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Enskog’s general theory of thermal diffusion holds for
a gas of spherically symmetrical molecules which is
sufficiently dilute that collisions of more than two mole-
cules at a time are of negligible importance. The first
approximation to the thermal diffusion constant of a
mixture of two isotopes is derived from this theory. The
result is presented in terms of suitably defined cross-
section integrals, in which the intermolecular forces are
not yet specialized. This general formula for the thermal
diffusion constant « is then worked out explicitly for
several well-known molecular models: the elastic sphere
model, the inverse power model, the Sutherland model,
and the Lennard-Jones model. The various limitations on
the accuracy of the theory are discussed, and the theo-
retical results are compared with the very few experi-
mental data which are as yet available. The comparison

indicates that the customary molecular models of kinetic
theory are hardly adequate to give a satisfactory account
of thermal diffusion. These models are relatively satis-
factory for the elementary free-path phenomena to which
they are usually applied, but they are not sufficiently
precise to meet the more exacting test of thermal diffusion.
The best check between theory and experiment is obtained
for neon with the Sutherland model. The use of this model,
however, places the entire burden of accounting for the
observed decrease of a with temperature on the attractive
part of the intermolecular forces, whereas in view of the
smallness of this attractive force as determined by other
methods, it can hardly be doubted that the decrease is
actually due to the increased ‘‘softness’ of the repulsive
force at low temperatures.

HE importance of the phenomenon of

thermal diffusion has recently been en-
hanced by the striking success of its use in
separating isotopes.»? With this success has come
the need for a more complete knowledge of the
value of the thermal diffusion coefficient for a
mixture of isotopes. The theoretical value of this
coefficient for two simple molecular models has
already been stated,** but the relation of these
results to the general theory of thermal diffusion
has not been given. It is the purpose of this
paper to indicate the general expression for the
coefficient of thermal diffusion in the case of
isotopes, and to derive from this general expres-
sion the results which have previously been
stated without proof. We shall also derive the
theoretical value of the coefficient for certain
other molecular models, and compare these
theoretical results with the small amount of
experimental data which is available.

t K. Clusius and G. Dickel, Zeits. f. physik. Chemie 44,
397 (1939).

2R. Clark Jones and W. H. Furry, Rev. Mod. Phys.,
to be published.

3W. H. Furry, R. Clark Jones, and L. Onsager, Phys.
Rev. 55, 1083 (1939).

4 R. Clark Jones and W. H. Furry, Phys. Rev. 57, 547L
(1940).

NOTATION AND DEFINITIONS

The phenomenon of thermal diffusion consists
in the fact that a temperature gradient in a
mixture of two gases gives rise to a gradient of
the relative concentration of the two constitu-
ents. We shall discuss here only the case of a
mixture of two isotopes of the same gas. Let ¢;
be fractional particle density of the lighter
molecules, and ¢, the corresponding quantity for
the heavier molecules. The concentrations ¢; and
¢y are thus also the fractional partial pressures
of the two species. We clearly have

C1+62=1- (1)

Let v, be the convection velocity of the lighter
molecules, and v, the convection velocity of the
heavier molecules. The convection velocity of
the gas as a whole is given by

V=c1V1+coVa. (2)

The coefficient of ordinary diffusion, Dz, and
the coefficient of thermal diffusion, Dy, are then
defined as the quantities which appear in the
equation of diffusion

c1(Vi—v) =c162(V1—Vy)
=—Dy,grad c;+Drgradlog T. (3)

Unlike the coefficient of ordinary diffusion, the
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coefficient of thermal diffusion is proportional to
the product c¢ice. We are therefore led to intro-
duce another quantity, the thermal diffusion
constant «, which is related to Dy by

a=DT/(D126162)- (4)

In the remainder of this paper we shall refer to
« rather than Dry.

QUALITATIVE REMARKS

To a far greater extent than is the case with
the three ordinary gas coefficients, the value of
the thermal diffusion constant is sensitive to the
molecular model. The free-path arguments of
elementary kinetic theory are quite inadequate
to give either its existence or its sign. Chapman®
has dwelt at some length on the difficulties
which beset any attempt to explain the effect
upon elementary grounds. Recently, however,
Frankel® has shown that it is possible to derive
by means of a dimensional argument all of the
essential features of the coefficient for the
important special case of the inverse power
model. This will be discussed in more detail later
on when we examine this model.

The history of the theoretical development of
thermal diffusion is rather interesting, but it will
not be discussed here because it is presented
elsewhere—briefly in reference 2, and more
completely in reference 9.

The theory of thermal diffusion appears as a
by-product of any sufficiently complete and
rigorous kinetic theory of the phenomena of
thermal conductivity, viscosity, and diffusion in
gases. Two correct presentations of such a theory
are now available. The first was given by
Enskog” in his doctoral dissertation, as supple-
mented by an article® which appeared later.
The second is in the recent book by Chapman
and Cowling.? The former is more abstract and
rather difficult to read. The latter has the
disadvantage that its notation differs from that
used by Enskog and most other recent writers
on this subject. Chiefly because it is more

8S. Chapman, Phil. Mag. 7, 1 (1929).

6S. P. Frankel, Phys. Rev. 57, 661L (1940).

7 D. Enskog, Doctoral Dissertation, Upsala, 1917.

8 D. Enskog, Arkiv f. Mat., Astron., och Fysik 16, No.
16 (1922).

9S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-uniform Gases (Cambridge, 1939).

CLARK JONES

concise, the notation of Enskog will be used in
this article. The relation of the notation used
by Chapman and Cowling to that used here,
will, however, be indicated.

The theory of Enskog holds for a gas of
spherically symmetrical molecules which is suffi-
ciently dilute that triple collisions are of negli-
gible importance in comparison with collisions
of two molecules. The general expression ob-
tained for « is the ratio of an infinite determinant
to one of its minors; the elements of the determi-
nants are integrals over the velocity spaces of
the two molecules. The result which we shall
present in this paper is the first approximation
to the exact result.

The case of isotopes represents a simplification
in the value of a as compared with the case of
dissimilar molecules which is analogous to the
simplicity of the coefficient of self-diffusion as
compared with the coefficient of diffusion for
two dissimilar gases. This simplification occurs
because in the case of a gas consisting of a
mixture of isotopes, we may suppose that the
force fields of all the molecules are identical,
since the field of force is determined only by
the electronic configuration, and not by the mass
of the nucleus.

DETAILED THEORY

The exact result is expressible in terms of
integrals over the orbit of a molecule of species
1 as it moves in the field of a molecule of species
2. If the force fields of the molecules fall off with
distance with sufficient rapidity for the gas to
have an equation of state which is independent
of the shape of its container, it is always possible
to define an impact parameter and a relative
velocity at infinity for a collision between two
molecules. Let the impact parameter be indicated
by b, and the relative velocity at infinity by g.
Enskog then changes the scale of b and g accord-
ing to the transformation:

g=(2kT/m)ty, (5)
b=sa(v)8, (6)

where m=mms/(mi+m,) is the reduced mass,
s is an arbitrary constant length, and o(y) is
an arbitrary function of v and therefore of g.
This method of factorization of the impact
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parameter, b, leads in practice to a considerable
simplification of the formulae, provided that s
and ¢(y) are suitably chosen.

Let 6(8, v) be the angle of deflection suffered
by either molecule when it is deflected by the
field of force of another, as measured in the
center of gravity coordinate system. We may
now define the quantities

O®(y) = f {1—Pycos 0)}6ds (1)
0
and in turn the quantities
i = [ o)y enmay.  ®)
0

The @'s are dimensionless collision cross sections
suitably averaged over 8 and y. Enskog would
write s, o, O® and Q¢ ® with the subscript 12.
Since we shall have little occasion to refer to
these quantities except when they refer to a
collision between a molecule of species 1 and a
molecule of species 2, we shall continue to omit
the subscript. Note that it is not Q¢ # but
rather s?Q¢ ® which is independent of the choice
of s and ¢. The expression (12) for « is independ-
ent of s, but this is not true of the expressions
for the coefficients of viscosity and diffusion.

The procedure of Chapman and Cowling® is
similar. They define the quantities

45 mo—m,
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¢‘”=f {1—cost 0} gbdb )
and ’

QO(r) =7t f eyt Ody.  (10)
0

The relation between the two sets of quantities
is thus
PV =522001); @ =522 @),
QWO (r) =522k T /m)iQ L 2rt3)
QO (r) = 25227k T /m) Q2 2 t3),

(11)

There are no one-to-one relations of the type
(11) for values of I greater than two.

We have already stated that the exact ex-
pression for a which is valid for a mixture of any
two gases whose molecules are spherically sym-
metrical comes out of the theory as the ratio of
two infinite determinants. In the case of isotopes,
we may consider that the force fields of all the
molecules are identical, since the force fields are
determined entirely by the electronic configura-
tion of the atoms or molecules. The first approxi-
mation to the exact expression, which is given
by Enskog* and Chapman and Cowling,f may
then be developed in a series of ascending powers
of (my—mi)/(me+m;). Only the first term of
this series is important for most pairs of isotopes.

In the notation of Enskog, the first term of
this series expansion is

2001 —5QL5)(15Q(1L 5 420D
( 5Q@9)( + )

a

Since this expression is homogeneous and of
order zero in the Q®’s, the expression for « in
terms of the Q®(»)’'s used by Chapman and

Cowling will differ only in the substitution of

(3/2)2®(2) for @27 and of QW (r) for Q2749
We now proceed to the evaluation of this
expression for certain simple molecular models,
namely : elastic spheres, the inverse power model,
the Sutherland model, and the Lennard-Jones
model. The values of ®® which we shall use
are sprinkled through the literature in a variety
of notations. In the case of the elastic sphere
and inverse power models, the derivations of
the quantities ®¥ will be presented, not because
the derivations are elsewhere unavailable, but

2 iyt Q1652049 — 600D 4120049 41603 1)

(12)

because they may be given so simply and briefly
that it seems worth while to give them as
illustrations of the concrete meaning of the
formulae.

THE ELASTIC SPHERE MODEL

We shall suppose each molecule to behave as
a smooth, rigid, elastic sphere of diameter s.
The molecules of species 1 have the mass m;,
and the molecules of species 2 have the mass .,
where my <m..

Let us observe the collision between one
molecule of species 1 and another of species 2.

* Reference 8, p. 51.
1 Reference 9, p. 253.
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We shall imagine ourselves at rest in the center
of gravity system at a point removed a short
distance from the place where the collision is
about to occur. The spheres will enter our field
of view moving in opposite directions along
straight lines which are necessarily parallel. The
perpendicular distance between the two lines is
the impact parameter b. If b is greater than s,
no collision will occur, and the angle of deflection
6 is zero. For the case in which b is less than s,
let us indicate the angle between the line of
centers at the moment of impact and the previ-
ous direction of motion by x. We clearly have

(13)

if we identify the diameter s with the s which
appears in (6), and set ¢(y) =1. Since we are in
the center of gravity coordinate system, the
conservation of energy and momentum now
requires that the spheres bounce off in a direction
such that the angle between the new and old
directions of motion is 2x. This is perhaps most
easily seen by noting that the components of
velocity parallel to the line of centers at impact
must be reversed in the collision, whereas the
perpendicular components are unaltered. The
angle of deflection is thus

sin x=0/s=4,

B<1
B2 1.

The integral in (7) is most easily evaluated by
changing the variable of integration from 8 to
x=cos 6. From (13) and (14) we have dx=18dB,
so that in this case the expression (7) for O®
becomes

0=m—2x,

= (14)

+1
(~)‘”=if {1—P,(x)}dx=3, [>0. (15)
-1

The integral of the latter term in the curly
bracket vanishes for ! greater than zero, since
for this range of integration, the Legendre
polynomials are orthogonal to Po(x) =1.

The expression (8) for Q¢ » with e=1, OV =1,
becomes simply

200 = [3(k—1)]!

The expression corresponding to (16) in the
notation of Chapman and CowlingT is

(16)

t Reference 9, p. 168.
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52 14+ (=1)q/2mkT\?
sz<”(r)=§[2— - ]( - )<r+1>! (1)

The substitution of (16) in (12) then yields
for the elastic sphere model

105 ‘Mo — My
am— (I
118 M2+m1

This result was first given by Furry, Jones and
Onsager.?

THE INVERSE POWER MODEL

In this model the molecules are considered to
be centers of a repulsive force which falls off as
the inverse vth power of the distance of separa-
tion ; the repulsive force is given by

F=x«/r", (18)

where « is a constant which determines the
strength of the repulsion at a given distance.

In order to discuss the details of a collision
between two such molecules, let us use a polar
coordinate system 7, ¢, with its plane in the
plane of motion of the molecules, and with its
origin at one of the two molecules. In terms of
the reciprocal radius u=1/r, the equation of
motion is then?®

du\* 1 2 ”
(w_) IR der, (19)
do b? mg*b* J,

where, as in (5), m is the reduced mass. We now
subject g and b to the transformations (5) and
(6), with

s=(x/2kT)V =D,

o) =y e, (20)

These transformations, along with the substitu-
tion x=bu and the relation (18), reduce (19) to

the form
dx 2 2 x v—1
(&)
de v—1\gB

The value of x which corresponds to the value
of 7 at the distance of closest approach is the
smallest positive root of

1 —x2— (2 (y— 1)) (x/B) 1 =0.

(21)

(22)

% W, F. Osgood, Mechanics (Macmillan, 1937), p. 109.
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Let this root be indicated by x¢(8). Then the
angle which is swept out by the molecule as it
moves from infinity to the point of closest
approach is, according to (21),

- [ m a2/ (= D) (/81 Mdx. (23)

This angle will be the same when measured in
the center of gravity system. The angle of
deflectipn 6 is now, as in the case of elastic
spheres, the quantity =—2x. By (23), the angle
6 depends only on v and 8, and therefore O® is
a number which depends only on » and I
Following Enskog,® we set

OW=4,», (24)

The numbers A4, have been evaluated by
Chapman!® for /=1 and 2, and »=3, 5, 7, 9, 11
and 15, by means of numerical integration. The
values obtained by Chapman are tabulated in
Table I, except that the values for v=9 are
those obtained by Hassé and Cook.!!

There is a variety of notations for the quanti-
ties which we have indicated by 4,*:

Chapman and Jeans,?
Enskog? Cowling? Chapman!?
A4, = Ai(v) Ii(v)/27
A, = 34.(v)/2 = 3I(v)/2m.

The quantities 4, and 4. which were used by
Maxwell are the same as I;(5) and I(5).

TABLE 1. Quantities for the inverse power model.

v A, () A,() ) 6(»)/5 Cw)

3 0.8115 1.825 1.500 1.800 0.714
4.5 1.58 0.80

5 0.4220 0.6541 1.2918 1.5501 0.8156
6 1.512 0.831

7 0.3855 0.5349 1.2335 1.4802 0.8431
8 1.454 0.854
9 0.3808 0.4956 1.1930 1.4316 0.8648
10 1.412 0.874
11 0.3835 04778 1.1631 1.3957 0.8823
12 1.382 0.890
13 1.370 0.896
14 1.359 0.901
15 0.3931 0.4642 1.1248 1.3498 0.9064
) 0.5000 0.5000 1.0000 1.2000 1.0000

1S, Chapman, Memoirs and Proc. of the Manchester
Lit. and Phil. Soc. 66, No. 1 (1922).

11H, R. Hassé and W. R. Cook, Proc. Roy. Soc. 125,
196 (1929).

2 J. H. Jeans, Dynamical Theory of Gases (Cambridge,
fourth edition, 1925).
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By virtue of (20) and (24), we now have

k+1 2
Q”’k)z%Al(")I‘(——— )
2 v—1

(25)

As we have noted before, the expression (12) for
a is homogeneous and of order zero in the Q's.
This means that we may multiply Q¢ b as given
by (25) by any quantity whatever which does
not depend on the indices ! and k. One of the
simple choices for such a multiplying factor is
(@)=L which leads to

QL1
QUD53-2/(v—1);
Q9—{4-2/(v—=1}{3-2/(r—1)}; (26)
QED=3f(v),
where
JO)=11-2/B(r—1)}4.0/4:.  (27)

Substitution of (26) in (12) now yields for the
inverse power law

105 Mo—m I/—S
a=—

118 matmy v—1

C(v), (I1)

where
_59 (15/f)+6
C2143416{f—1/(r—1)+1/(r—1)2}

is a function of v whose value lies between 0.8
and 0.9 for values of » between 5 and 15. The
behavior of most gases corresponds to a value
of » within this range. The functions f(») and
C(v) are tabulated in Table I, as is also the
function (6/5)f(v) because of its importance in
the determination of the coefficient of self-
diffusion D, which is also important in the theory
of separating isotopes by thermal diffusion. The
inverse power model predicts

D=(6/5)f(»)n/p,

where 7 and p are the coefficient of viscosity
and the density, respectively.

The result (II) was first obtained by Jones
and Furry.*

Probably the most interesting aspect of (II)
is the vanishing of « for »=35, that is, for Max-
wellian molecules. For values of » greater than

C(v)

(28)

(29)
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TaBLE I1. Values for various gases of n, of Rr according to the inverse power model, and of the Sutherland constant C.

GAS REFERENCE T°K n Rp(n) C GAs REFERENCE T°K n Rr(n) C
A a 221 0.89 0.18 138 | H, d 333 0.666 0.60 66
333 0.80 0.34 147 398 0.694 0.54 96
423 0.76 0.41 142 448 0.667 0.60 90
498 0.71 0.51 150 498 0.679 0.57 108
979 0.62 0.70 140
N. d 333 0.737 0.46 102
He a 48 0.644 0.64 6 398 0.713 0.50 107
123 0.646 0.64 21 448 0.687 0.55 103
210 0.652 0.63 37 498 0.645 0.64 85
333 0.669 0.59 66
423 0.667 0.59 83 | NH; d 291-573 ~1.0 ~0 ~550
1022 0.645 0.64 173
NO g 308 0.79 0.36 128
Ne a 244 0.668 0.59 34 498 0.64 0.66 121
333 0.657 0.62 61
423 0.644 0.64 70 | N.O f 325 0.97 0.05 277
498 0.644 0.64 82 349-551 ~A0.87 ~0.22 ~255
1030 0.623 0.69 128
CH, e 308 0.860 0.23 174
Xe b 347 0.92 0.13 250 348 0.825 0.30 168
425 0.91 0.15 303 398 0.795 0.35 166
525 0.83 0.29 254 448 0.769 0.40 165
498 0.728 0.48 146
Br. c 330 0.833 0.28 162
475 0.985 0.02 496 | C,H, e 308 0.958 0.07 260
498 0.801 0.34 213
Cls c 293-523 ~1.0 ~0 ~400
CsHs e 308 0.965 0.06 267
I, c 420 0.92 0.13 301 498 0.830 0.29 244
482 1.04 —0.06 590
CO, f 325 0.92 0.13 240
HCI a 293-523 ~1.0 ~0 ~350 525 0.85 0.25 281
HI ¢ 294-524 ~1.0 ~0 ~400 | CO h 347 0.72 0.49 96
450 0.69 0.55 103
(623 d 333 0.775 0.38 126 525 0.63 0.68 98
398 0.735 0.46 122
448 0.731 0.47 132 | SO, ) 287-472 ~1 ~0 ~425
498 0.655 0.62 91

a M. Trautz and H. Binkele, Ann. d. Physik 5, 561 (1930).

b M. Trautz and R. Heberling, Ann. d. Physik 20, 118 (1934).
¢ M. Trautz and H. Winterkorn, Ann. d. Physik 10, 511 (1931).
d M. Trautz and R. Heberling, Ann. d. Physik 10, 155 (1931).
e M. Trautz and K. Sorg, Ann. d. Physik 10, 81 (1931).

/ M. Trautz and F. Kurtz, Ann. d. Physik 9, 981 (1931).

5, a is positive, whereas for values of v less than
5, a is negative. It is very pleasing that this
rather mysterious behavior may be explained
by the elementary dimensional argument which
is advanced by Frankel;® his argument shows
that « is zero for Maxwellian molecules, and
that the coefficient changes sign at »=35, being
positive for » greater than 5. Frankel’s argument
is no small achievement, since an elementary
argument to show the existence and sign of the
effect has long been desired.

The inverse power model, which is quite
successful in explaining the temperature de-
pendence of the elementary coefficients for most
gases, is less successful in the case of thermal
diffusion because the latter phenomenon is so

g M. Trautz and E. Gabriel, Ann. d. Physik 11, 606 (1931).

h M. Trautz and A. Melster, Ann. d. Physik 7, 409 (1930).

i M. Trautz and W. Weizel, Ann. d. Physik 78, 305 (1925).

Note: Further data for high temperatures may be found in Tables 17
to 30 of M. Trautz and K. Sorg, Ann. d. Physik 7, 427 (1930).

much more sensitive to the molecular model;
the value and sign of the thermal diffusion
coefficient depend essentially on the nature of
the intermolecular forces, and approximations
which are adequate for the treatment of free-path
phenomena do not suffice for thermal diffusion.
Equation (II) indicates that « should be inde-
pendent of the temperature ; this is not confirmed,
even approximately, by experiment.

Because no other model has the simplicity of
this one, however, we shall probably continue
to use it for some time to obtain an estimate of
the value of a. In comparing the results of
various molecular models, it is convenient to
consider the ratio of the experimental or pre-
dicted value of a to that predicted by (I) for
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hard spheres. This ratio will be denoted by Rr.

In the case of the inverse power model, we have
y—35

RT'—'——C(V).

v—1

(30)

An estimate of an appropriate value of » for a
given gas may be obtained from its second virial
coefficient, or more conveniently from the
temperature variation of the viscosity. If the
viscosity varies as T, a dimensional argument
suffices to show that # and v are related by

v=02n+3)/2n—1). (31)
In terms of #, (30) becomes
Rr=2(1—n)C((2n+3)/(2n—1)) (32)

=21.7(1—-n).

Using the relation (32), Brown' has in this
manner given an estimate of the value of Ry for
a number of gases. Brown’s table, with rather
extensive changes and additions, is given as
Table II. The more precise of the relations
(32) is tabulated in Table III.

The predictions of Table II should not be
taken too seriously, particularly in those cases
where very small values of Ry are predicted;
in such cases the inverse power model is com-
pletely inadequate.

INTERMOLECULAR FORCES

It is now thought that the best simple approxi-
mation to the forces exerted between molecules

COEFFICIENT FOR
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TaBLE II1. Ry as a function of n according to the
inverse power model.

243 Ry JEEVEE Sy
7 2n—1 2(1 —=n)C(») n 2n—1 2(1 —=n)C(»)
1.1 4.33 —0.159 0.85 6.71 0.252
1.075 4.48 —0.120 0.8 7.67 0.340
1.05 4.65 —0.081 0.75 -, 9 0.432
1.025 4.81 —0.040 0.7 11 0.529
1.0 5 zero 0.675 12.42 0.580
0.975 5.21 0.041 0.65 14.32 0.632
0.950 5.44 0.082 C.6 21 0.74
0.925 5.7 0.124 0.55 41 0.86
0.9 6 0.166 0.5 © 1.000

of the noble gases can be expressed as the sum
of an inverse seventh power attraction and an
exponential repulsion.” For the range of radii
which are concerned in molecular collisions at
ordinary temperatures, a force of this kind can
be approximated quite well by an equation of
the form

F=x/r'—«/r". (33)

An equation of this form has been used by
Lennard-Jones!® in the theoretical interpretation
of the equation of state observed for various
gases. The implication in kinetic theory of such
a law of force has never been completely worked
out, however, because of the enormous mathe-
matical complexity to which it leads. The special
cases of = and »' =3 have been worked out
as far as terms of the first order in the attractive
force. These cases are, respectively, the Suther-
land and the Lennard-Jones model.

THE SUTHERLAND MODEL

The molecules are considered to be smooth elastic spheres of diameter s, surrounded by an attrac-
tive field of force which decreases as the inverse »th power of the distance. The attractive force

between two molecules is taken to be

F=—«/r".

(34)

It follows from the work of James'® that for this case

OM=1{1424,(v)e/ (T2}

and

O =3{1430(v)e/(RTY")},

13 Harrison Brown, Phys. Rev. 57, 2421. (1940).

(35)

(36)

4 R, H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge, 1939).

15 J, E. Lennard-Jones, Proc. Roy. Soc. 106, 463 (1924).
16 C. (5. F. James, Proc. Camb. Phil. Soc. 20, 447 (1921).
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where 7:(») and 75(v) are functions of v defined by

1

Yy
il(v)=2f ya””(l—y2)*f (1 —x?)~tdxdy
0

0

37
r+1
=1—40-1Y, r=0,1,2, -
(2r+»)(2r4+1)(2r+3)(2r+5)
and . ,
iz) =4 [ 32— (=) [ =)ty
0 0 (38)
741
=1-8(r—1X, r=0,1,2, -
(27r+»)(2r+3)(2r+5)(2r+7)
and where
e=x/{(v—1)s"1} (39)

is the negative potential energy of two molecules at the moment of contact. The s and ¢ of (6)
have the same values as in the case of simple elastic spheres.
The insertion of (35) and (36) in (8) then yields

1(/k—1 E—3
QU B =— (~.—) !+2¢1(y)(e/kT)(—)! (40)
4\ 2 2 /|
(k=1 E—3
Q@B =— (—)!+3i2(u)<e/kr)(——)! . (41)
4|\ 2 2

The last two expressions, as well as (35) and (36), are valid only to terms in the first order of ¢/k7T".
Our results will therefore be correct only when ¢/kT is small compared with unity.
The relation obtained by substituting (40) and (41) in (12) is, for the Sutherland model

105 mo—my (1 —i1(v)e/RT) (14 {(51(v) +2:2(v))/ T} e/kT)

and

a=—- . (I1T)
118 mo+my (1442(v)e/kT) (14 {(3941(v) +1642(v)) /59} ¢/kT)
To terms of the first order in ¢/kT, Eq. (III) is equivalent to
105 WMo —M1
a=—- (1—=F(v)e/RT), (I11)
118 7’}’L2+11’L1
where F(v)={3917,(v) +40745(v) } /413, (42)
whence Ryp=1—F(»)e/kT. (43)

The error involved in ignoring higher powers of e¢/kT is probably less in (IIT) than in (IIT").

The quantities 7,(») and 75(») have been evaluated by Enskog” and James,!® and are tabulated
along with F(») in Table IV. The notation used here is that of Chapman and Cowling, which is
related to that of Enskog according to

a(V)=11/12, 5(V)=312/2 (44)

The table of 7,(») and 72(») given by Chapman and Cowling contains errors which are here corrected.

THE LENNARD-JONES MODEL

In this model the molecules interact according to a force law of the form (33), with »"=3. This
choice of »" is made not because of its physical appropriateness (' =7 would be a better choice),
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TaBLE 1IV. Quantities for the Sutherland model. TABLE V. Quantities for the Lennard-Jones model.

v i1(») ia(v) F(») v B Bx(» ) D)

2 1/3=0.3333 4/15=0.2667 0.5784 3 —0.812 —1.825 1.000 1.000
3 (12—=?)/8=0.26063 (72— 8)/8=0.2337 0.4824 5 (—0.331) —0.7244 0.589 0.653
4 3—4 log 2=0.2274 8(3 log 2—2)/3=0.2118 0.4240 7 —0.173 —0.4137 0.299 0.376
5 (37x2—28)/8=0.2011 3(10—#2)/2=0.1956 0.3831 9 —0.077 —0.2474 0.126 0.218
6 0.182 0.183 0.353 11 —0.016 —0.1430 0.025 0.125
7 1/6=0.1667 5(972—88)/24=0.1722 0.3275 15 +0.0564 —0.0266 —0.081 0.088
9 13/90=0.1444 7/45=0.1556 0.2900 o +0.2662 +0.3506 —0.266 —0.216

but because of its mathematical convenience. It follows from the work of Lennard-Jones,!” and
Chapman and Cowling, that

OW =4, 4B,/ {g2 =02k T2) =9 =D} (45)

where the A’s are the quantities already introduced in (24), and the B’s are quantities which must
be determined by numerical quadrature. The B,® and By used here are related to the quantities
used by Chapman and Cowling according to

By =By(»), By =3Bsy()/2. (46)

The values of B, tabulated in Table V were determined by Chapman and Cowling, and the values
of B, by Lennard-Jones.!” The values of B:®, B;®, and B;® are not given by the writers men-
tioned, but the latter two must clearly be the negatives of 4,® and 4:®. The value of B;® was
then determined by interpolation in the expression B:/(B;—0.05), which is nearly constant for
v=3,7,9,and 11. It is assumed in stating (45) that s and ¢ have the same values as for the inverse
power model.

From (8) and (45) we now have

E4+1 2 «’ k—3
QUb = 14,007 —~—~~)+%Bl<“ ( )! (47)
2 a1 kORI 6D\ 2

and substitution of this expression in (12) gives for the Lennard-Jones model

105 M2——m1 «'g(v) kD (v)
a= cor(“= ) (i ) av
113 mZ+m1 ,,_1 ”‘”‘U(ZkT) —3)/ (v—1) K2 0=V (QRT) w=3)1 —1)
where
and gv)=—By/{4.I'(3-2/(»—1))} (48)
(10B2/(B.f) =15 117432B,/B; )
D(v)=g(v){ (49)

L 15+6f 177+48{f—1/(»-1)+1/(V—1)2}f

and f(») is the same function that arose in the case of the inverse power model. The functions g(»)
and D(») are also tabulated in Table V. Equations (45), (47) and (IV) are correct only to the first
order in '/ {k2/¢=D(2kT)=910-D},

Equation (IV) has the property that it predicts a to be independent of temperature for a value
of » slightly less than 15; for smaller values of », it indicates that o« will sncrease as the temperature
decreases.

THE LimiTaTiONS INVOLVED IN EQuUATION (12)
It has already been stated that (12) is the first approximation to the exact result as given by the

ratio of two infinite determinants. We may obtain a rough estimate of the error involved in the
first approximation by the following considerations.

17 J. E. Lennard-Jones, Proc. Roy. Soc. 106, 441 (1924).
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It was shown by Enskog'® in 1912 that for the
case in which both the mass and the concen-
tration of the lighter molecules are negligible in
comparison with the corresponding quantities
for the heavier particles, the exact value of a for
the inverse power model is

1v=35

a=——-, (50)

2v—1
On the other hand, it is shown by Chapman and
Cowling that the value of « given by the first
approximation is in this case

v—35
a= / 5
y— 1~

Comparison of (50) and (51) indicates that the
first approximation gives 10/13 of the exact
result for elastic spheres, 8/9 of the exact value
for »=9, and a vanishing error as v approaches 5.

This limiting case, the Lorentzian case, is a
particularly bad case for all of the coefficients
which refer to a mixture of two gases, however.
The first approximation gives a result which for
elastic spheres is about 98 percent of the exact
result for the coefficients of conductivity, vis-
cosity, and self-diffusion of a simple gas, whereas
in the Lorentzian case, the first approximation
is in error by 8, 12, and 15 percent, respectively.
If, then, one wishes to draw an analogy between
the coefficient of self-diffusion and the thermal
diffusion coefficient of isotopes, one might make
the slightly enlightened guess that the expression
(12) is about S percent low for elastic spheres,
with a smaller error for smaller values of ».
This is at best only a guess.

The theory of Enskog which we have been
using is, of course, a purely classical theory.
The introduction of quantum mechanics changes
the statistics obeyed by the molecules, and
requires that the general theory of Enskog be
redone from the beginning. This has been done
by Hellund and Uehling.?®* The difference be-
tween classical and quantum statistics is, how-
ever, of negligible importance for gases at ordinary

4 3v—5)(»+1)

5 (v—1)2

(51)

18 D, Enskog, Ann. d. Physik 38, 731 (1912).
(1;9 E) J. Hellund and E. A, Uehling, Phys. Rev. 56, 818
39).
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temperatures and pressures. The chief change
brought about by quantum mechanics lies in the
calculation of the collision cross sections, and
this change is easily made within the framework
of Enskog’s theory ; the quantities ®(” and Q(+®
which are to be inserted in (12) should be
computed quantum-mechanically. Even here the
difference between the classical and quantum
cross sections is small, except possibly for
hydrogen and helium. The most important
quantum-mechanical effect is the fact that the
wave functions for a collision between identical
and nonidentical particles must have different
symmetries, with the result that the cross
sections for a collision between identical and
between nonidentical particles are not equal.
This effect was pointed out by Hellund and
Uehling.!?

Professor Mott-Smith (University of Illinois)
has worked out the details of this symmetry
effect for elastic spheres (private communica-
tion), and the writer hopes that he will soon
publish his interesting considerations.

COMPARISON WITH KEXPERIMENT

Direct experimental determinations of the
thermal diffusion coefficient of isotopes are very
few in number. Nier?® ' has measured the value of
a over two temperature ranges for methane, and
over three temperature intervals for neon. His
results are shown in Table VI. The quantity Ry
is the ratio of the observed value of a to that
predicted by (I).

Hassé and Cook!! give viscosity data for neon
at nine temperatures in the range 91.66°-
717.6°K. The values of n obtained from these
data for the temperature ranges 91.66°-194.7°,
91.66°-288.1°, and 288.1°-575.1°, are, respec-

TaBLE VI. Values of a determined experimentally by Nier.

SPECIES 1 SPECIES 2 Temp. RANGE a Ry
CI’H, C13H, 296°-728° 0.0080+~59, 0.30
296°-573° 0.0074£~5%  0.27

Ne?0 Ne? 283°-617°K  0.0302+ 29, 0.71
90°-294°K  0.0188+ 29, 0.44
90°-195°K  0.0165+ 89, 0.39

20 A, O. Nier, Phys. Rev. 56, 1009 (1939).
2t A, O. Nier, Phys. Rev. 57, 338 (1940).
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tively, 0.745, 0.716, and 0.676. According to
the inverse power model the values of Ry which
correspond to these values of #, are by Table I1I,
0.44, 0.50, and 0.58. These values are to be
compared with the experimental values of Rr
for roughly the same temperature ranges: 0.39,
0.44, and 0.71. Of course, the fact that n varies
with temperature at all indicates that the
inverse power model is lacking.

The value of Ry as predicted by viscosity
data may also be obtained from the Sutherland
model. According to the work of James,!® the
constant C which appears in the Sutherland
equation for the viscosity is given by

C=13(v)e/k. (52)

If we assume »=7, the value predicted by the

quantum theory of van der Waals forces, we
find from (IIT) and (52) that

(1=0.9679 C/T)(140.9771 C/T)

RT“ ) (53)
(14+C/T)(140.9110 C/T)
1-0.98 C/T.
SR, (54)
140.92 C/T

The experimental data of Hassé and Cook for
neon may be fitted rather well over the entire
range of temperature by the Sutherland relation
with C=60°. With this value of C, the values
of Ry predicted by (54) for the temperatures
142°, 192°, and 450°, are, respectively, 0.42,
0.54, and 0.77. These values agree with experi-
ment somewhat better than in the case of the
inverse power model. The same difficulty faces
us here, however, that has led to the rejection
of the Sutherland model as being more than a
convenient interpolation formula; namely, the
fact that the value of ¢/k=350°, which by (52)
corresponds to C=060° is much larger than the
value which is indicated by other and more
reliable measurements of this quantity, such as
the latent heat of vaporization of the crystalline
solid, and measurements of the second virial
coefficient. According to Buckingham,? such
considerations point quite definitely to a value
of ¢/k of about 30° or 40°.

2 R. A. Buckingham, Proc. Roy. Soc. 168, 264 (1938).
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Buckingham has been able to fit the experi-
mental measurements of the second virial coefhi-
cient of neon by a formula of the Lennard-Jones
type (33) with »’ =7, and with a value of » which
may vary in the range 9 to 15. For all of these
values of », however, the Lennard-Jones model
(with »"=3) predicts that « will fall or at least
not rise as the temperature increases. Since this
behavior is not at all in agreement with experi-
ment, we must conclude that the Lennard-Jones
model is not useful in connection with thermal
diffusion in the case of neon. Whether this failure
is due to the choice of »'=3, or whether the
difficulty is more deeply seated, the writer is
unable to say or guess.

The methane molecule does not possess a
spherically symmetrical field of force, and we
should therefore not expect that the theory of
Enskog, which holds only for spherically sym-
metrical molecules, would give results in close
agreement with experiment. The inverse power
model is particularly inappropriate in application
to methane, inasmuch as the value of n varies
between 1.028 and 0.728 in the temperature
range 91.5°-522.8°K. From Table II, we find
that for the temperatures 448° and 498° the
values of # are 0.77 and 0.73; we then find from
Table III that the corresponding values of Rr
are 0.40 and 0.49. These values may be compared
with the experimental results 0.27 and 0.30.
The Sutherland equation fits the viscosity data
much better, with C equal to about 160°. With
this value of C, the values of Ry predicted by
(54) for the temperatures 430° and 512° are
0.48 and 0.54, which are in very poor agreement
with experiment.

The comparison of theory with experiment is
sufficiently good in the case of neon to encourage
us that we are on the right track, but on the
other hand is sufficiently poor to indicate that
much remains to be done. In particular, we are
faced with the task of working out the predictions
of more complicated molecular models than
those which have been considered up to the
present time. The models discussed in the present
paper have proved quite satisfactory for the
treatment of free-path phenomena, but they are
not sufficiently precise to meet the test of
thermal diffusion.
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On Directional Correlation of Successive Quanta
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A theoretical investigation shows that there should be a
correlation between the directions of propagation of the
quanta emitted in two successive transitions of a single
radiating system. This correlation is described by a function
W(6) which gives the relative probability that the second
quantum will be emitted at an angle 6 with the first; Wis
determined by the angular momenta of the three levels
involved in the two transitions and by the multipole order
of the radiation emitted in these transitions. The explicit

INTRODUCTION

T has been suggested by Dunworth! that there

might be some correlation between the direc-
tions of emission of two successive gamma-
quanta emitted by a nucleus when this nucleus
passes from an excited level 4 to the ground
level C, by way of a definite intermediate level B.
This suggestion was pointed out to the author
by Dr. I. A. Getting in connection with the
latter’s search for such a correlation by means of
gamma-gamma coincidence experiments. The
present paper is a theoretical discussion of the
question.

The problem of resonance radiation? is basi-
cally similar to the present one, since both are
concerned with the radiation from an excited
level in which a system finds itself as the result
of an anisotropic process. This process is, in the
first case, an absorption from a unidirectional
(and usually polarized) beam of light; in the
second, an emission of a quantum in one par-
ticular direction.

* Society of Fellows.

1 J. V. Dunworth, Rev. Sci. Inst. 11, 167 (1940).
2 V. F. Weisskopf, Ann. d. Physik 9, 27 (1931).

forms of W for all angular momenta and for dipole and
quadrupole radiation are given; experimental determina-
tion of W in any given case should limit these factors to a
small number of possibilities. This has particular interest
as a means of investigating the nuclear energy levels in-
volved in y-radiation; here W should be observable by
measuring the variation with 6 of gamma-gamma coin-
cidence counting rates.

An explicit formulation involves the transi-
tions between the (2J+1) m-states of each level.
(J is total angular momentum of a level, the m
are the eigenvalues of J,.) We designate the
states of the nucleus as 4,, B,, C,; subscripts
are values of m. For a given multipole order of
the transition AB (or BC), the angular distribu-
tion of quanta emitted in a transition 4B, (or
B.,C,) depends only on |Am|, where Am=(p—n)
or (n—1); hence we write these distributions as
@1n—1(0) and f|,_n (). The relative probabilities
of the various transitions 4,B, and B,C, are
denoted by g, and G,, respectively. Now
suppose that the nuclei are initially oriented at
random—i.e., all states 4, equally populated for
any arbitrary axis of quantization. In the
transition 4 B, the sum of the probabilities of all

- components 4B, with a given Am is independent

of Am; hence the probability that a quantum
emitted at an angle 6; with the axis has been
emitted in a transition with given Am is propor-
tional to ¢|am((81). The relative populations of
the B, are then 3 ; gi¢n—y(81) and the angular
distribution of radiation from the decay of state
B, alone is X", Gupfip—n(0s).



