cell

+
I v o(r,) I

'J"
s, tom ic ce11 s sphere

I po I

' U (r, 2.37)d .

The region of integration in the second term can be changed to the s sphere without much harm,
since the integrand is nearly zero in the region between the cell and the sphere; then (35) can be
used. In the second integral we may replace U-by Ui(r, r,) and change the region of integration to
the s sphere. The result is

where

4 36
&o(') = &(Ui r.)+ "

I v o
I
'L»(r r ) —Ui(r 2 37)3dr+(v —1) 2' — +-

s sphere D(R„) 5r.

4m
v=

I ~o(r.) I'—r;.'
3

(36)

is the ratio of the square of the wave function at r, to its mean value. The quantity

4 36+-
D(R„) Sr.

depends on the c/a ratio of the crystal. The observed c/u ratio for beryllium is 1.58; however, no
appreciable error in any of the quantities being calculated in this paper is apt to result from using
the value 1.63 (corresponding to ideal cl'ose packing of spheres), and as some of the numerical work
is simpler if this value is used, all the calculations of this paper have been made assuming c/a = 1.63.
For this case

4 36
+—has the value

D(R„) 5r,

0.0317

The integral in (36) was evaluated numerically for r, =2.07 and 2.67. The resulting values of Eo(r,)
are given in the third column of Table II; y, which appears also in the expression (38) for n, is given
in the fourth column.
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The general form for an electron eigenfunction in the trebly periodic potential field of a crystal is'

(pg—-exp (ik r)ni, (37)

where the function u& possesses the same translational periodicity as the crystal; k is called the wave
vector of the eigenfunction pA. . The assignment of a wave vector to a given wave function is unique

only to within 2x times an arbitrary vector of the reciprocal lattice; to make it unique one may
define the "reduced wave vector" as the shortest wave vector which can be associated with the given
eigenfunction. Also, an infinite number of eigenfunctions can be found for any value of k. The energy
Eo which we have just calculated is the third lowest of those going with wave vector zero (the lowest

belong to the functions of the is core band, and there are two such orbitals because there are two
atoms in the unit cell).

For wave vectors close to zero there exist energies close to Po, whose expansion in powers of k for

a hexagonal crystal is of the form

Ei =Eo+ai(k '+k ') +m~k*' +0(k')

Here k, is the component of k along the hexagonal axis, and k, and k„are the components along any
axes perpendicular to this. It can be shown that o;~ and n„must be very nearly the same when the
c/a ratio for the crystal is 1.63, which, as described above, is the value assumed in the present
calculations.

With Nil —cl~ —cl the value of o, can be calculated from the formula

(38)

given in the first paper of Bardeen. ' Here f(r) is the radial p function obtained by outward integration
in the field Ui(r, r,) using the energy Eo. This formula, though an approximation, seems to be a
very good one, both for the absolute value of o. and for the manner of its variation with r, . The values
of a listed in Table II were calculated from the field Ui(r, 2.37) for all values of r„but only a negligible

correction would result from changing the field to Ui(r, r,).

5. EXCITED ENERGIES

Because of the fact that the occupied region of k space extends in beryllium out to and beyond the
first planes of energy discontinuity, the parabolic approximation Bx=Bo+ak', which usually suffices

for monovalent metals, is quite inadequate as a representation of the energies of most of the occupied
quantum states. In fact, the calculations of Section 9, (3) show that with this approximation no stable
state of the crystal exists anywhere near the observed lattice constant. We therefore calculate in this
section the energy parameters of a number of states near the Fermi surface, using the orthogonalized
plane wave method. An approximation to the energy parameter of such a state is obtained by solving
a secular equation

det (xi, IIxi ) —E(xi, xi: ) =o, (39)

where the functions xi are defined by Eq. (4) of reference 5. It is obvious that: by taking a sufficient
number of rows and columns in (39) a very good approximation to the desired energy could be ob-

tained; it will be shown in this section and the next that fairly accurate energy values result even if

only a few rows and columns are used. The matrix elements occurring in (39) are given by (13) and

(14) of reference 5. For our case these take the form

(xl~r, Erx& ) = k'xiii'+ U(k' —k) —}Ei, F(0, 0) }A i (k)A i—(k') }1+exp Li(k' —k) t]}
—

,
'A it,.(k) Ii, (k') +A i,,(k') Ii,.*(k) } }1+exp [i(k' —k) t] }

cell

+Air(k)A~, ,(k') P P}Ei,S(v, v')+F(v, v')} exp [ ik R„+i—k' R„] (40)
V gP P
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d,nd
cell

(xi., x~„') =ilii. —Ai, (k)Ai, (k') f1+exp [i(k' —k) t]—P QS(v, v') exp [ ik R—„+ik' R„]I, (41)
gV V

TABLE III. Fourier coePcients of U for c/a =1.63.

U[000, oj
U/000, 2j
ULOOO, 4j

I UL110, 0)I
I

U [110, 1)I
I
U[1T0, 2]I

I
U/110, 3)I

I
UL1T0, 4g

I

U(211, 0)
U(211, 2j

I
UL220, oq I

I
UL220, 1jI

I
UL220, 2)I

2.07

—0.6624
—0.3759
—0.1106

0.2087
0.2898
0.1046
0.1438
0.047

—0.1552
—0.120 .

0.0611
0.100
0.050

2.37

—0.5634
—0.3197
—0.0940

0.1. 783
0.2459
0.0900
0.0974
0.039

—0.1398
—0.100

0.0514
0,085
0.042

2.67

—0.4893
—0.2779
—0,0782

0.1557
0.2135
0.0781
0.0845
0.034

—0.1138
—0.085

0.0446
0,071
0.035

where t is a vector joining the atom at the origin
of coordinates to one of its nearest neighbors in
the layer above or below it when the hexagonal
axis is vertical. To use (40) and (41) we need to
know values of the coefFicients A i, (k), the Fourier
coefficients U[K] of the potential (32), and the
various overlap integrals.

For the field which was called V(r) in reference
5 we chose the field Ui(r, 2.37). The 1s eigen-
function was determined by numerical integra-
tions, and its energy was found to be E&,———4.55
rydbergs. The integral which gives Qp'A i (k)
(Eq. (5) of reference 5) was calculated numeri-
cally for k=0 and two other values of k; for
values of k smaller than the larger of these
A i, (k) was determined graphically, and for
greater values of k it was assumed that Ai, (k)
could be represented by an expression of the
type of (29) of reference 5, which would be
exactly correct for a hydrogenic core function.
It was found, in fact, that by properly choosing
the value of b in this expression, the three di-
rectly calculated values of A i, (k) could be fairly
well represented.

To calculate the Fourier coefFicients U[K], an
integral similar to that in (18) of reference 5 was
calculated numerically for eight values of K, so
spaced that the value of the integral for any
other value of K could be fairly accurately esti-
mated graphically. Table II I contains the Fourier

coefficients of U for the case cja=1.63. The
argument of each U in the first column is a
vector of the reciprocal lattice, designated by
four indices according to the Bravais-Miller
notation. "Not all the Fourier coefficients of U
are real, and for those which are complex only
the absolute magnitude is given. The phase of
each Fourier coefficient U[K] is that of the
quantity" —[1+exp (iK t)] where t is as de-
scribed under (40) and (41), and where the
minus sign is due to the fact that U(r) is every-
where negative.

A number of the higher Fourier coefficients not
listed in Table III occur in the expressions for
the energies of some of the states which perturb
the ones we are interested in. As the energies of
the occupied states are rather insensitive to
these Fourier coefficients, they were estimated
by a rough extrapolation from the coefficients in
the table.

The small overlap integrals given by (10), (11)
and (12) of reference 5 could have been calcu-
lated with fair accuracy by methods similar to
those mentioned there. However, we did not
feel that the accuracy aimed at in this work was
great enough to require a complete and accurate
inclusion of overlap terms. It was considered
sufficient to make use of an estimate of the
overlap terms in (40) which is almost certainly
too great. A comparison of the energies of the
eigenfunction calculated with and without these
overestimated overlap terms shows whether or
not the uncertainty due to our ignorance of cor-
rect values of the overlap integrals is dangerous.
In making this "overestimate" we shall neglect
the $(0, v), and the F(0, v)" for vAO. For the
eigenfunctions considered in this section this
neglect does very little harm, because the
quantities are small and, for the k vector we
shall use, their coefficients in (40) turn out to

"Cf. N. F. Mott a, nd H. Jones, Theory of the Properties
of Metals and Alloys (Oxford, 1936), p. 159.

"Cf. Eq. (18), reference 5."In Section 6 a calculation of B0 is given from more
accurate values of the overlap terms, and values for S(ov)
are given.
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(a) (b)

Fig. 1. First and second Brillouin zones for the close-
packed hexagonal lattice.

The quantity I&,(k) is more dificult to approxi-
mate adequately. If we make the same assump-
tion regarding the constancy of (U —V) we have

f1 1
I„( ) =6( —— ~a„(u).

&r, 237)
(43)

More accurately calculated values for I&,(0) are
given in the next section, and a comparison
shows that the expression (43) is numerically
too large by a factor 1.6 for r, =2.07, and a
factor 1.3 for r, =2.67. For large values of k,
the contribution to the I~, (k) integral from the
region close to the nucleus is relatively more
important, however, since at a distance from
the nucleus the phase of the exponential is

different in different directions. So we may
expect the approximation (43) to be a little
less bad for the wave vectors to be considered
in this section, than for k = 0. If (42) and

(43) are inserted into (40) and the S(0, v)

and F(0, v) for v/0 are neglected, the result-

ing expression for (x&, IXx~ ) has the form
which would be obtained by replacing Ej, by
(Fq, +6/r, —6/2. 37) and disregarding all the
overlap terms. The energies E which will be
given later on in Table V are obtained by calcu-
lating all matrix elements of the Hamiltonian in

this way.
Before beginning on the detailed calculation

be small. Since the chief contribution to the
integral for F(0, 0) comes from near the nucleus,
we shall assume that (U —V) is constant in

this integral and equal to its value at the nucleus.
This gives

fi 1
F(0, 0) =(U—V)„=o=6( —— ). (42)

ir, 23»

TABLE IV. Symmetry types for each lettered point in Fig. 1.

POINT

NO. Or PLANI' WAVES OF
SAME KINETIC L'NL'RGY AND

SAME REDUCED WAVL' VECTOR SYMML'TRY TYPES

MI+, Mp
LI, L1
KI, Ks

IVI, H2, F53

r,+, r4—

"See the article of Sommerfeld and Bethe, Handbuch
der Physik (Berlin, 2nd ed. , 1933), Vol. 24/2, p. 385.

"That there cannot be a discontinuity in energy across
these planes was first shown by F. Hund, Zeits. f. Physik
99, 119 (1936); cf. also C. Herring, Phys. Rev. 52, 361
(1937)."It will be noted that the second zone in Fig. 1 differs
from the zone (there designated as the "first zone") in
Fig. 65 of Mott and Jones, Theory of the Properties of Metals
and Alloys (Oxford, 1936), in that we have included wedge-
shaped pieces around the sides. The volume of these wedge-
shaped pieces is just sufficient to make the whole zone hold
exactly two electrons per atom.

of the energies of the various states, it will be
worth while to consider what the occupied states
for beryllium would be like in the approximation
of almost free electrons. " In this approximation
k-space is divided up into Brillouin zones, across
the boundaries of which discontinuities in energy
occur. The boundaries of the various Brillouin
zones are the planes which bisect perpendicularly
the vectors from the origin to the various points
of the reciprocal lattice, each multiplied by 2x.
The first Brillouin zone is, in general, the space
which can be reached from the origin by crossing
just one plane, etc. We shall adhere to this
definition here, although on account of the
presence of a twofold screw axis in the space
group there is no discontinuity in energy across
the top and bottom boundaries of the first
Brillouin zone. " The first and second Brillouin
zones are shown in Fig. 1, and a number of wave
vectors are indicated by letters. "Since there are
just enough electrons present to fill the first
two zones, we may expect that a Fourier analysis
of the true crystal eigenfunction of a state near
the Fermi surface would show it to be composed
principally of one or more plane waves of wave
vectors near the boundary of the second Brillouin
zone.

Now the eigenfunctions in a crystalline field

can be classified according to symmetry types,
corresponding to the various irreducible repre-
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(s) MI+
(s) u
(s) I.I

EI
(s}E5

K0
HI
Hg

(S) &I
Z3
p+

(s) r4

rs =2.07
B; h, E;

0,764 0.006
1.010 —0.012
0.888 —0.003
0.967
1.197 —0.008
1.878
1.231
1.117
1.419 0.011
0.975
0.721
1.45 0.05

2.37
jv.

0.547
0.702
0.650
0.712
0.852
1.377
0.913
0.810
1.012
0.713
0.507
1.00

2.Q7
I.'g AF p

0.401 —0.004
0.492 —0.016
0.489 0,001
0.537
0.623 —0.009
1.049
0.696
0.604
0.726 —0.035
0.537
0.370
0.68 —0.04

No.
CONSTITUI';NT

X
FUNCTIONS

'4L. P. Bouckaert, R. Smoluchowski and E. V/igner,
Phys. Rev. 50, 58 (1936)."C.Herring, to be published in e,nother place.

sentations of the space group. '4 Suppose we take
all the plane waves which have the same reduced
wave vector, and the same kinetic energy, as
the one corresponding to a particular lettered
point in Fig. I; with the aid of character tables
for the irreducible representations of the close-
packed hexagonal space group" we can 6nd all

the symmetry types which occur among the
linear combinations of these plane waves. These
symmetry types are listed, for each lettered
point, in Table IV, the notation being that of
reference 25. In the approximation of almost
free electrons the symmetry types of those
eigenfunctions at the lettered points which

belong to the first and second zones must of
course be among the listed types. It is reasonable
to expect that the same holds true for the actual
crystal eigenfunctions, i.e. , that if we select the
two valence electron states nearest the Fermi
surface which have reduced wave vector corre-
sponding to a given one of the lettered points,
the symmetry types of these states will be
among those listed for the given point in Table
IV. It turns out that this is indeed the case,
although it is of course necessary to investigate
eigenfunctions of other symmetry types, which

arise in the free electron approximation from

higher energy plane waves, and to make sure
that none of these have energies near the
Fermi level.

For each symmetry type in Table IV the
appropriate plane wave combination was set up.
Similarly out of plane waves of higher energies

TABLE V. IIartree energy parameters of the crystal
ei genfuncti on,

TABLE VI. Values of E0 calculated by the orthogonalised
Plane wave method. E0 is the average energy of the wave
function X0 arith inclusion of all overlap terms except the
F(0v) for v&0. The four perturbations listed, and E0&I), are
calculated with inclusion of overlap terms and assuming
II,(k)/AI. (k}=II,(0)/AI, (0). B0&') is calculated mth inclu-
sion of overlap terms, using. (4Z), and (43) for @&0, but using
correct II,(0). E0&') is calculated including only the II,(k)
and F(0, 0) overlap terms, and assuming (4Z) and (4'3) for
all k. 80(') is calculated omitting all overlaP terms. 80~8 is
taken from Table II.

I,(0)
F(0, 0)
S(0, v)

g0
pert. (110,0)

(1ao, 1)
(000, 2)
(1TQ, 2)

F0(1)

2.07

0.076
0.342
0.00159

0.3771
0.0042
0.0244
0.005'
0.0024
0.340

2.37

—0.0027
0.0000
0.00051

0.1208
0.0005
0.0085
0.0015
0.0017
0.108

—0.049—0.269
0.00016

—0.0065
0,0002
0.0017
0.0000
0.0034—0.0]2

0(2)

g ()
g0(4)

0.355
0.307
0.382

0.333

0.109 —0.014
0.110 0.001
0.110 —0.028

0.102 —0.017

linear combinations were formed having each of
these symmetry types. These linear combinations
of plane waves were then made orthogonal to
the core functions, just as was done for a single
plane wave in (4) of reference 5. Such a linear
combination of plane waves, orthogonalized to
the cores, will be referred to as a "constituent g
state" of the eigenfunction of the same sym-
metry type.

For certain symmetry types of Table IV it
happens that the plane wave combination is
itself orthogonal to the 1s core functions, so that;
no multiples of the core functions need to be
added to get the constituent y-state. This is the
case for all symmetry types except those (labeled

(s) in Table IV) which occur among the Bloch
waves forn1ed from the core funct. ions. For each
symmetry type we chose the several constituent
y-states of lowest average energy, and using (40)
and (41) evaluated the scalar products of these
with each other and the matrix of the Hamil-
tonian relative to them. The lowest root of a
secular equation gave an approximate value for
the Hartree energy parameter of the crystal
elgen function.

The energy parameters so obtained are t;he

quantities E; listed in Table V. We have included
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FIG. 2. Comparison of the orthogonalized plane wave and
signer-Seitz wave functions for k =0, r„=2.37. The
former (OPW) goes at r =0 to the value —4,21, the latter
(WS) to —4.01.

FIG. 3. Comparison of the s part of the orthogonalized
plane wave function for I'4 with central field functions,
for ra=2.37. The former (OPW) curve goes at r =0 to the
value —4.4, the 8=0.10 curve to —4.01, and the 8=1.00
curve to —3.8.

here the lowest energy state of symmetry E6 in

addition to the states listed in Table IV. The
quantities AE; were obtained by subtracting the
listed value of E; from the value which resulted
when all the overlap terms in (40) and (41) were
neglected. Thus we may expect the solution of
the correct secular equation to lie between E and
E+AE; probably about halfway. The last
column of Table V gives for each symmetry
type the number of constituent y-functions used
in the secular equation; we have neglected the
perturbations due to the small matrix elements
of the Hamiltonian connecting the constituent
x-functions with the core functions.

The differences between the E s in the table
and the average energies E; for the lowest
constituent z-state are quite small, of the order
0.03 to 0.06 Ry, for the states not designated (s).
The corresponding diR'erences for the (s) states
are as high as 0.20 Ry. Because of the rough
perturbation method used the energy parameters
are probably inaccurate to 0.01 Ry or more.
However, the third figure listed in the table is
significant in taking the differences 8E; and 5'E;,
between the E s for the three values of the
lattice constant, which are used in computing the
lattice constant and compressibility. The quanti-
ties 8'E; —8'E; are only a few thousandths of a
Rydberg unit for all the non-(s) states except X6.
For the (s) states these quantities may be as
high as 0.05 Ry.

6. TESTS OI THE ORTHOGONAI. IZED PI.ANE

WAVE METHOD

Since our results will depend considerably upon
the calculations of the preceding section, and
since these calculations are the first to be pub-
lished using the orthogonalized plane wave
method, a check on the accuracy of the method
is desirable. The most obvious test to make is to
calculate Eo by the orthogonalized plane wave
method, and compare the result with the value
obtained by the method of signer and Seitz.
Another kind of test which can be made is to
calculate the wave function for any state by the
orthogonalized plane wave method, and then to
compare the s and p parts of this wave function
with the s and p functions for the same energy
obtained by integrating the wave equation with
the spherically symmetric potential U&(r, r,) of

Fio. 4. Comparison of the p part of the orthogonalized
plane wave function for I'~+ with the central field function
of the same energy, r, =2.37.
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Section 3. The radial functions obtained by these
two methods should be the same to within a
constant factor as long as r is sufficiently small
so that the deviation of the true field U from
spherical symmetry is negligible.

The results of the calculation of Eo by the
orthogonalized plane wave method are given in

Table VI. As it is of interest to see how well Eo
can be calculated when all the overlap terms in

(40) and (41) are taken accurately into account,
values of I~,(0) and of S(0, v) for nearest
neighbors were calculated from (23), (24), (25),
and (26) of reference 5; these are given in the
first three rows of Table VI, along with accurate
values of F(0, 0) which were used here instead
of the approximation (42).

Of the energies Eo'" Eo(" calculated in

various ways, one would expect Eo"' to be the
most accurate, with Eo&') next. The energies
Eo'", and Eo") are calculated with the same
approximations which were used for E and

E+AE, respectively, in Table V; the differences
are much larger here because most of the (s)
functions in Table V are rather smaller near a
nucleus than the wave function po of Table VI,
and also because A~, (k) is smaller for larger k

values. The deviation of Eo(') from Eo~ is of
the same order of magnitude as the uncertainty
in the energies due to the uncertainty in the
extrapolated values of A &,,(k). The second differ-

ences of Eo"' ~ ~ Eo(" and Eo'~8 with respect to r„
which are important for the compressibility, are,

respectively, 0.112, 0.123, 0.088, 0.134 and 0.112.
The perturbations listed in Table VI are the
second-order perturbations due to the g-states
corresponding to the listed indices and other
plane waves of the same kinetic energy.

Figure 2 shows a comparison for r, =2.37 of
the wave function yo of Section 4 with the s part
of the wave function calculated with the matrix
elements used for Zo'" in Table VI (omitting,
however, the small perturbation by the (1—10, 0)
waves). The two wave functions are drawn with
the same normalization. It will be noted that
the close agreement between the two functions
persists even to r=0. The perturbations have a
rather small effect on the wave function in this
case, and even the unperturbed wave function

yo agrees fairly closely with the Wigner-Seitz
function. Figure 3 shows a comparison, also for
r, =2.37, of the s part of the orthogonalized plane
wave function for the state I'4 with the s func-
tion of energy 1.00 in the field U&(r, 2.37). Since
the eigenfunction cannot be accurately approxi-
mated by an s function alone, we cannot intro-
duce a normalization requirement: the two
curves have therefore been arbitrarily given the
same ordinate at r=1.24. For comparison the
Wigner-Seitz function from Fig. 2 is drawn in

also, fitted to the same value at 1.24. It will be
seen that the orthogonalized plane wave function
resembles the central field function for E=1.00
much more closely than the one for E=0.10,
although the agreement is not so good as in

TABLE VII. Values of s; and p; and the derivative of tkese quantities.

STATE

M1+
2lf 2

L1
E1
Xe
E6
H1
H2

Z3
'p +

F4I'+

d(k')

r~ =2.07

0.164
0.555
0.007
0
0.344
0
0
0
0.850
0
0
1.61
1,617

Sj.

2.37

0.141
0.511
0.009
0
0.292
0
0
0
0.765
0
0
1.25
1.000

2.67

0.121
0.462
0.014
0
0 ~ 280
0
0
0
0.746
0
0
1.00
0.654

—2.11 —1,42 —1.00

2.07

1.5
1,4
1.7
3,2
0.9
2.6
3,1
3.1
1.5
1.7
1.6
0
0

1.69

Pi
2.37

0,8
0.6
].0
1.9
0.5
1.5
1.6
1.9
0.7
1.0
1.1
0
0

1.16

2.67 2.07
, 'rll'

2.37

0,5
0.3
0.5
1.2
0.4
1.0
1.0
1.2
0.3
0.6
0.7
0
0

0.713 0.514
0.924 0.636
0.847 0.625
0.888 0 666
1.142 0.810
1.82 1.34
1.156 0.873
1.041 0.764
1.300 0.918
0.935 0.690
0.682 0.481
1.29 0.87
0.186 0.007

0.81 0.563 0.714

2.67

0.378
0.438
0.476
0.509
0.586
1.02
0.672
0.576
0.641
0.522
0.352
0.58—0.081

0.769

0.1314
0.1168
0.2189
0.0876
0.0876
0.0073
0.0876
0.1460
0.0146
0.0438
0.0438
0.0146

0.1651
0.0734
0.2752
0.1101
0.0184
0
0.1101
0.1284
0.0092
0.0551
0.0550
0

0.58
0.161

0.40
0.163

0,29
0.165
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compared with the central field p function of
the same energy. The ordinates of the two
curves correspond to values of the p part: along
a line in the direction of the hexagonal axis, and
are arbitrarily chosen equal at r =1.88. In spite
of the apparently poor agreement of the wave
function here, however, the energies of the states
not labeled (s) in Table V are probably accurate
to 0.01 Ry. A similar plot for the H2 wave
function shows even worse agreement, which can
perhaps be attributed to the fact that this
function is far from a pure p function: the more
of the higher harmonics there are in the wave
function, the less the effect on the energy of an
inaccuracy in the p part.

7. DIsTRIBUTIQN QF STATEs IN ENERGY

r
M

A

L

FIG. 5. g vs. k along lines of Fig. 1 parallel to the
hexagonal axis, for ra= 2.37. The representation I'~ is two-
dimensional. (The horizontal scale is different from that
of Figs. 6 and 7.)

Fig. 2, especially for r =0. The poorer agreement
is to be expected, since only three constituent.
y-states were used, the smallest number for any
of the states in Table V. One might expect the
orthogonalized plane wave functions for the (s)
states of Table V to be considerably more in

error for r, = 2.07 or 2.67 than for 2.37, because
of the crude treatment of the overlap terms. To
test this curves similar to Fig. 3 were con-
structed for the state l'I/I2, for r, = 2.07; the
agreement with the central field function of the
same average energy was found to be slightly
worse for large r than in Fig. 3, but slightly
better for small r.

It was pointed out in reference 5 that one
would expect the orthogonalized plane wave
functions to resemble the true eigenfunctions
more closely in their s parts (and also in their d
and higher parts) than in their p parts. This
expectation is confirmed by Fig. 4, where the p
part of the orthogonalized plane wave function
for the I'3+ state of Table V, for r, =2.37, is

As has been remarked previously, the quanti-
ties q; defined by (29) are of more physical
interest than the 2;. To obtain them we need to
know the quantities s; and p;. The s; defined by
(18) can be calculated in a straightforward way
from the approximate wave functions which
correspond to the energies 2 in Table V. The
p; could be calculated similarly from their
definition (19); however, since the p parts of
these approximate wave functions differ con-
siderably from the p parts of the true eigen-
functions near a nucleus (as shown by Fig. 4),
the values of the p; calculated in this way would

be very bad. So instead, each p; was estimated
from the magnitude of the p part of the approxi-
mate wave function at a distance of 1.5 Bohr
units from each nucleus. Such estimates are very

I./P

i.PP

FIG. 6. q vs. k along lines in the central plane of the first
Brillouin zone, for r, =2.37.
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rough, but are good enough for our purposes.
The first two sections of Table VII give the
values of the s; and the p;. Also given are the
derivatives of these quantities with respect to k'
at k=0, which can be calculated by an analysis
similar to that used by Bardeen' to obtain o;.
This analysis is given in Appendix III.

The next to the last line of Table VII gives
roughly estimated values of s, the average of
the s; of the occupied states, which appears in
(28) and (29) with a very small coefficient. The
quantity which multiplies 8 is given in the last
line. The values of the g;, which can now be
calculated from (29), are given in the third
section of Table VII.

As the first step in the determination of the
distribution of states in g, graphs were drawn
of q against reduced wave vector along a number
of lines in k-space. Reduced wave vectors (lying
always in the first Brillouin zone) were used
because the wave functions of the higher energy
states did not resemble single plane waves closely
enough to justify assigning unique wave vectors
to them outside the first Brillouin zone. These
graphs were constructed for r, =2.07, 2.37, and
2.67; those for r, = 2.37 are reproduced in Figs. 5,
6 and 7. The symmetry types belonging to the
various curves are written in, using the notation
of reference 25; use has been made of the fact,
pointed out there, that the line FK when
prolonged reaches a point equivalent to M, and
that similarly AH prolonged reaches a point
equivalent to I..

It will be noticed that some of the curves have
horizontal tangents at the symmetry points and.

/. 0

/. 00

Frr. . 8. Distribution of states in the energy parameter g,
for r, =2.37, with the scale such that ™xn(q)dg=1.

f/0

that others do not, and that in the latter cases
the slopes of the two curves which intersect at
the point in question are equal and opposite.
These facts can be deduced from the space
group and time-reversal symmetry of the prob-
lem. It will be noticed also that there is a very
sharp curvature at the points I'3+, I'4 in Fig. 5,
M~+, M2, X~, X& in Fig. 6, and IX~, I52 in Fig. 7.
In each case this curvature is due to the perturba-
tion of the curve in question by others which
have the same symmetry at the general point of
the line; the curvature is sharp because the
chief perturbing influence comes from a curve
which comes very close to the one in question.
For these cases the curvature P at the symmetry
point depends chiefly on the energy interval
between' the curves at that point, and can be
calculated roughly. " Each of the lower curves
of Figs. 5 and 6 was drawn by plotting a number
of points on the parabola

dn
gA. =go+ ——

d(k') ),. o

0
A

FIG. 7. q vs. k along lines in the top plane of the first
Brillouin zone, for r, =2,37. The representation Si is two-
dimensional; R~ and R8 are one-dimensional but coincide
in energy because of time-reversal symmetry.

and then drawing a curve osculating this pa-
rabola at the bottom and osculating another
parabola of curvature P at the top. The other
curves were drawn in what seemed to be the
most plausible manner, using the various P
values.

With the aid of Figs. 5, 6, and 7 secondary

' The reasoning involved in such calculations of curva-
tures is discussed in more detail in Appendix IV.
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graphs similar to Fig. 6 and Fig. 7 were drawn
in planes 3 and 3 way between the plane of
Fig. 6 and that of Fig. 7. In these planes none
of the curves will intersect, "and use was made
of the fact that the energy separation of two
bands varies linearly with the distance in k-space
from a "line of contact" in a plane of symmetry. '7

From all these graphs contours of constant g
were drawn, and from their areas the number of
states per unit range of g could be roughly
determined. Figure 8 shows this distribution
function, for r, = 2.37. The Fermi surface is
represented by a vertical dotted line at p =0.872,
and the distribution function is normalized to

0. 872

n(g)dq =1.
0. 007

.OJ-

Mi

ra =2.07 2.37 2.67

qm, „ from graphs
g from graphs

bg from graphs
Pg from graphs
bg from m

Pg from 5)&

Bg from m;"
8'g from zv;"
parabolic Bg
parabolic Hq

1.18 0.87 0.64
0.701 0.480 0.337—0.221 —0.143

0.078—0.257 —0.1 76
0.081—0.241 —0.165
0.076—0.193 —0.156
0.037

7 See C. Herring, Phys. Rev. 52, 365 (1937).

For comparison two parabolas are also shown:
the lower one shows what the distribution
function would be for free electrons (ql,. ——rto+k'),
and the upper one shows what it would be if qI,

v ere
dn

+ P2

d(k') I:=0

The Fermi surface appropriate to each of these
cases is represented by a dotted line.

Table VIII gives, for three values of r„ the
energies q,„, of the Fermi surface, and the
average energies g of all occupied states, as
determined by the graphical method just de-
scribed. The differences bg and b'q are also shown.
However, one may very well doubt the accuracy
of a second difference computed from three
separate graphical calculations. To get an inde-
pendent estimate of 8g and 8'g, one may try
averaging the differences of the q, , with appro-

TABLF. VIII. The energies of the Fermi surface and the aver-
age energies of all occupied states for three values of r,

I-IG. 9. Variation of 6'g with kr, .

priate weights w; (such a procedure neglects the
effect on b'g of the change of the shape of the
Fermi surface with lattice constant). For a
choice of weights to be "reasonable, " it should
assign to each of the lower energy levels listed
in Table VII a weight approximately propor-
tional to the number of distinct wave functions
belonging to the listed energy value, and to
each of the higher levels a weight smaller than
this number, to take account of the fact that
levels near and above the Fermi surface affect
the average energy of the filled region less than
the lower levels. It is less easy to decide how
much weight should be given to [dg/d(k')]I, 0.

Figure 9 illustrates the difficulty.
Here 6'gI, is plotted against kr,, along the line

I'M. If ql, were simply go+k'[dq/d(k')]&=0, the
graph for the lower band would be the dotted
parabola. Actually it must end at the value
belonging to the 3II~+ state. The value of 6'g
will depend quite seriously on whether or not
the true curve follows the parabola nearly to
the end, so it is important to decide just how
the curve should be drawn. The rough P-values
calculated in Appendix IV yield a sharp down-
ward curvature at the Mq+ end. Now P is the
second-order part of a root of a second-degree
secular equation; if the energy gap at the right
harid end is sufficiently small, the exact solution
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of this secular equation can be shown to yield a
curve of 8'q~ against k of the rather complicated
form shown by the lower full curve. The true
curve must deviate from this one by an amount
which varies smoothly near the M&+ end, since
it comes from matrix elements of fj/Bx connecting
the M~+ state with states a considerable distance
from it. From the other end, it can be shown

(see Section 9, Part (7)) that the curve of 8'q„
against k must deviate from the parabola in

the upward direction by a fairly appreciable
amount if we neglect the perturbations due to
the Fourier coefficients of the potential. We may
therefore expect the true curve to look something
like the dashed curve. Except for the dip near
the end this is very much the type of curve we
would draw if we were given the 8'q values for
I'~+ and jld i+, and knew nothing about dg/d(k')
or about any of the fine points just discussed.

It should be noted, moreover, that in the next
higher band the curve (upper full curve) has
sharp variations which are almost the mirror
image of those of the lower band, and if a small
region near M2 in the higher band is occupied,
8'g will have about the same value as if the
curves for both bands had been drawn smoothly.

Accordingly we may conclude that 6'g is
probably about equal to the "reasonably
weighted" average of the IPg;, to within the
accuracy with which this average can be deter-
mined. In the last two columns of I able VII are
given two sets of weights, m and m;"; the w7"
are less "reasonable" than the m, having been
chosen so as to give a value of b'q which may be
regarded as a lower limit. The bg and 8'g calcu-
lated from the m, from the m;", and from the
parabolic assumption g~„.

——ye+ k'[dg/d(k') ]k e,
are given in Table VII.

8. FRRQR IN AssUMING FREE ELEcTRoN ExcIIANGE

The term —',PA;j(P) in (28) is the exchange energy of the valence electrons. Order-of-magnitude
calculations made by Seitz' have indicated that for alkali metals it is a rather good approximation
to set this exchange energy per electron equal to 0.916Xl/r„which is the exchange energy, per
electron, of a perfect free electron gas whose density equals the density of valence electrons in the
metal. For beryllium with r, =2.37, this would give 0.482 rydberg per electron, or 304 kilocalories
per gram atom. The largeness of this term, and the fact that the higher energy eigenfunctions for
beryllium differ considerably from single plane waves, give us good reason to worry about the
legitimacy of using the free electron value. As the actual exchange energy is very hard to calculate,
however, we shall in this section merely give two lines of reasoning from which the limiting behavior
of the exchange energy for low and high electron densities can be calculated; these make possible
an estimate of the order of magnitude of the deviation from the free electron value for the actual
case of beryllium.

The integral A;j(P) may be interpreted as twice the neutralized self-energy of the charge distribu-
tion P„*Pj (if jWi the neutralizing charge is zero). Let

4„*(r)ttj(r) = P&&(~,j ) exp [i(k& —k;+K) r), (44)
K

where k; and k, are the reduced wave vectors of P; and P;, and where K/2n runs over all vectors of
the reciprocal lattice. Then the neutralized potential due to p; pj is, if i Aj,

v (i, j)
47rp exp [i(k;—k;+K) r]

K ~k; —k;+K~'
(4&)

(if i=j the term K =0 must be omitted). Since the i=j term contributes only an amount of order
1/X to the energy per atom, it may be neglected; we then have from (45),

I
~x(i j) I'

A;;(P) =8rQQ
i,j valence I i' ~kj —k;+K

~

e

spins j /
orbitals

(46)
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where in the summation on the right i and j run over the orbital wave functions only, states with
different spins being no longer distinguished.

Suppose now that we have a fictitious metal, for which the wave functions P; of the various
quantum states are the same as for the actual metal, but for which the number of valence electrons
to occupy these states is less than for the actual metal by a factor ('; the actual metal corresponds
to (=1. Thus as (—+0 the radius of the occupied region of k space is asymptotically proportional
to $. The K =0 term in (46) is of order P, while all the terms for which KWO are of order P. For small

& we can expand the wave function of any occupied state in a series in powers of the three rectangular
components of its wave vector:

Pp=exp (ik r)[Pp+ P ik„v„+ P (ik„)(ik„)nj,„]. (47)

We may choose Pp real: then the v„, w„, will be real. This gives

vp(i, Z) =— [!Pp! '+i&'-pP (k,„k;,)v„+—Q k;„k,„v v, —Pp P (k,,k,„+k,„k,,)zu„, ]d,. (48)
lu, , V=1 p, v=1

Now the normalization of P& requires that v„be orthogonal to fp and that

For cubic crystals

pppvp, dr = vpv„dr.
Q

(49)

where
f 3

7 =
i
~v, 'd = —',- [P v„']d;
n n

(50)

it is probably a good approximation to assulne that this is also true for hexagonal crystals with cia
close to 1.63 (this is similar to the assumption uii =n~ made in Section 4). Using these relations,
(48) becomes

1
yp(i, j)=—1 ——!k,—k;!'+0(&') .

0 2
(51)

The K =0 term of (46) is therefore

Sx 1
l +0(~')

0 i%i !k,—k;!'
orbitals

(52)

If the filled region of k-space is asymptotically spherical, as is always the case for cubic crystals,
and as we are assuming for beryllium, it can easily be shown that

Sar 1
= NnX f-"

n *~, !k;—k!'
orbi tais

0.916$
+0(k') (53)

Here NnX& is just the number of electrons in 0, for our fictitious crystal, and

r, ( 3

&4v.NnX$') .
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is the radius of a sphere whose volume equals the volume per electron. The first term of (53) is
just the exchange energy, in rydbergs, of a free electron gas." If the filled region of k-space were
asymptotically ellipsoidal instead of spherical, the leading term in (53) would of course be different,
and the remaining terms would be 0(P) instead of 0($'). In the terms of (46) with KWO we have,
using (47),

where fx„ is a Fourier coelficient of iP~~v„. Also,

1 1 2(k,. —k;) K—+ o(f')
~k; —k;+K~' E' X4

Inserting these in (46), the terms linear in (k; —k.;) drop out on summation, and we have

~
qx(i j ) ~

"-(NnXg'y '-
~
qlr(0, 0)

~

'
8~n Q P — —=8~0~

~ Q - ——+0(&').
K~o ~~~ ~k,.r —k;+K~'-L 2 ) K~o X'

orbitals

We may note that
~
px(0, 0)

~

'
8mB P —— ——= Cnn(P)

K&0

(54)

is just twice the neutralized self-energy of the charge distribution
~

Po~ Combining (46), (52),
(53), and (54) gives finally

f 0.916' (NnX 3X y
(0) = N'+Xt"'

( l k+ (
~oo(4') —

)
5'+0(V)

i, j valence (r, ) &4 2r, ')
spins ~~

(55)

The bracketed quantity in (55) is the exchange energy per electron; for small values of t the second
term gives the correction to be applied to the free electron value represented by the first term.

To calculate this correction numerically for beryllium we may note that the functions v„occurring
in (47) are the same as those occurring in the corresponding expansion of pk in powers of the k„.
Bardeen' has shown that in each atomic cell it is a good appr oximation to set

x„ f r,, 'qo(r, ) y~„=—x„&,+—
( lf(r),

r~& f(r,)). (56)

where f is the radial p function calculated in the same field used for po, with the same energy Zo.
We have already calculated f for use in (38). If we replace each atomic cell by an s sphere, the
integral on the right of (50) can thus be expressed in terms of a radial integral of a known function.
The resulting values of ) are given in the first line of Table IX. The second line of Table IX gives
the values of 4N1$XCoo(P), which can be calcula. ted by radial integrations of the sort used in Appendix
II. The third line represents the correction to the exchange energy per electron which would obtain
if the 0(P) in (55) could be neglected even for &=1.The second derivative of this term with respect
to r, is quite appreciable, as is to be expected from the occurrence of r, in the denominator. Actually,
of course, the 0($ ) in (55) becomes appreciable (for beryllium) when $ is still rather smaller than 1,
and we cannot trust the last line of Table IX to give anything more than the order of magnitude
of the correction to be added to the free electron exchange energy. For monovalent metals, however,
(55) might give a good approximation.

"Cf. Wigner and Seitz, reference 1.
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To get an expression valid for larger values of $, one might try to evaluate higher terms in the
expansion of the exchange energy in powers of (, just as the first two were obtained above. This
does not seem impossible, although the next term would be much harder to calculate than the first
two. However, when the Fermi surface extends beyond the first planes of energy discontinuity in
k-space, we can no longer expect such a formal power series to be valid for & =1.

Two other possible lines of attack suggest themselves, but they both appear even less valid than
the preceding. One is to start from a free electron gas, and treating the potential U as a small per-
turbation, to find the second-order change in the exchange energy. This second-order change can be
expressed as a rapidly convergent series of terms containing the squares of the Fourier coefficients
U[K]. But the rapidity of the convergence is misleading: it can be shown that each term is positive,
so that in the second order the perturbation increases the exchange energy, for any value of $;
this does not agree with the result obtained for beryllium above (Table IX) that for small $ the
exchange energy is less than for free electrons. This is not surprising, since the wave functions
obtained by applying a small perturbation to plane waves do not resemble the true wave functions
at all in the regions near nuclei.

The second possibility is to use a Fermi-Thomas model, assuming a large number of electrons
to be present in a region in which U changes only slightly (( very large). For this model the exchange
energy per electron in a given region of space is 0.916/p, (r) where (4~/3)[p, (r)] is the reciprocal
of the electron density at the point r. Multiplying this by the electron density and integrating
give the total exchange energy. The final result is

—4/'i

—
ll (F —U)'dr

0.916( Q~ I)

Average exchange energy per electron =—- —~—
r, 1

(E —U) '"'dr
. S2~g

(57)

where B is the energy of the highest occupied state, which is of order & as (—+~. The coefficient
of 0.916&/r. is always )1, so here again the exchange energy is greater than for free electrons.
If (57) were assumed to hold for (=1, this coefficient would be roughly 1.9; however, most of the
contribution to this value comes from regions within a few tenths of a Bohr unit from each nucleus,
where for &=1 the Fermi-Thomas model is completely inapplicable.

9. RESUI.TS AND DISCUSSION

(1) Binding energy

If we insert in (28) the free electron values
for the Coulomb and exchange energies, use the
precise value (see Part (6) of this section) for
the electrostatic interaction energy of the ions,
and then add to (28) the free electron value of
the correlation energy, for which Wigner" has
given the expression 1.16/(r, +5.1) rydbergs per
electron, we obtain for the energy per atom of
the crystal

TABLE IX.

rl =2.07 2.37 2.67

from Table VIII, and subtracting the observed
energy —2.024 rydbergs of the neutral Be atom,
there results a binding energy of 0.170 rydberg
per atom, or 53 kilocalories per gram atom. If
we were to assume the deviation from the free
electron value of the exchange energy per elec-
tron to be as given. by the last line of Table IX,
this correction would decrease the above value

=28-
2% r, +6.4rs

7.077 1.46 —0.074s'B. (58) Coop)

0.1650

0.003

0.1352

0.002

0.1096

0.002

Inserting in (58) the observed value of 2.37
for r, and the graphically determined value of g

—0.053 —0.028 —0.015
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TABI E X. Ualues of r, and I/K as obtained in various mays,

from graphs
from m
from m;"
experimenta I"

2.23
2.57
2.45
2.37

(&/ ) &&&o "
0.87
1.32
1.00
1.25

of the binding energy to 36 kilocalories. However,
there seems to be both theoretical and empirical
evidence (see Part (5) below) that the exchange
energies of electrons near the Fermi surface are
numerically greater than the free electron values,
so that the average deviation from the free
electron exchange energy is probably less than
that given in Table IX, perhaps even of the oppo-
site sign. The deviation of the Coulomb energy
from the free electron value, whose order of

magnitude is estimated in Appendix II, increases
the binding energy by about 2 kilocalories.

(2) The experimental value of the binding energy

The only direct determination of the binding
energy of beryllium is that of Baur and Brunner. '
These authors by measuring the slope of a vapor
pressure curve find 53.5 kcal. /g-atom for the heat
of sublimation at around 2000'K; the heat of
sublimation at O'K, which is to be compared
with the binding energy calculated above, should
be at most a few kilocalories greater than this.
Such a value would agree nicely with the theory,
but we feel that it cannot be correct. For it is

possible to calculate the heat of sublimation
from the vapor pressure at a single temperature,
if the latent heat of fusion is known, together
with specific heats of the solid and liquid phases
over the entire temperature range. To obtain a
heat of sublimation as small as 53.5 kcal. at
any of the temperatures at which Baur and
Brunner measured the vapor pressure one would

. have to assume a speci fic heat for mol ten
beryllium of nearly 20 cal. /g-atom/'C. If instead
a value of 8 cal. is assumed the heat of sublima-
tion at 2111'K is around 80 kcal. /g-atom if the
Baur and Brunner value of the vapor pressure
at this temperature is used. This would mean a

29 At room temperature. Compressibility from P. W.
Bridgman, Proc. Am. Acad. Arts and Sciences 08, 27
(1937).

E. Baur and R. Brunner, Helv. Chirn, Acta 17', 958
(1934).

value of about 85 kcal. /g-atom at O'K which

value we feel is nearer the truth. This is also
more in line with the estimate of 75 kcal. /g-atom
given by Bichowsky and Rossini. "
(3) Lattice constant and compressibility

'I he energies given by (58) for the three
values 2.07, 2.37, and 2.67 of r, can be fitted
to a parabola, whose minimum gives the theo-
retical equilibrium value of r, . The compressi-
bility in c.g.s. units is given by

1 3.88X10" d' t' Wq 2 d p Wq
(5&)

K dr, ' E2N~ r, dr, . E2N)

where r, is still to be measured in Bohr units,
W/2X in rydbergs. The second term vanishes
at the equilibrium lattice constant. We shall
calculate 1/» for r. =2.37, and since this is not
the theoretical equilibrium lattice constant, there
will be a small contribution from the second
term.

Table X gives the values of r, and 1/» resulting
from (58) and (59) for each of the estimates of
bq and 8'-'q in Table VIII. No values of r, and
1/» are given corresponding to the parabolic
assumption, because when the resulting bg and
8'g are used the curve of S' against r, is concave
downward. If the last line of Table IX were
used for the deviation from the free electron
value of the exchange energy, the values of 1/»
would be increased by about 0.3. I he deviation
from the free electron value of the Coulomb
energy will introduce a correction of only a few
percent into'the calculated values of 1/», and
will have a negligible eRect on r, .

Bardeen' has pointed out that a relation

W=A(ro/r, )'+B(ro/r, )' C(r,/r, ) (60)—

suggested by some work of Frohlich, "-' holds
rather well for alkali metals. Bardeen chose the
constants A, 8, C, to fit the observed binding
energy, lattice constant, and compressibility at
zero pressure; he then calculated the variation
of compressibility with volume and found it in

good agreement with experiment. The same
procedure applied to beryllium gives a pressure
coefficient of compressibility about two-thirds

"F. R. Bichowsky -and F. D. Rossini, The Thermo-
chemistry of the Chemical Substances (Reinhold, 1936).

"H, Frohlich, Proc. Roy. Soc. A158, 97 (1937).
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the observed value. "This is suSciently close so
that we can use (60) to estimate the amount of
error in the assumption, used above, that W
varies parabolically with r, . In this way it can
be concluded that the r, values given in Table X
are too large by something like 0.05 Bohr unit,
and that the 1/a values are too large by ten or
fifteen percent.

(4) Diamagnetism

Beryllium is known to be rather strongly
diamagnetic, '4 whereas magnesium and calcium,
the two metals which ought to resemble it most
closely in electronic structure, are paramagnetic.
The chief cause of this may very well be the low

density of electronic states near the Fermi
surface, which is shown by the heavy curve in

Fig. 8. This abnormally low density causes the
paramagnetic contribution which the spins of
the electrons make to the total susceptibility to
be only a fraction of the value it would have if
the electrons were free.

(5) Work function

The work function p is the change in the
energy of the crystal when one electron is
removed; if starting from (28) we follow the line

of reasoning used by signer and Bardeen, ' and
include the correlation energy as in (58) above,
we obtain

0.29 rydberg. There is thus 0.43 rydberg to be
accounted for by the double layer and by the
deviation from the free electron values of
exchange and correlation energy. The correlation
terms in (61) are rather small, so it is reasonable
to put most of the blame on the double layer
and the exchange. For the alkali metals D is
known to be small, of the order of a few hun-
dredths of a rydberg. ' For beryllium it should
be larger, because there are two electro' per
atom and because the electrons move faster;
but a value as large as 0.43 rydberg would be
very unreasonable. Probably, therefore, one must
assume that the exchange energies of electrons
at the Fermi surface are considerably greater
than the corresponding free electron values. This
is not unreasonable, although a very large effect
is needed to remove the discrepancy on the
work function. For the wave functions considered
in Section 8, for example, some of the terms

A;;(P) can become quite large, although the
large part tends to cancel out on summation.
Of course, the possibility should not be entirely
eliminated that a pure beryllium surface would

have a very low work function, and that in'

spite of careful precautions the observed values
are due to oxygen contamination.

(6) Electrostatic energy of the ions and its
variation with c/a.

4 (2)'0.916

3

0.73 0.73r,
D, (61)——

r, +6.4 3(r, +6.4)'

where D is the discontinuity in the potential
energy of an electron (measured in rydbergs)
which occurs at the surface of the crystal because
of the double layer, and where the exchange
energy per electron has been assumed to have
the free electron value 0.916/r, = (2) l0.916/r, .

Inserting 2.37 for r, in (61) and taking v ,„from.
Table VIII, we find

I he quantity P„'4/D(R„) which occurs in

(28) and (36) represents the neutralized po-
tential, at the position of an ion at the origin,
due to all the other ions. The deviation of this

quantity from —36/Sr, was needed in Section 4.
Moreover, the success of the theory of Fuchs"
in predicting the elastic constants of the alkali
metals leads one to suspect that the behavior of
this electrostatic term may be important in

determining the equilibrium value of the ratio
c/a, and possibly in determining the relative
stability of different lattice types. " In Fig. 10
the ratio of P„'1/D(R„) to 1/r„as calculated

y = —0.14+D.
Now experimentally p is about 3.9 volts, " or

"P. W. Bridgman, reference 31, corrected for the im-
proved pressure-volume relation for iron, which was used
as a reference material, Phys. Rev. 57, 235 (1940).

'4 M. Owen, Ann. d. Physik 37, 657 (1912).
'5 M. M. Mann and L. A. DuBridge, Phys. Rev. 51, 120

(1937).

"K.Fuchs, Proc. Roy. Soc. A153, 622 (1936) and Proc.
Roy. Soc. A157, 444 (1936).

87 H. B.Huntington, Phys. Rev. 57, 60 (1940), has shown
that the elastic constants of divalent hexagonal metals as
determined from electrostatic energy of the ions do not
agree nearly so well with experiment as do those for the
alkali metals. So the electrostatic energy of the ions is
probably only one of a number of factors determining the
equilibrium cja for beryllium.
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FIG. 10. Variation with c/a of the neutralized potential V
produced at an ionic position by all other ions.

by the method of Ewald, ' is plotted against c/a.
The minimum electrostatic energy comes very
close to c/a=1. 63, although there seems to be
no symmetry requirement which would cause
the minimum to occur at exactly this point.
At c/a = 1.63,

4 36 0 031;
+

~ a(R„) sr,

for the face-centered and body-centered cubic
lattices this quantity has the values 0.03312/r.
and 0.03256/r, , respectively. " The diRerences
between these quantities represent the differ-
ences in rydbergs per atom, between the electro-
static energies of the three lattice types; the
electrostatic energy for the hexagonal lattice is
thus lower than for either of the cubic types,
but by an amount which is probably too small
to be significant in determining the stable type.

(7) Remarks on the calculations

Apart from the deviation of the exchange and
correlation energies from the free electron values,
the principal uncertainties in the calculations of
the above quantities arise from the use in
Section 5 of an insufficient number of constituent
p-states and of a very crude estimate of the
overlap integrals. The neglect of the perturbation
of the valence electron states by the matrix
elements connecting them with the core states
((16) and (17) of reference 5) is less serious.
From Fig. 4 one can estimate that the energy
given in Table V for the I'3 state is too high

by something like 0.01 Ry; this has been con-
firmed by a more accurate solution of the secular
equation for this state. The other energies may
be expected to be in error by a similar amount.
This would account for a part, but probably

only a part, of the difference between our
calculated binding energy and the probable true
value. The overlap uncertainty, whose order of
magnitude is indicated by the AB's in Table V,
is negligible for r, = 2.37, so it does not affect the
binding energy. Its effect on the lattice constant
and compressibility may be appreciable, but we
do not think it can be very great, as some of
the AE's in Table V are positive and some
negative. Moreover, the lattice constant and
compressibility will not be much affected by the
neglect of the higher constituent y-states, since
most of the contribution to the variation of the
B's with r, in Table V comes already from the
unperturbed E's. Combining these facts with
what has been said in (1), (3), and (6) above,
and in Section 8, it may be concluded that the
exchange correction is probably fairly important
for the binding energy, lattice constant, and
compressibility, and apparently very important
for the work function. The correlation energy
probably differs from the free electron value
by only a fraction of the latter, and probably
varies less rapidly with r, than does the exchange.
The comparison of theory with experiment
cannot make possible any stronger assertions
about correlation than these, since for beryllium
exchange is larger relative to correlation than for
the alkalis and deviates so strongly from the
free electron value that it largely masks the
behavior of the correlation energy. However,
a priori one might expect the polarization of the
core by the valence electrons to have a serious
effect, especially for the compressibility. The
approximate agreement between theory and
experiment tends to show that this effect must
be small.

The orthogonalized plane wave method of
calculating energy values provides an illumi-

nating interpretation of the way in which Bf,
varies with k. If k is not too near the boundary
of the Brillouin zone, the principal term in F~,
is the average energy of the wave function x&

obtained by orthogonalizing a plane wave to the
core functions. For beryllium, if we neglect
overlap effects, this term is

k'+ UL0]+9.1A &,'(k)

1 —22g '(k)
(cf. (40) and (41)). (62)
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Now A ~,'(k) is 1/r, ' times a function of k which

decreases monotonically toward zero as k in-

creases. So (62) shows why cx is less than 1,
why n decreases with decreasing r„and why the
curve of EI„. against k tends to deviate in the
upward direction from the osculating parabola
EI, ——Bo+o.k'. This upward deviation is of course
often nullified by the influence of Bragg
reflections.

In conclusion the authors wish to express their
thanks to Professors J. C. Slater, E. Wigner
.and F. Seitz for discussions of various parts of
this paper.

APPENDIX I

A rough upper limit to the interaction energy
of two beryllium ion cores can be obtained
quickly by considering a pair of fictitious atoms,
each consisting of a nucleus of charge 2e(Z/2)l,
and two "electrons" each of mass m and charge
e(Z/2)''. The fictitious atom is thus simply a
helium atom with the electronic charge increased

by (Z/2)l, making the potential energy of an
electron in the field of the nucleus the same
function of r for the fictitious atom as for the
actual ion core. Since the electrons in the

fictitious atom repel each other more strongly
than those in the ion core, we may expect the
electron distribution of the former to be more
spread out than that of the latter, hence the
repulsive exchange force at large distances will

be greater for the fictitious atoms than for the
ion cores. The increased interaction of the
electrons will also cause the van der Waals
attraction between the fictitious atoms to be
greater than that between the ion cores. 'Ihere-
fore, if both types of force are negligible for the
fictitious atoms, the interaction of the ion cores
can be neglected.

If w(r) is the interaction energy of two helium

atoms a distance r apart, dimensional considera-
tions show that the interaction energy of a
pair of our fictitious atoms must be r'Z'm(~Zr).
Now for r, = 2.07 Bohr units, nearest neighbor
atoms in the beryllium lattice are 3.74 Bohr
units apart, and at twice this distance the van
der Waals term for helium predominates over
the repulsive one. Using the expression for m

given by Margenau" we have

4m(2)&3. 74) = —0.00007 rydberg. ,

which is quite negligible.

APPENDIX I I

The Coulomb energy correction to the total energy values used in Section 9 consists of two parts:
the sum

2' i j valence

and the correction to 2g required by the fact that we have calculated the p's using the potential
(32) instead of (30). Thus to the energy values we have used should be added

6WH r
pv, „g3r+~ p(r) P[v(r —R„) v~(r R„)]d—r+ I — pv„„~dr,

nN atom ic eel l atontic cell ~ atom ic cell

where p is the charge density of valence electrons.
Since [v —vqj differs from zero only inside the radius r„

6 Wgg r.

2
nN

pv~~(dr+ pr 0 —vg]dr.
atomic roll

(A)

In the regions between a cell and an s sphere pv, ~ is nearly constant and [v —s&j is negligible, so in

both integrals the region of integration may be changed to the s sphere without sensible error.
To obtain p and v, l accurately, it would be necessary to calculate the charge distributions due

to all the various eigenfunctions, and average them. However, the order of magnitude of the cor-

"H, 1VIargenau, Phys. Rev, 56, 1000 (j.939), Eq. (20).
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rection can be estimated for r., = 2.37 by using as a rough approximation to p a distribution p1 con-
sisting of a charge of two electrons distributed with a density proportional to

~
oppp~'+oR„'. As

described in Section 3, the neutralized potential due to this distribution is just [v —v&]. For r, =2.37
we have therefore

+ s sphere
pl[vl v]dr = o Jt (Pg Pg) [vg v]d—r,

.. sphere
(B)

where p~=3/2xr, ' may be introduced because [v& —v] has average value 0. If we define Zp(r) as
47rJp"(p~ —p)r'dr, the right of (B) becomes

r
"' (Zo)

2 J~[vg —v]dZp = ~o

J Zod[vg v] = —
~

—
~

dr.
~, E ~ )

Evaluation of this integral gives DWH/nN= —0.0063. A rough upper bound for the rate of variation
of this correction with r, can be obtained by noting that if the contributions to the integral on the
right of (C) are almost entirely from small values of r, the first integral on the right of (A) will be
roughly proportional to r, ', the second to r„'. If this were assumed we should have

DWH (2.37' '-
f 2.37' '

=O.OO63
&r, ) &r, ) (D)

Direct calculations of Cpp(oo) and Cpp(P) which were made for diA'erent lattice constants showed that
the former is roughly proportional to r, ', but that the latter varies much less rapidly (see Table
IX). It is likely that (A) also varies rather less rapidly than (D).

The self-energy ,Cpp(f) of P—p is needed in Section 8. This may be reduced to an integral like that
on the right of (C), a rough evaluation of which yielded the values listed in Table IX.

APPENDIx I II

To find s~. and p~ for small values of k, let us set
3 3

yi,. ——e'"'[po+Pik„v„+ P (ik„)(ik„)w„,.+ ],
lan=1 P, v=1

L.g ——F0++k +
(A)

(B)

Inserting (A) and (B) in the Schrodinger equation and setting to zero each term of the resulting
power series in the components of k, we have a sequence of wave equations, the first three of which are

( —V'+ U Ep) &p p ——0, —

(—&'+ U —Eo)v„—2&po/pox„=o,

f' r7 vo Bvp )
(—7'+ U I'p)w„„

i
+— )+(n —1)6„„oo,=o.

&ax„ax„l

(C)

(D)

(F-)

The boundary conditions are that po, v„, and m„„must all have the periodicity of the lattice.
Bardeen has shown' that a good approximation to v„ in each atomic cell isx„r,'pop(r. ,) f

vp =——rpo+— (F)

where f is a radial p function satisfying d'f/dr'+[Eo 2/r' —U]f=o Th—e first te.rm of (F) is a
particular solution of (D); the second is a solution of the associated homogeneous equation, so
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chosen as to make t&„vanish on the surface of the s sphere. Expanding the exponential in (A) and
using (F), we have

From (19) therefore

P part pj, ——
ik r r, ' &op(r„) f—+0(k') .

r f(r) r

r,, 'v p(r,,) ' 4x f"
p&

——k' — — +0(k').
f(r,)3. Po„'

(H)

Putting (A) into (18), so is detined for small k by

&oo(0) —Q k„k„w„„(0) '

& «(o)
+0(k4)

where

o o(0)' —oo o(o)w(o)k'
+0(k4),

I o op(0)
I

'

3

w=gw„„.
l&s=l

An approximate expression for w can be obtained by steps similar to those used in obtaining (F).
It can readily be verified that a particular solution of (E) is

(x„v„+x„v„) x x„a By——yp —5„„—
2 2 BE E=Li p

where in the last term y(E, r) may be any function which satisfies the wave equation (C) with Ep
replaced by E, and which varies continuously with 8 in such manner that p(Eo, r) = &oo. We shall
take for y the 2s function obtained by outward integration starting from the value opp(0). The
general solution of (E) is thus w„„&o&+w„„&",where wo„&o satisfies the homogeneous equation. We
must choose zv„„("so that this sum satisfies the boundary conditions and the normalization condition

J [v»v& —2 ppw»& jdr = 0.
LEp

(K)

We are here interested only in the function w which occurs in (I). Let us set
3

w'" = P w '" w = w&" +w&"
Is= 1

It can be verified that w'" is almost spherically symmetrical, and almost satisfies the boundary
conditions. Therefore x will be almost spherically symmetrical and so if we take the trace of Eq.
(K) it will be permissible to change the region of integration in the resulting equation from a cell
to an s sphere:

3

Jt [Q v„' —2&opw7dr = 0.
Is= 1

sphere

(L)

We need only the s part of w in (I), and this can now be determined from (L). Since w'" satisfies
the same wave equation as po,

s part of m'" = bpo

and k can be determined by substituting w=w&o'+w&" in (L). The result is most conveniently
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expressed if pg, is considered to be normalized to 1 over an atomic cell, instead of over 0 as in the
text. It is

where

f 3

2b =3K+ pro 2 Q xpvp+r po+cl dr,
s sphere p=l BE L=Lp

(M)

s sphere

is the same as the quantity defined by (50). The integration in (M) can easily be reduced to a radial
integral and evaluated numerically. Since w(0) =wrr&(0) =bpo(0), we have from (I)

(Sr)
d(k') E so)

APPExDIx IV

A direct calculation of the variation of q~ with
k near a symmetry point of Fig. 1 would be rather
involved, since to the calculated variation of EI,
would have to be added that of all the other
terms in (29). These other terms may change
quite considerably in a short distance from the
symmetry point, since the form of the wave
function varies rapidly with 0 near a small

energy gap. However, a fair approximation to
the behavior of gI, near such a point can be
obtained by noting that the qI, are roughly the
energy parameters which would occur in the
solution of a wave equation formed with some
potential U', different from U, but independent
of k.

Let A be one of the symmetry points in Fig. 1,
and let p;8, g;8 be the complete set of wave
functions and energies going with reduced wave
vector O. Let j= 1 and j= 2 correspond to the
states of the two lowest valence electron bands,
and suppose for simplicity that the levels halo and
rrgp are nondegenerate, so that Brrr, /rlk=0 at 0
for the bands 1 and 2. For any x we can write
for the wave function of band 1 the infinite series

pe+~ = ~ Eb jv'r'8 (A)

The chief contribution to the summation in (A)
will come from small values ofj; if the separation
of bands 1 and 2 at O is small compared with
the distance of band 1 from any other band,
the terms j=1 and 2 will be much more im-
portant for small rr than any others. If (A) is

substituted in the wave equation ( —V'+ U'
—rip~„)pp~„=0, there results the secular equa-
tion

'

det [2x F;;+(rr;e+rr' rre~„) 5—,;]=0, (8)

where F;;=—i(p;p, Vrp;p). If rr is very small
this can be solved by the Schrodinger perturba-
tion method. When ~ is so large that x. Fl~ is
of the same order of magnitude as (rr2p —rrre),
however, this procedure must be modified by
first finding two functions y„yq, which are
orthogonal linear combinations of halo and q2@

and which diagonalize the part i, j=1, 2 of the
matrix in brackets in (8). After this has been
done we may set up the secular equation relative
to these two new functions and the remaining
functions p3o, p4@ ~ ~, and solve this by the
perturbation method. This procedure will work
for values of ~ which are an appreciable fraction
of the diameter of the Brillouin zone, provided
q3@, q48 are separated from halo by amounts of
the order of magnitude of those which would be
encountered for almost free electrons. Let q, qf,

be the energies corresponding to y„q ~. they are
the roots of the second-degree secular equation
obtained by taking only i, j=1, 2 in (8). Thus
go+„ for band 1 is q, plus perturbations from the
higher states.

The second-order perturbations from q3o 'p4,

may vary rapidly with ~, since y and
yq vary rapidly with ~ when ~ is small; how-
ever, the sum of these second-order perturba-
tions will always be less than some function ca',
where c is of the order of 1. They can therefore
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be neglected in rough calculations of the manner
of variation of g@+„with K for small K, since as
will be shown presently the variation of q, with
K is on a rather larger scale than cK'. We have

The quantities

'gg+a
Pe=2

BK - K=O

~ Qa
1
2

BK —«=-0

'0 a =
g (018+ '9 28)

+& —
~1 (g~e —g~o) +161tc F»,']l (C)

while g ~ has the same form with a plus sign
before the radical. Successive differentiations of
(C) with respect to E, and with respect to r,
holding Xr, constant, establish the existence of
the maxima and minima shown in I ig. 9,
provided the difference (q2@—

p&@) is sufficiently
small.

are easily obtained from (B) or (C). The required
matrix elements F~2 were calculated for several
points O, using for the wave functions the best
approximation which could be obtained from
two constituent x-functions (for most of the (s)
states it turned out that the wave function could
not be well approximated by a single constituent
x-function, but could be by two). These matrix
elements were found to be within about 25
percent of the values they would have for almost
free electrons.
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Design and Preliminary Performance Tests of the Westinghouse
Electrostatic Generator
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Design and performance characteristics of the Westinghouse electrostatic generator are dis-

cussed. Steady voltages of 1.3 Mv at atmospheric pressure and up to a maximum to date of
3.7 Mv at about 75 lb. /sq. in. have been used to accelerate hydrogen ions. The maximum

steady voltage is limited mainly by sparking along the belts. The voltage remains constant to
within 0.5 percent for observing times of several minutes, and at times to within 0.2 percent
for a half-minute or so.

INTRQDUcTIoN

URING the past three years, a large
electrostatic generator of the belt type,

using compressed air insulation, has been con-
structed at the Westinghouse Research Labora-
tories in East Pittsburgh. It has been in satis-
factory operation for nearly a year as a source
of high energy protons for research in nuclear
physics. This paper gives an account of the
design features and a preliminary account of its
performance. Details of the researches in nuclear
physics carried out to date will be published
soon in other papers.

The erst successful utilization of air under

high pressure as insulating medium for an

*Westinghouse Research Fellow.

endless-belt electrostatic generator was made by
Barton, Mueller, and L. C. Van Atta' but they
did not apply the potential to an accelerating
tube. Herb, Parkinson, and Kerst, ' using a
somewhat similar generator successfully applied
400 kv to a vacuum tube to accelerate hydrogen
ions. A larger generator was then constructed
by them' and the performance of these generators
indicated that further development to larger
dimensions was a practical method of obtaining
a beam of high energy ions having energy
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