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than any d& thus far found among the rare gases,
and reacts with 3s5 (from which it is separated
by only 1 cm ') to produce Paschen-Back
effects. *

The very large discrepancy in 2s2 is not so
easy to account for. It looks, almost, as if the
level were improperly classified, although it
appears to be in about the correct position.
Perhaps 2s2 and BsI' should be interchanged.

The level 4d& seems to have an abnormally
low value when compared with the other rare

*The calculations of the Paschen-Back interaction of
3s5 and 4d2 will be discussed in a separate communication.

gases, all of which have values about 1.4. Not
too much importance can be placed on this
point, however, for this configuration is badly
distorted. Indeed, 4d~ seems to be far below its
usual position, being lower than 4d6 which is
usually the lowest level of the P5d configuration.

The levels 3ps and 3p9 are only 5.5 cm ' apart
and perturb each other sufficiently to distort the
patterns of lines involving them. Their g values
were determined by methods already described. '
(See Fig. 2.)

9 J. B. Green and J. F. Eichelberger, Phys. Rev. 56, 51
(1939);J. B. Green and J. A. Peoples, ibid. 56, 54 (1939).
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In this paper, the variation of the intrinsic domain magnetization of a ferromagnetic with the
external magnetic field, is obtained. The basis of the treatment is the exchange interaction
model amplified by explicit consideration of the dipole-dipole interaction between the atomic
magnets. Approximations appropriate to low temperatures and equivalent to those used by
Bloch in his derivation of the T law, are introduced. The resultant expression for the intrinsic
volume susceptibility decreases slowly with increasing field; at high fields the functional de-
pendence is as the inverse square root of the field. The variation with temperature is linear; at
room temperature and for fields of about 4000 gauss, the order of magnitude of the (volume)
susceptibility is 10 '. The results are compared with experiment and satisfactory agreement is
found.

I. INTRQDUcTIQN

CLOSELY allied to the problem of the tem-~ perature variation of the intrinsic mag-
netization, M, of a ferromagnetic body, is the
problem of its variation with an external mag-

netic field, H. This intrinsic magnetization is
characteristic of a single ferromagnetic domain
and is identical with the experimentally observed
magnetization when "technical saturation" has
been achieved, i.e. , when all of the domains in all

of the individual crystal grains of the specimen
have parallel magnetization vectors. '

* Present address: Queens College, Flushing, New York.
' "Technical saturation" is achieved at fields of 2000—

4000 gauss, depending on the metallurgical treatment of
the (polycrystalline) specimen.

When technical saturation has been reached,
there are still, as a result of temperature agita-
tion, some atomic magnetic moments which are
not oriented in the direction of H. Further
increase of magnetization is then to be ascribed
to the progressive alignment of the temperature
disoriented atomic magnets by an increasing
field. The phenomenon is physically similar to
that which obtains in the magnetization of a
paramagnetic substance; however, the existence
of the strong ferromagnetic coupling forces
between the atomic magnets changes completely'
both the magnitude of the effect, and its de-

' Cf. Eq. (30), (31) below.
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pendence upon the external magnetic field and
upon the temperature.

The problem of the variation of M with H has
been treated by Akulov' on the basis of the
phenomenological Weiss-Heisenberg internal field
theory;4 his result is in strong disagreement with
subsequent experiments. 5

The basis of the treatment of the variation of
M with H given in the present paper is the
exchange interaction model of a ferromagnetic,
wherein the electrons responsible for the ferro-
magnetism are anchored to the atomic cores and
do not wander about the metallic interior. The
essential approximation used in the treatment of
this model is that the condition of "quasi-
saturation" obtains; vis. , the percent deviation

of the magnetization M(T, H) from its maximum
possible value, Mo, is small. This condition always
prevails at temperatures sufficiently below the
Curie temperature. '

It has also been found possible to take account
of the magnetic interactions between the atomic
magnets. These interactions are important,
since, in most of the experiments thus far per-
formed, the magnetic energy of an atom due to
the magnetic moments of all of the other atoms,
—4~PMO/3 is usually larger than the magnetic
energy due to an external magnetic field, =pH
It will be seen that the effect of the magnetic inter-
actions cannot be expressed correctly by replace-
ment of H by II+yM ' in the final expression for
the magnetization (cf. (30), (31), (32), below).

II. THE HAMILTONIAN

The exchange interaction model of a ferromagnetic, amplified by the inclusion of magnetic inter-
actions, is described, in the space of the atomic spin variables by the following Hamiltonian, "

H= ——', Q 2Jg~(R(„)S( S„+—', Q (4p'/R'( )(R'(~S( S„—3S).R(~S R)~) —Q 2pSI, '*~H. (1)
l, m=1 l, m=1

Here, N is the total number of atoms, while the sums over I, and m each run from 1 to N, summands
with l =m being omitted. R&„——

~

R& —R„~ is the distance between the centers of gravity of the Lth

and nth atoms; Jl the exchange integral between these atoms; Sl the spin angular momentum
operator of the atom at Rl in units of fi; the magnetic field FI is directed along the s axis.

The first term in H is the Heisenberg exchange energy expressed in terms of the atomic spin
operators (Dirac vector model). ' The second term arises from the magnetic dipole-dipole interaction
between electrons on different atoms. The effects of exchange and of higher magnetic poles on the
magnetic interaction are both neglected;" hence, the centers of gravity of the atoms constitute the

N. S. Akulov, Zeits. f. Physik 69, 822 (1931). See, also, R. Becker and W. Doring, Ferromcgrietismus (Julius
Springer, Berlin, 1939), p. 35.

See, for example, J. H. Van Vleck, Theory of Electric and Magnetic Susceptibilities (Oxford University Press, 1932),
Ch. 12.

~ A full discussion of the various experimental results and comparison with theory is given below in Section VI.
6 W. Heisenberg, Zeits. f. Physik 49, 619 (1928).
~ The exchange interaction model, with the specimen in the condition of quasi-saturation, has been approximately

treated by Bloch in his derivation of the temperature variation of the intrinsic magnetization. Cf. Zeits. f. Physik 61,
206 (1930); 7'4, 295 (1932). Using mathematical methods different from those in the present paper, Bloch derives the
well-known T& law for atoms with spin S=-', . Bloch's methods have been extended by Moiler to the case S&-,'. Cf.
Zeits. f. Physik 82, 559 (1933).

8 p is the Bohr magneton.' y is a numerical factor whose value lies between 0 and 4m.
'~ It is to be noted that (S&)' commutes with the Hamiltonian of Eq. (1); therefore, the magnitude of the spin of each

atom has a definite integral or half-integral value, S, and thus, each atomic magnetic moment should be an integral multi-
ple of the Bohr magneton. However, experimental values of the intrinsic magnetization extrapolated to absolute zero,
i.e. experimental values of M0, give for the atomic magnetic moments, Fe:2.2p; Ni: 0.6p; Co:1.7p. The deviations of these
magnetic moments from integral rnultiples of P is due, presumably, to the interchange of electrons between the atomic 3d
shells, where the electrons contribute to the ferromagnetism, and the conduction states, where they do not. The problem
of the extension of the exchange interaction model to include these interchanges has not yet been solved.

"See reference 4, Ch. 12."Magnetic quadrupole interactions have been invoked to explain ferromagnetic anisotropy, cf. R. Becker, Theoric der
Electrizitat, Vol. II (Teubner, Leipzig, 1933) pp. 177—183; in order that these, alone, account for the observed ansiotropy
their ratio to the dipole interactions need only be =1/10. In this connection it. should further be mentioned that the
use of magnetic quadrupole interactions to explain ferromagnetic anisotropy has been &r&t;it;&zpQ by Van Vleck, Phys. Rev.
52, 1178 (1937), p. 1188.



1&00 T. HOLSTEIN AND H. PRI MAKOFF

locations of magnetic dipoles, each with moment 2PS. The last term is the interaction of the magnetic
moment of each atom with the external magnetic field.

It is to be noted that spin orbit eff'ects have been neglected in Eq. (1). How these effects are to
be treated and what influence they have on the final result will be discussed in a later section.

III. EIGENvALUEs oF THE HAMILToNIAN

The first step in finding the magnetization is the determination of the eigenvalues, E of H. In
conformance with the essential approximation of "quasi-saturation, "

LMs M(T, J—l)$/Ms«1
mentioned in the introduction, only those eigenvalues, E, are sought whose corresponding eigen-
functions, +E, specify states where the expectation value of the s component of the total spin of the
specimen

N
S(z)

L=l

is close to its maximum possible value NS."
To proceed, it is convenient to introduce the operators:

S+i=S"i,+iS'"'i, S i=S( 'i —iS("'i, gi=S —S')i.

n~ the eigenvalue of n~, will be called the "spin deviation" of the 1th atom; for the state

C tt1, ', St),

(2)

which is an eigenstate of H& and S('&, n& obviously represents the difference between the s component
of the spin of the lth atom and its maximum value. Also, by way of notation (tt&)z is the expectation
value of the spin-deviation operator, n~, averaged over the eigenstate

bz(nt, , nt, ng)%e, , ",s), "ss,

i.e.,

whereas,

(tt[)z = Q ~bz(nt ''' n( ''' npT)~ n[,

((ti,))»—=Pz(tt, )ze
—«"r/PzS —«»

is the expectation value of the spin-deviation operator when the temperature of the specimen is T,
and involves, first an average over +E, and then an average over the Boltzmann distribution of the
eigenstates of the specimen.

The operators of (2) have the following properties,

S+t%si (2S)&'(1———(n~ 1)/2S)—&(n&)14«—t,

S t+«= (2S)I(nt+1)*'(1 n~/2S)—'4's~+» tl~@'s~=nt4s~.

Introducing the well-known creation and destruction operators defined by"

a*~4s& ——(nt+1) &Os(+1 at@I~——(nt) &@a~—t,

one obtains, upon comparing (3) and (4)

S+&——(2S)&(1 a*ta&/2S—) "ar&r, S &
——(2S)'*a*&(1—ac&a&/2S) ', n& = a*&a&.

(4)

N
n It is to be noted that QS"~ does not commute with the magnetic interaction portion of the Hamiltonian (I).

1"In Eq. (4), nI is allowed to run from 0 to ~ rather than from 0 to 2S as in Eq. (3).. The discrepancy is only apparent,
since the transition from states with n~ 2S to states with nI)2S will never occur. e.g.

S )+2g = (2S)&(2S+1)&(1—2S/2S)+2g+1=0.
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When substituted into the Hamiltonian of Eq. (1), (2) and (5) give:

H = —P J~ (2$a*~(1—a*&a~/2$)'*(1 —a* a /2$)&a„+5' —2$a*~a~+a~~a~a* a„)
l, na

+ s Q (4P'/R'~~) (2$a*~(1—a*ga~/2$) &(1 —a* a„/2S) &a +S'—2$a*~a~+a*~a~a~„a„)
l, m

+s 2 (4P'/W-)( 3)—([s'i-(5' 2$—a*«i+a*««* a )]

+[sg R& (S—a~ga~)(2$)la* (1—a" a /2$)'*+s~ R~ (S—a*la~)(2$)&(1—a* a /2$)&a„]

+(2S/4) [(R~ )'a*t(1—a*~a~/2$) &a*„(1—a*„a /2S) &+(R~~)'(1—a*&a~/2$)'

Xa~(1 a* a —/2$)la„+2R&„R~„a*~(1 a*~—a~/2$)&(1 —a* a /25)&a ])
N

—P 2PH(S a*(a)),— (6)

with
+

Rim lxm+Q'!m y Rlm x!~n &elm

The condition of quasi-saturation

1» 2 [Mo M(T, H) ]/Mo= ((ni))av/2$= ((a*tat))A, /2$

is now invoked to effect the following approximations in H.
I. Replacement of (1—a&*a&/2$)'* by 1. Such a replacement appears reasonable since the expecta-

tion value of (1—a*«&/2$)'* is =(1—((n&))A~/2$)'=1.
II. Neglect of terms proportional to a*~a~a* a =H~H . Assuming that there is no correlation in

the location of the different spin deviations, one obtains for the expectation value of these terms,
((tt~n„))»—((n~))Ay((n~))A„which is smaller than the expectation value of 2$a*~a&=25((n&))A„by a
factor ((n ))„„/2S«1.

III. Neglect of terms proportional to (2S)&a*««* = (2S)&n~a* . These are terms which cause the
system to make transitions between states of different total spin. Unlike terms of the type 2$a*&a*
which also cause such transitions, they are different from zero only for transitions taking place near
atoms on which spin deviations are already present; the ratio of the number of transitions arising
from the two types of terms is thus =((n&))A„(2$) &«1.

A further discussion of the nature of the approximations I, II, III, is given in Appendix I. In
anticipation of results to be obtained below (cf. Eq. (15 ) and following text), it may be pointed out
that, if the magnetic dipole-dipole interactions are omitted, these approximations lead to the same
energy levels as obtained by Bloch in his derivation of the T& law, ' and are thus equivalent to the
approximations of his method.

An additional simplification of the Hamiltonian results from the fact that summations of the form 4

Qg„f(R( )x,t, s( a*„=P a*„graf(Rg)xjsg

are zero. This fact is obvious if the direction of H, i.e. , the s axis, coincides with one of the crystal-
lographic cubical axes. In the more general case, a transformation of the sum over h to Cartesian
coordinates which are referred to the cubical axes readily leads to the same result.

Applying approximations I, I I, III, and the theorem just stated, one obtains for the Hamiltonian (6)
H = C P~, „2SJ~„(a*~a—a*~a~) +-', P ~, „(4—P'/R'~„) (2S) (a~~a„—a*~a~)

+-', Q&, (4P'/R', „)( 3)(2$)(-', [x'&„+y'—
& ]a*&a s'& a*«&+4[(R&„—)'a*la*„+(R&„)'a&a ])

+g)2PHa*(a(, (7)
with C= —Qt, „J(„$' 2PSNH ', Q(2PS—I Q„( 2P—S—)/R'—i„(1 3s'(~/R'—l„) I.

"f(RI ) is any function of RI and Rz —=R&—R . The two sums are identical provided that contributions coming from
atoms on the surface of the specimen are neglected; the justification of this neglect is given in the text before Eq. (11).
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The numerical constant C is the value of the energy when all of the atomic magnets point in the
direction of the field H. The first sum in C is the exchange energy, the second the interaction between
the atomic magnets and the external field, and the last the mutual dipole-dipole interaction of the
atomic magnets. (In fact, the expression in the curly brackets is the sum of the Lorentz local-field,
4m Mo/3, and the demagnetizing field, as will be shown in another connection below. Cf. text after
Eqs. (44), (45) in Appendix II.

From the form of the Hamiltonian (7), it is apparent that the "spin deviations, " specified by the
integers n& are not localized on any one atom, but are "propagated" through the crystal. That this
propagation is essentially of a wave-like character is seen by the introduction of new variables defined
by the following relations:

ag=N l Q( exp (iK„R))a),

a*g=N ~ Q( exp (—iKg R()a),

a( N l P——g exp (—iKg R()ag,

a*,=N l Pg ex—p (iK), R()a*a.

The a~ and u*„satisfy the relation:

since from Eq. (4),
~l~ m + m+l ~ml

0/C (10)

In Eq. (8), R& is the vector from an arbitrary origin to the lth atom, whose magnitude measures
the corresponding distance in units of the lattice constant, in contrast to the formulae of the above
text where {R&~ gives distance in centimeters. Kq is a reduced wave-vector; the usual periodicity
conditions require its components to take the values

K &*&g = 2n.X,/G„K &»g = 2s.X„/G„, K&'), =2vrX, /G„

where ), X„, ), assume any integral values between —~G and -', G, —1, —-', G„and -', G„—1, —-', G,
and ~G, —1, respectively. '~

The replacement of the a& by the a), constitutes the first step in the evaluation of the eigenvalues
of the Hamiltonian. To carry out this replacement, one has to evaluate sums of the type,

„f(R(„)a,*(a

Upon application of (10), this sum becomes

N 'f(R( )a*pa&exp {i(K), Rp —Kz R„)}.
l, m, X, X'

Introducing the vector RI, =R~ —R =R~ one obtains

N 'f(R~)a*q a&, exp {i(Kq —Kq) R~) } exp {iKq Rq }.
l, h, X, X'

Now, the summations over l and h can be carried out independently if one neglects contributions
arising from the surface of the specimen. Such contributions are obviously negligible for the exchange
forces. In this case, the summation over h comprises only nearest neighbors of l, and hence surface
terms arise only if the atom l is, itself, on the surface. However, the number of such terms is smaller
than the total number of terms by a factor —1/G. As far as the magnetic forces are concerned,
although their short range character is not immediately obvious, one can show that, in the sum over
h, again only small values of

{ Rz { are important; hence the argument given just above again applies.
The summation over l then yields the factor Nb&. ), and the quadruple sum reduces to

P~(g~f(R~) exp {iK&, R~})a*~a~.

"G„G„,G, are the lengths of the specimen in the x, y, z, directions, divided by the lattice spacing.
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Treating all of the summations in H by this method, one obtains:

H=C+Q„A&a „a„+P„(2B,a„a „+2B &a „a ~),
where

Aq ——3P Pq( —2PS/a'R'q)(1 —3s'q/R'q)+P Pq(2PS/a R'q)(1 —3s'q/R'q)(1 —exp (iKq ~ Rq))

+Pl, 2SJ~(R~)(1—exp (iKq Ry,))+2PH. (12)

B~= —3P P~(2PS/a'R'~) (x'~ y'~ —2i~~y—a) /R'~

+3P Pq(2PS/a'R'q) ((x'q y'q—2ix—qyh)/R'~) (1—exp (iKq R~)), (13)

a being the lattice distance.
The sums over b in Aq and Bq are evaluated in Appendix II; the results for

i K&,
~

&&1 are:

Ay=A g
——2SJK),'+2PH+47rPM, sin2 8&,

Bg Bg 4——nPMO ——sin'. eye '"&&

(14)

(15)

Here, J—= J~(R~) when RA, is the distance between nearest neighbors; eq, @q are polar angles of Kq

with polar axis parallel to the field, H. As will be shown later in the text, the values of Aq and Bq
which contribute importantly to the magnetization M are those with

i
K&,

i
«1.

It might be instructive to point out that, if the magnetic interactions are omitted, H reduces to

NP&JzS—' —2PSXH+P&, (Q~J~2S(1 —exp (iKq Rq))+2PH)a*qaq, (15')

since the eigenvalues, nq, of nq —=a*qaq are 0, 1, 2, 3, Lcf. Eq. (9)], it is seen that the eigenvalues

of this Hamiltonian are just the energy values which have been found by Bloch and Moiler. ' In this
connection, it is also apparent that n), can be interpreted as the number of "spin-wave quanta"
associated with the wave vector K&,. Further, Pq((nz))«which is equal to Pl((n&))«, gives directly the
expectation value of the deviation from its maximum value of the z component of the total spin of
the specimen.

However, the existence of the magnetic interactions, in particular the terms of (11) in aqa q and
a*),a* ), which do not commute with Itq, necessitates further transformation before the Hamiltonian
is brought to diagonal form. These transformations are, in order:

ag ——2 le'&&(b), +b g); a g
——2 'e'& &(b), bg)— — (16)

and similarly for a*&, a* &. These transformations are defined only for the half-space of K&, i.e. ,

—~(K(&&«, —«K(», «, 0(K(& «.

with

ill+ ~2& X ~—X ~1&—'A i2&

g = lac g+l2c&i', 0 y = lac —x 12c

(1A),+(A'g —~B&, ~')li l (1 A~ —(A'&, —~B~i')'*i '

E2 (A'„—[B„[')l ) (2 (A'z —iB) i')l )

(17)

(18)

In terms of cq, c*q, the Hamiltonian (11), becomes:

H = C+Q~((A'~ —iB~i')'C*~C~+l(A'), —iB~i')' —2'A)). (19)

In (19) the sum over X goes over the whole of K~ space, as in (11).
The eigenvalues, E, of H are now immediately available since, by (9), (16), (17), the eigenvalues,

Nq of C*&,C&, are 0, 1, 2, 3, . Thus

E—=EN& ——C+ Pz(2 (A 'z —
i Bz i

') '* —gA) ) +Zx(A'x —
~

B),
~

') 'Nx. (20)
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IV. CALCULATION OF THE MAGNETIZATION) M(T, H)

The magnetization is obtained from the partition function, Z, by the relation,

with

(21)

Z=gme s" =e c'" exp [—Qi-'((A'i —IBi, !')»—Ai)/kT7+N„exp [—Pi(A'i, —IB&, I')»Ni/kT7

=s ""'exp [—2 l((~' —IB I')' —~ )/kT7 II (1—exp [(~' —IB I')'/kT7) '. (22)

Thus by (21), (22), and replacing graf(Kq) by G,G„G,(2ir) Pff(K)dK, one obtains

2p5N G.G„G.2p I p A(K)
( )= ! dK

(2~)'V " - ». ((~(K))'—IB(K) I')*'& «xp [((~(K))'—IB(K) I')'/kT7 —I)-
G,G„G,P p A (K) —1 dK= Mp 3f—r(T, —H) Mp(H)—. (23)
(2-)'V ~ -((&(K))'- IB(K) I')'

3IIO is the value of the magnetization when all of the spins are parallel to each other —complete
saturation. M~ is the deviation of M from Mo due to temperature agitation; its magnitude, however,
is also dependent on II and the magnetic dipole-dipole interaction. Finally, 3fp is the deviation of
3f from Mo due to the dipole-dipole interaction, itself; the magnitude of 2IIIp is, in addition, a function
of H. The presence of the term Mp indicates that, even at T=O, comP/eke saturation can be attained
only by the application of a 6eld H&&4xMO.

The T law of Bloch is obtained from (23) by neglecting the magnetic interactions and by setting
H=O. Then, from (14) and (15), A(K) =A( —K) =25JK'; B(K)=B(—K) =0 and

3II(T)sioo"=imp cVqsioo" —Mp——G,G„G,2——P(2') 'V ' ~(exp [25JK'/kT7 1) 'dK
J

= ~p(1 —[~ 'pG G„Gg V '2P(2pr) —'(k/255)»(2ir) (2)(1.3)7T»)

=Mp(1 —(const. ) T»). (24)

It is to be noted that in (24) the integration is extended over all K-space rather than over a cube
of side 2m. , and the exchange energy Q&25J&(Rq)(1 —exp [pK Rq7) is approximated by 257K'.
This procedure is permissible provided that k T/25J«1, since in this case the main contributions to
the integral come from regions of K-space for which

I
K

I
(kT/257)». iP

Turning now to the evaluation of the integral for cVr in (23), one proceeds most conveniently by
finding the difference between Mr and the known integral for Mr "'" in (24). Thus,

G.G„G, 2P q f A l( 1
~&sloch—

(2pr)' U" ((l4' —IBI')»)».exp [(A' —IBI')»/kT7 —1)

with A and B satisfying relations (14) and (15), vis

dK (25)
exp [252'K'/kT7 —1

A(K) =255K'+4irPMp sin' Hx+2PH, IB(K) I
=4prPMp sin' 8x.

'~ The condition kT/253«j. is, in practice, not as well fulQled as is theoretically desirable, e.g. for iron at room tem-
perature k T/253=0. 3.
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The important contributions to the integrand of (25) come from regions of K-space for which

~K( [(4sPMO+2PH)/25J]'. Further, in all practical cases, (4~PMO+2PH)/kT 2X—10 '. Thus,
in the regions of K-space making important contributions to (25), both (A' —~8~')'* and 25JK'
are small compared to k'1. It is then permitted to expand the exponential in the integrand. Hence

G G„G. 2P t
~ A 1

3f&—M&»«h=k 1
v (2~)3 ~

(26}

From this point on, the integration is straightforward and yields:

G,G„G, 1 (kT q &2P5
Mr M—&»och= — —

~ i (2~)(2)(1.3)
V 5 I 25J) (2s)'

3~ (2pHq ~ ~21 ( p q'*H+4~MO ( 4~MD
sin ']

/
. (27)

8(1.3) ( kT ) 8(1.3) &kT) (4wMo)& EH+4mMO)

As regards Ms(H), it has not been found possible to evaluate the integral for it in a closed form for
all values of II. However, in the two limits, II«4x3IIO and II&)4m Mo, the integral has been evaluated.
One obtains:

G.G„G. (4~PM, q '(25Jy '*

iu, (H) = * " *Pi———
V & 2SJ ) &2PH)

if Il»4~m„

G.G„G. (4~PM, y '( 25J p
**-

ic&(H)= —
P(

—
) (

—), f H«4 M, .
V & 25J ) 44' pMO)

An estimate of the relative importance of the terms Ms(H) and Mr(T, H) is obtained by studying
the change of these two quantities when H varies from zero to, say, 4~PM0. Then

G.G„G. ( kT q ' (4~PM, y
-'*

SMr =Mr(Z', 4~PM, ) Mr(Z', O) =- —
P(

V &25J) 1 kz )

G,G„G, ( 25J y1(4~pMoq'
aM p

=M~(4~PM, ) Ms(0) = "—
P(

v «pM) &2sJ)
DMs/AMr 4m PMo/k T. ——

This ratio is negligibly small (5X10 ' for iron, 1.5X10 ' for nickel); hence, Ms shall be omitted
completely in what follows.

Thus, from (23), (24}, and (27):

G,G„G, 1 ( kT ) l (2m)(2)(1.3}( 3s (2PH) &

M(T, H) =M, "(2Ps)- i—
V 5 &25J) (2w)' & 8(1.3) I kT )

(8~PM, q
*' II+4~M& ( 4~350

sm '(
f f (29)

8(1.3) ( kT ) 4sM0 (H+4sM()) )
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The quantity most often found in the experiments is the "intrinsic susceptibility, " BM/BH. One
obtains from (29),

BM G,G„G. 1 ( kT ) & (2m.)(2)(1.3) 1
(2P')-

]
BH U S E2SJ) (2p)'

1 (4pr~Mpl *(( oMol '
. ( 4oMo

I+»n 'I
16(1.3)2* E kT ) 0 E II i &H+4nMp) .)

Up to the present time, it has not proved feasible to calculate J in terms of atomic constants; in
practice its numerical value is obtained from an experimental measurement of Mp —M(T, 0). This
latter quantity may be equated to Mr '"" since the other contribution to Mo —M(T, 0), namely
Mr(T, 0) —Mr "'" and Mp, is relatively small. Thus from (30) and (24), one finally obtains:

BM (Mo M(T, 0))—( 1 l (47rPMol * ( (4pMol * ( 4sMo
~

+sin ' . (31)
BH ( Mo ) ((16)(2l)(1.3)] 4 kT ) E ( H ] EH+4mM'p) )

The application of this result to the experiments is considered in Section VI.
It is instructive to compare the above result for BM/BH with what would be obtained if the

magnetic interactions were not treated quantum-mechanically, but classically by means of the
Lorentz local field. The result of such a procedure can be obtained directly from (30) by

(1) Passing to the limit Mp~0.
(2) Replacing H by H+pM where y is a numerical factor =4o./3.
The constant J can then be eliminated as above, and one obtains

(BM) (M, M(T, O)q ( —1 q (4~PMp) '*( 4oMp q
'*

& BH) L„„ t,. ( Mp 3 E(8)(1.3)(21)) E kT ' ) EII+yMp)
(32)

The important differences between (BM/BII)L„,„„and BM/BH of (31) occur for H((47rMp. In
t»s case (&M/&H)I, g predicts a field-independent susceptibility, while (31) has an inverse square-
root dependence on H. On the other hand for H»4xMo, the two expressions become identical; both
then vary with H as H '. The inverse square-root dependence of the susceptibility on the magnetic
field for H»4~Ho is thus seen to be a general feature of the exchange interaction model subject to
approximations I, II, III, quite independent of the details of the treatment of the magnetic inter-
action.

It should finally be noted from (30) that the susceptibility is proportional to the absolute
temperature.

V. EFFEcTs QF SPIN-ORBIT INTERAcTIoNs

As was stated at the end of Section II, a11 spin-orbit effects have thus far been neglected in the
formulation of the fundamental Hamiltonian (1). If one desires to treat these effects within the
framework of the present development, i.e. , supplementing the Hamiltonian (1) by additional terms,
he first question which arises is whether spin-orbit effects can be described by an equivalent inter-

action energy in the space of the atomic spin variables. This question has been considered by Van
Vleck in connection with the problem of ferromagnetic anisotropy. " In Van Vleck's work the spin-
orbit effects are represented by equivalent "dipole-dipole" and "quadrupole-quadrupole" interactions
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of the type'.
—2

—', Q( „C(„(R)„)[S(S„—3R(„S( Rg„S„R(„],

2+i, yi (Ri )Rt (St Ri )'(S Rt )'
(33)

(34)

These two terms are discussed in order.
(1) Conveniently, the equivalent "dipole-dipole" interaction (42) is just the same as the magnetic

interaction provided that 4P /R &„ is replaced by C~„(R& ). The effect of this dipole-dipole interaction
then merely consists of additions DA&, AB& to the coefficients A& which appear in the Hamiltonian
(19), and therefore in the integral (23) for M(T, H). One has: (cf. the first two sums in Eq. (12) for
Az and Eq. (13) for B&,)

hA&, = PI, I(—3$/2)C(Rh)(1 —3z'q/R2@)+(S/2)C(Rq)(1 —3z'q/R'q)(1 —exp (fKq Rl)) I, (35)

AB& ——P z I (—3S/2) C(R z) ((x'& —y'z —
2ixzy &) /R'z) exp (fK& Rq) I . (36)

It is also reasonable to suppose that C(Ry) is of short range character;" in this case the sums in

(35) and (36) have appreciable contributions only from the nearest neighbors of a given atom.
Taking account of the crystalline cubical symmetry of the specimen, one obtains:

AA~ ——g~(S/2) C(1 —3z'I, /R'-~) (1—exp (iK~ R~)),

ABER = Pz(3S/2) C((xh, ' —yz' —2ix&y&, ) /R'I) (Kz Rl)'+terms in K'q, K'z,

with C=—C(Rq) for nearest neighbors, l™~10 wave-numbers —J/100.
Equations (35), (36) and the above numerical estimate for C insure that the equivalent "dipole-

dipole" interactions have no effect whatever on the magnetization. As far as the A), +AA~ coefficient
is concerned, the AAz term: Pz(S/2) C(1 —3Z'&/R'&)(1 —exp (iKz Rz)) will be completely swamped
by the exchange term in Aq. +~2SJ(1—exp (iKq Rq)). On the other hand, the B&,+AB&, coefficient
is altogether important only when it is —A&, +DAz, i.e. , only when 4mPMO=Q&2SJ(1 —exp (iK& Rz))
=2SJK'q. Under these circumstances, hB&,—SCK'q —SC4~PMO/2SJ&&4~PMO, and thus, 6B&,&&Bq,

for the important jB&,.
(2) Concerning the quadrupole-quadrupole interaction, an examination of its diagonal matrix ele-

ment in the representation where the Hamiltonian of Eq. (19) is diagonal indicates that its effect, to the
first order in y, is given by the addition to A& of a constant term —y. This term may be conveniently
described by a fictitious "magnetic field": H, =—y/2P=anistropy constant/Mo=200 gauss (Fe),
100 gauss (Ni)."b It can then be coupled together with the original 2PH term in Aq in the form
2P(H+H, ) and carried through to the end of the evaluation of M(T, H), without further ado.
Thus, in the expressions for M and BM/BH in Eqs. (30), (31), the term in y has but little effect if H
is, say, greater than 1000 guass.

(3) Finally, it is possible that some portion of the spin-orbit effects is incapable of description by
interactions of the type (33), (34). Until explicit expressions are presented, one cannot, of course,
estimate the resultant corrections. It is to be hoped, however, that these corrections will still be
described by means of a fictitious field, II„whose order of magnitude will be the same as in the above
numerical estimates. ' '

"Van Vleck, reference 11, p. 1193.
"a This numerical estimate for C is due to Van Vleck, reference 11, p. 1184.

For experimental values of the anisotropy constant see Becker and Doring reference 3, p. 123, Table 12.'" It may be remarked in passing that the methods of the present paper offer an approach to the problem of ferro-
magnetic anisotropy at low temperatures. For this purpose the eigenvalues EN& of Eq. (20), with B~ replaced by Bp+bBp
must be determined as functions of the direction of M0 with respect to the crystallographic axes. This calculation and its
relation to other treatments of ferromagnetic anisotropy I Van Vleck, reference 11;Van Peype, Physica 5, 465 (1938)j is
now being considered.
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factor of about ten;" this factor is due essen-
tially to the appearance in Eq. (39) of the quan-
tity 4irPM0/k T, which is «1, whereas in Eq. (31),
there is instead the quantity (4irPMo/kT)*'.

Further, Akulov's susceptibility is independent
of H and is proportional to e *~"r/T, while the
susceptibility of Eq. (31), as has already been
noted at the end of Section IV, is proportional
to 1II ', for a large range of fields.

VI. COMPARISON WITH EXPERIMENT

(1) Numerical estimates of theoretical values for
the susceptibility

Equation (31) for the susceptibility BM/BH,
when applied to iron and nickel at T=287'K
and H=4000 gauss, gives:

(37)(BM/BH) i.= 1.7 X 10—',

(BM/BH)N; =1.2X10 4,

taking"

(M 0 M(T,—0))!3IIO]F —0.018,
Information concerning the variation of the

intrinsic magnetization with II, has been ob-
tained from experiments" on polycrystalline
samples of nickel and iron. In these experiments
it has been customary to describe the variation
of the observed magnetization with II by a
formula of the type:

(41rMO) F = 21,800;

(Mo —M(T, 0))/Mo]N; ——0.040,

(4w Mp) N; ——6,400.

(38)
(2) Discussion of the various experiments

BM

-~II- A k u1 ov

IMo —M(T, 0)) 1 4irPMp
(39)

2' kT3fp

The numerical values for iron and nickel given
by (39) are found from the experimentally ob-
served values of [Mo M(T, 0)]/M'0. One has:

BM/BH]F, = 1.5 X10 ', (40)

&M/BH]N; =1.2X10 ' (41)

Thus Akulov's susceptibility is numerically
smaller than the one derived in this paper by a

'8 The values of M0 for Fe and Ni are obtained from Becker
and Doring, p. 27, Table 5.At T=287'K, iron still obeys the
T& law while nickel already shows some deviations. Under
these circumstances one must take for L(M0 —M(T,O))/
M0]» in Eq. (31), not the experimentally observed value,
0.054, but the value obtained by extrapolation of the T& law,
the constant 2SJ in it being determined from low temper-
atures. The resulting value for $(M0 —M(T, O))/M0jN1 is
0.040. See the experimental work of Weiss and Forrer, and
Fallot as quoted, e.g. in R. H. Fowler Statistical Mechanics
(Cambridge University Press, 1936), p. 500.

'9 Cf. Reference 4. q is the internal field constant and z
the number of nearest neighbors.

There exists no experimental data for cobalt
for comparison with theory.

These numerical results for BM/BH, are to
be compared with those of Akulov, which are
based on the phenomenological Weiss-Heisenberg
theory. In this theory, " for atoms with 5=-'„

M(T, H) = Mo tanh [(pIZ+ prJM) /k T],

g=-', sJ/PMO' , whence, for low T, Akulov's results
may be put in the form:

(BM/BH) b =A/Ii'+B/II3+C, (42)

where A, B, C are supposed to be constants.
The constants A and Bdepend upon the metal-

lurgical history of the polycrystal1ine specimen;
A is conditioned by the plastic deformation of
the material, "whereas B is determined by the
crystalline properties and elastic state. " The
physical significance of the constant A is at
present a matter of speculation; the order of
magnitude and dependence on temperature and
elastic condition, of the constant B, as well as
the field variation of the term B/H', shows that
8 originates from the ferromagnetic anisotropy
of the component crystal grains of the specimen. "
The latter observation is true whether the
anisotropy is a consequence of the natural
crystalline properties, or is induced by an ex-
ternal stress. Finally, the constant C has been

"Equation (39) and numerical values (40), (41),
represent the maximum estimates which may be obtained
for BM/BII from the Weiss-Heisenberg phenomenological
theory. Other estimates obtained by: (1) Use of theoretical
value for (M0—M(T, O))/M0, i.e., 2e '~~~~. (2) Use of
Langevin function appropriate to S)&, e.g. to S= ~
—classical Weiss theory, give consistently smaller results."P. Weiss and R. Forrer, Ann. de physique 10, 153
(1926); 12, 279 (1929). E. Czerlinsky, Ann. d. Physik 13,
89 (1932). A. R. Kaufmann, Phys. Rev. 55, 1142, 1939
and private communication. H. Polley, Ann. d. Physik
30, 625 (1939),

"A. R. Kaufmann, Phys. Rev. 51, 1089 (1939).
"The theory of the term 8/III and of the constant 8

has been given by Akulov, reference 3; the experimental
verification by Kaufmann, Czerlinsky, and Polley, refer-
ence 21. See also, Becker and Doring, reference 3, pp.
167-176.
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observed to be independent of the metallurgical
treatment "

The independence of C from metallurgical
treatment immediately suggests that it arises
from the variation of the intrinsic domain mag-
netization with field. C is thus to be compared
with expression (31) for BM/BH derived in this
paper, and with the expression (39) for BM/BII
derived by Akulov.

(a) Field dependence of C=BM/BH]; ~„„.
Unfortunately, all the experiments" except those
of Weiss and Forrer have been carried out in

such a range. of fields that, for most of the range,
the A/H' and B/IP terms both predominate
over C. A typical example is the work of Polley, "
where the range of fields in which C is ~A/H'
+B/H' is from 3000-4000 gauss (cf. p. 641 of
Polley's paper: Fig. 10). Under these conditions
a weak dependence of C on H such as H ' could
never be observed. All that can be obtained
from these experiments, therefore, is the average
numerical value of C over a field range of about
2000-5000 gauss.

The only experiments for which the deter-
mination of the field dependence of C is possible
are those of Weiss and Forrer. " In these experi-
ments the magnetization as a function of H was
determined in a range of fields up to 20,000
gauss. From 5000 to 20,000 gauss C is the only
term of importance; it was found to be inde-

pendent of H. However, the slope of Weiss' BID

es. H curves, i.e., C, is so small in absolute mag-
nitude that it is dificult to decide whether this
slope is actually a constant independent of IX.
In this connection, it should also be pointed out
that Weiss' results have been criticized by other
authors —particularly Czerlinsky;" vis. , Weiss
measured directly 3f as a function of H, with the
result that small errors in the measurement of
M were capable of seriously affecting the deter-
mination of AM/hH; on the other hand, all the
other experimenters measured 2 M/AH directly.
The relative inaccuracy of Weiss' procedure is
indicated by the scattering of his observed values
of C, i.e. , from 0.72X10 ' to 1.2X10 '.

(b) Magnitude of C.—The most consistent
values of C for Ni have been obtained by Polley. "
For T= 287'K and H =4000 gauss, Polley finds C
to be 1.3 X 10 ', which is in excellent agreement
with Eq. (38) of this paper, but which is ten

times larger than the valueof Cderived by Akulov
Lcf. Eq. (41)]. Other values of C have been
obtained by Kaufmann;" these are C=1.0X10 '
and C= 0.7 X 10 4.

For iron there are available the results of
Kaufmann" and Czerlinsky" , Kaufmann ob-
tained C=3.8X10—' and 4.8X10 ', while Czer-
linsky found C=4.4X10 4. The average of these
results'4 is about two and a half times the
theoretical value found in this paper [cf. Eq.
(37)] and more than twenty-five times Akulov's
theoretical value $cf. Eq. (40)].

(c) Temperature dependence of C.—The ex-
pression (30) for BM/BH predicts a linear vari-
ation of C with temperature. This is experi-
mentally verified by Polley" in the temperature
range 250'K-320'K '

(3) Further possible experiments

A great complication in the experiments so far
performed arises from the presence of the terms
A/H' and I3/H', which are due to the poly-
crystalline nature of the specimen. It would
therefore be desirable to obtain experimental
data with single crystals and with II in the
direction of the various axes of symmetry in the
crystal. These directions may be either the direc-
tions of "easy" or of "difficult" magnetization.
In the first case, technical saturation is achieved
for H~50 gauss;" in the second case, technical
saturation isachieved for FI~3H,—600gauss (Fe),

, 300 gauss (Ni)."Any furtherobserved variation of
M with H, beyond its technical saturation value,
is then to be ascribed to changes in the intrinsic
magnetization. Thus, using single crystals, one
may obtain, directly from the BM/BH vs. FI
curves, the various features of theoretical interest.

(a) Functional dePendence of BM/BH on H,
mitk H))4m. MO.' Test of the H & dependence. '
"Dr. Kaufmann, in a private communication, has

stated that there exists a large experimental error (ca.
100 percent) in his determination of C.

"At higher temperatures, deviations from the linear
variation of BM/BH with T are to be expected, and have
been found by Polley, reference 21. These deviations
correspond to departures from the .T& law in the same
temperature range.

'6 See Becker and Doring, reference 3, p. 102, Fig. 61;
p. 118, Fig. 71.

~' Becker and Doring, reference 3, p. 102, Fig. 61;
p. 118, Fig. 71; p. 124, Fig. 77.

"To determine experimentally the variation of 8M/BII
with H, for H»4m. M0, one may also use polycrystalline
specimens, since for such high fields the terms 8/H' and
A/H' are negligible.
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(b) Variation of BM/BH with H for 3H (H
—4x Mo. Test of effect of magnetic interaction
in Eq. (31).

(c) Egect of spin orb-it interactions: With II
parallel to the direction of "easy" magnetization,
an investigation of the variation of BM/BFI with
H, for 50(H(3H, may be undertaken. There
are then three possibilities:

(1) The spin-orbit eRects are entirely de-
scribed by the equivalent "dipole-dipole" inter-
action (33). In this case, the BM/BH vs. FI curves
in this field range should be described by Eq.
(31).

(2) An appreciable part of the spin-orbit
effects is due to the equivalent "quadrupole-
quadrupole" interaction (34). The BM/BII vs. H
curves in this field range should now be given by
Eq. (31), with H replaced by H+II, .

(3) An appreciable part of the spin-orbit
effects cannot be described by equivalent inter-
actions of the type (33), (34). The BM/BH ss. Ii
curves in this field range may then show a more
radical departure from Eq. (31).

(4) Inadequacy of other possible mechanisms to
account for the observed variation of the
intrinsic magnetization with field

These mechanisms are:
(a) Ion-core diamagnetism of the atoms: re-

sulting volume susceptibility, BM/BH is —10 ',
and is negligible.

(b) Spin paramagnetism and orbital diamag-
netism of the conduction electrons: resulting
volume susceptibility BM/BH, is —10 ', and is
negligible "

(c) Paramagnetism arising from the orbital
motions of the electrons in the incomplete
d shells. (The exchange coupling of the spins of
these electrons gives rise to the ferromagnetism. )
Precise estimates of the order of magnitude of this
paramagnetism are dificult since little is known
about the orbital states. Assuming that the
orbital moment, L, of the incomplete d shell is
"In making this estimate, it is assumed that the

conduction electrons are perfectly free. This assumption
is reasonable since the conduction electrons are valence
electrons arising from the 4s atomic shells. The strong
paramagnetism, with volume susceptibility=5 X 10 ',
arising from. electrons in the incomplete inner shells of
some of the nonferromagnetic transition elements, e.g. Pd,
plays no role in ferromagnetic elements, since the incom-
plete inner shells in this case, are responsible for the
ferromagnetism itself.

what it would be in the vapor state, and that
the various orbital magnetic moments do not at
all influence each other, one obtains, with the
usual Curie law:

BM/BH= (N/ V) (P'L(L+1)/3k T),

the following paramagnetic volume suscepti-
bilities: 3 X i0 ' for iron; 7 X i0 ' for nickel. The
gyromagnetic experiments, on the other hand,
indicate that:

Either the orbital angular momentum of each
incomplete d shell is destroyed or quenched by
the crystalline electric field, '" in which case the
corresponding susceptibility vanishes in first
order;

Or, the orbital angular momentum vectors of
the different atoms are "antiferromagnetically
coupled. "" Then an estimate of the suscepti-
bility may be obtained by replacing kT in the
Curie law above by kT+kT„where kT„ the
interaction energy of the antiferromagnetic
coupling, is —i4 ev." The resulting paramag-
netic volume susceptibility is thus cut down by
a factor of fifty, and becomes negligibly small.

In conclusion, it should also be noted that
the smallness of any paramagnetic suscepti-
bility, described by the Curie-gneiss law, is
directly shown by the experimentally observed
temperature variation of the intrinsic mag-
netization; viz , C= .BM/BH]; t,,;„„.=const. T
(see Section VI).

The authors wish to thank Dr. A. R. Kauf-
mann of the Massachusetts Institute of Tech-
nology for helpful discussions of the experiments,
and for communication of experimental data
before publication.

APPENDI X I
The various approximations made at the

beginning of the treatment are of the following
type:

I Neglect . of a*~(1—a*~a~/2S)l —a*~ in com-
parison with u*g.

II. Neglect of a*~a~a* a /2S= ngn~/2S i—n com-
parison with @*~a~—=n~.

III. Neglect of a* c a*~—=H c~~ in comparison
with @*~a* .

30' Van Vleck, reference 4, Ch. 11." Van Vleck, reference 11, p. 1182.
"Van Vleck, reference 11, p. 1184.
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The neglected terms are important whenever
two or more spin deviations are in close proxi-
mity, since all the neglected terms in I, II, III
are multiplied by short range functions of R&

i.e. J~„(Rg~) or R 't„. When spin deviations are
to be found on atoms close to each other, the
following situations may arise:

(A) The system makes transitions from states
with n~~i to states with n~+1. Cf. I, i.e. ,

[a*&(1—a*(a)/2S) i —a*(]No v,

= (nt+1)'((1 n(/2—S)* 1)vtvn—~+1=0,

unless n~~ i.
(B) The system occupies states with n& )0,

n &0. Cf. II, i.e. ,

Nm +~tEm

0 m~nm = 'kg~em
2S 2S

(C) The system makes transitions from states
with n )0, n) to states with n, n)+i. Cf. III,
1.e. )

n a l@vvlvvvvv = n (nt+ 1) '*4'«y& vv

It is thus seen that I, II, III, imply that any
atom having a spin deviation can always be
regarded as surrounded by atoms with no spin
deviations, i.e. , the spin deviations are regarded

as isolated independent units with no inter-
actions.

Now, spin deviations may come into close
proximity and give rise to (A), (B), and (C), as
a result of two mechanisms, The first of these is
temperature agitation, the second, the action of
terms in the magnetic interaction of the form
R '~ a*~a in creating two spin deviations close
to each other.

In view of the lack of knowledge of the wave
functions of the exact Hamiltonian (6) or (1),
the approximate Hamiltonian (7) (which is the
exact Hamiltonian (6) or (1), subject to approxi-
mation I, II, III) will be used to estimate the
relative importance of the cases of close proxi-
mity of spin deviations.

(1) Temperature agitation The .—structure of
the Hamiltonian (7), (without the part of the
magnetic interaction proportional to c*~c* and
ata„) or better the Hamiltonian (11), (without
the terms in Bz and B*z) obtained from (7) by
the Fourier transformation (8), indicates that
the position of each spin deviation is spatially
uncorrellated with the position of any of the
other spin deviations. Thus cases of close
proximity of spin deviations due to temperature
agitation are relatively infrequent in the condi-
tion of quasi-saturation.

To verify this lack of spatial correlation, one observes that

«n«-»" —=(&a*««*-a-))"

=N ' Q exp Ii[(K„—K„) Rv+(K, —Kz) R ]}((a*„a„a*&a,))Av
Pv VvX)P

=N og„,q((n„n&))„„—+N o g„,q exp Ii(K„—K&) Rq}((n„(nq+1)))A„(1—b„q).

The form of the partition function Z in Eq. (22) (with 8&, =0, and hence Nz =nz), which is involved
in averaging the rt), gives:

Hence,

Also

((n„n&))„=((n„))„((n,)),„(1—8„„)+(((n„))A„+2((n„))A, ') b„g.

((n&n ))A, ——N 'g„,~&(n„))A,((n-&))A, +N ' g„,~ exp Ii(K, —K~) Ra}((n,))Av((%))Av

S[Mo —M(T, 0) ]/Mo = ((nt))av =N Qvvv((nvvv))Av =N Q„((nvv))Av.

Thus «n~n„))A, and ((nt))Av((n~))A„are both of the same order of magnitude, and hence, there are no
spatial correlations among the spin deviations. It follows that the probability for a spin deviation
to be found on atom I when another spin deviation is known to be on atom m, is independent of the
distance between atoms I and m, and is —((n~n„))Av/((n~))Av=((nt))Av —S[Mo—M(T, 0)]/Mo&&1 in

the condition of quasi-saturation.
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(2) 3Eogneticinteractions proportional to a*ia*„.—The effect of these magnetic interactions is
contained in the terms, gi, -', B*i,u'&, as—i„of the
Hamiltonian (11).

Now the B~ which make the greatest con-
tributions to M(T, H) have

~
K&,

~
=(4rrpMs/2S&)'

[cf. text after Eq. (25)$. Also the main contribu-
tions to Bi„(cf.(13)), come from summands for
which

~
Rs ~, the relative separations of the spin

deviations, is 1/Ki. Thus the effective spatial
separation of the spin deviations created by the
magnetic interaction is —(2SJ/4rrP3fs)& lattice
spacings —30 lattice spacings. However the
average spatial separation of the spin devia-
tions created by the temperature agitation is
=(IVs/[Ms M(T',—0)j)' lattice spacings —4
lattice spacings. Thus from the point of view of
causing cases of close proximity of spin devia-
tions, the magnetic interaction is much less
important than the temperature agitation. "

It should be emphasized that the above
estimates as to the effective separation of the
spin deviations created both by temperature
agitation and by the magnetic interaction is
given. on the basis of the approximate Hamil-
tonian (7). The final justification of the validity
of these estimates awaits a better knowledge of
the wave functions of the exact Hamiltonian (6)
or (1) than exists at present.

and the contributions to the sum for atoms
lying outside of this sphere replaced by con-
tributions to the corresponding integral, in
accordance with the prescription:

u ' Qs2PSf(Rs)~Ms ~f(R)dR.

Thus,

Zs( —2PS/it'R's) (1—3s'a/R's)

—+(—~s) I [(1—3s'/R')/R'jdR, (44)

where the integral is extended over all of the
space outside the small sphere and inside the
outer boundary of the specimen. Now by the
divergence theorem,

(—Ms) [(1—3s'/R') /R']dR

= (—Ms) . (ns/R')dr

AppENDrx II

The sums for Ai, and B&, in (12) and (13) will

now be evaluated. The contribution to the first
sum in Aq, arising from near neighbors of a
given atom vanishes because of the cubical
symmetry of the specimen. A small sphere may
now be drawn enclosing all these near neighbors,

~ The portion of the equivalent dipole-dipole interaction
of the form C(R~ )a*~a* (cf. Section V) creates spin
deviations on atoms which are nearest neighbors, since C
is short range. Nevertheless, the effective spatial separation
of the spin deviations created by the sum of the magnetic
and equivalent dipole-dipole interactions, viz. by terms of the
type, Z)tq(B*y+AB*),)a*pa )„ is not appreciably different
from 30 iattice spacings, since for jK~~(4spMs/2SJl&,
the values of ~Ki, ~

where Bi,+aBg as weii as Bg makes
its most important contribution to M(T, H), one has
ABy=SCKy'=(4m-PM0) (C/ J)&&4+PM0. Thus, the contri-
bution of DBy to the term Bg+ABg is so small that the
effective spatial separation of the spin deviations remains
essentially unaltered.

where, on the right-hand side, the first integral
is extended over the surface of the small sphere,
and the second integral over the outer boundary
of the specimen, n being the outer normal to the
surfaces, The integral over the surface of the
small sphere gives 4m Ms/3 and is thus just the
Lorentz local fieM. The second integral depends
on the shape of the outer boundary of the
specimen and is just the demagnetizing field. One
takes the specimen to be an ellipsoid whose

major axis is the s axis, and which is so elongated
that the demagnetizing field may be neglected.
Then,

3p Qs( —2pS/asRss)(1 —3s's/R's) =4rrpMs. (46)

The second sum in Aq may be replaced by an
integral at once, since this sum has no singu-

larity at RI, =0. Thus:
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lt Q &(2PS/a'R'&)(1 —3z'&/R'&)(1 —exp (iK& R&))

~PMo~t ((1—3s'/R')/R')(1 —exp (iK&, R))dR=iPMOK&*&&, (s/R')(exp (iK&, R))dR (47)

by an integration by parts.
The last integral is just equal to 4&riK"&/K'&„(12), (46), (47) then yield:

A&,
——A &,

——4&rPMO sin' e&, +P&2SJ&,(R&)(1 —exp (iK&, R&))+2'. (48)

To evaluate B& one proceeds similarly. Considering the first sum in B~, one draws a small sphere
about R~ ——0, enclosing all the near neighbors. The contributions to the sum from atoms within the
sphere is again zero because of cubical symmetry, while the contributions from atoms outside the
small sphere are calculated by replacing the sum with the corresponding volume integral. Thus,

—3P Q&(2PS/a'R'&)(x'-& y'&, 2ix—&y&)/—R'&~ 3PMO~~—[(x' y' —2ixy—)/R']dR

=3PM&~t [(a,—ia„) n(x —iy)R ']dZ+3&8Mn~l [(a,—ia„) n(x iy)—R ']d'—, (49)

where the first surface integral is extended over
the boundary of the small sphere, the second
over the outer boundary of the specimen, and
a„a„are unit vectors in the x and y directions.
Also the integral over the small sphere's surface
vanishes by symmetry.

The second sum in B&, just like the second sum
in A& may be replaced at once by an integral,
which when integrated by parts gives:

—3PMO [(a,—ia„) n(x —iy)R ]dZ
J

+4&rPMO(K&*», —iK&»&,)'/¹&, (50)

where the surface integral is extended over the
outer boundary of the specimen. Thus from (13),
(49) (5o)

B&,=B &, 4&rpMO(——K&*», iK&»&)'—/K'&,

=4&rPMo sin' t&&e "~&. (51)

It should finally be stated that the replacement
of sums by integrals in A)„B),is an approximation
with an error —(K&,)'. This introduces an error
into M(T, H) =4xPMo/2S J«1, since the greatest
contributions to M(T, H) from the magnetic

interactions, both in A), and Bq come from regions
of K&,-space, where

~
K&,

~
(4&rPMO/2SJ)-:&&1.

[Cf. text after Eq. (25).]
The difference between the sums and integrals

becomes much more important for problems of
other types: e.g. , can ferromagnetism arise from
pure magnetic dipole dipole -interactions'"

In this case J=O, and the use of (48), (51),

Aq ——4&rPMO sin". tt&,+2PH;

8~=47I.350 sin' 8),e "4'",

leads to a negative answer to the proposed
question. It is to be expected, however, that the
exact expressions for Az and B& determined by
evaluation of the original sums (12), (13), will

not be given by (48), (51), hence the existence
of ferromagnetism arising from magnetic dipole-
dipole interactions cannot be determined from
the knowledge of A), and B~ available at this
time. The evaluation of the sums for A), and Bq
is being considered at present.

~ This problem has been discussed by J. H. Van Vleck,
J. Chem. Phys. 5, 320 (1937), Section 5; J. A. Sauer,
Phys. Rev. 57, 142 (1940).


