
DECEMBER 15, i 940 P Ii YS I CAL REVIEW VOLUME 58

Scattering Matrix of Radioactive States'
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The method of complex eigenvalues is generalized to many dimensional problems by means
of the scattering matrix. It is essential to allow for the existence of a background matrix on
which the resonance is superposed. The "radioactive state" (i.e., the state with complex energy
for which waves in all disintegration channels are outgoing} determines the damping constants
of the resonance formulas. Phase constants I Eq. (6.2)g responsible for displacements of ob-
servable resonance peaks with respect to the real part of the complex eigenvalue of the energy
are also determined by the radioactive state. The background matrix is restricted by the above-
mentioned damping constants and phase constants to a considerable extent, leaving free in its
specification an n-1-dimensional symmetric unitary matrix for the case of e channels. The
equations presented do not include the case of continuously variable energy distribution among
disintegration products.

HE notion of the scattering matrix has been
introduced by Wheeler' for the discussion

of scattering in the approximation of the reso-
nating group structure. Radioactive quantum-
mechanical states with complex energy have been
introduced by Gamow' and the resonance scat-
tering of one body by a central field can be
described conveniently by means of the radio-
active state. Resonance scattering for a system
having several modes of decay can also be
understood by means of the radioactive state by
an extension of the argument used for the one-
body problem. ' This extension is being carried
out below and makes use of a general scattering
matrix. It is found that the energy dependence of
the scattering and disintegration cross sections is
given approximately by the formula for resonance
competition derived by signer and the writer.

The scattering matrix is found to consist of
resonance-like terms superposed on a back-
ground. Restricting conditions on the background
are found to follow as a general consequence of
the wave equation. For two competitive modes of
disintegration the background part of the scat-
tering matrix is Axed to within one real parameter.
For three competitive modes there enter three
real parameters. For n modes the parameters
involved are those contained in the matrix
elements of an n-1-dimensional symmetric unitary
matrix. A partial object of the present note is to
eliminate, in the discussion of the resonance

formula, special considerations regarding the
interaction between particles.

THE SCATTERING MATRIX

The system- of particles will be assumed to
have no spin and the particles will be assumed to
be nonidentical. The wave equation is

' Professor E. P. Wigner mentioned to the writer
that one can use the scattering matrix for an improved
understanding of resonance phenomena more than a year
ago. At the end of 1939 he had considerable success in
this direction which was mentioned briefly in conversation,
These considerations will be described by him jointly with
L. Eisenbud in a forthcoming paper in the Renews of
3&dern Physics. The present note is thus not an inde-
pendent investigation because of its origin in the knowledge
that useful relations can be obtained by means of the
scattering matrix. The reason for publishing is that th
scattering matrix is here related to the method of comple
eigenvalues and the approach differs in this way from tha
of Wigner and Eisenbud who have arrived at the result
before the present author.' J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

3 G. Gamow, Zeits. f. Physik 51, 204 (1928).
4 G. Breit and F. L. Yost, Phys. Rev. 48, 203 (1935)

G. Breit, ibid. 40, 127 (1932};A. J. F, Siegert, ibid. 5
750 (1934); G. Breit, ibi d. 58, $0& (1940). See page509-517 in latt. er paper.

e
x The potential energy depends only on the relative

distance between particles so that conservation
s

of momentum, angular momentum and panty
hold. It is supposed that it is energetically

possible for the system to break up into pairs of

fragments in several ways. The possibility of
S

breakup into triplets or quadruplets of fragments
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is neglected. The discussion does not apply,
therefore, to (n, 2n) reactions except insofar as
the emission of neutrons may be treated as a
succession of two processes.

The region of configuration space in which the
system has separated into two definitely formed
and noninteracting fragments will be called a
channel. Within each channel the wave function
is a sum of products of functions describing the
motion of the center of mass of the whole system,
the internal coordinates of each fragment and
finally the relative motion of the particles with
respect to each other. The latter factor may in its
turn be represented as a sum of products of
angular functions corresponding to different
angular momenta and radial factors depending
only on the distance between the fragments. The
product of the angular factor, the factors repre-
senting the internal motion within the fragments
and the factor containing the coordinates of the
center of mass of the system will be referred to
as u.

The transformation

(~lx1+~2+2)/(~11+ ~Z) + +2 x 1

represents the introduction of the center of mass
and relative coordinates for a pair of particles.
Its determinant is 1. The internal coordinates for
each fragment can be introduced by a succession
of such transformations. The centers of mass of
each fragment are then used in such a transfor-
mation to introduce the relative coordinates of
the fragments with respect to each other and the
center of mass of the whole system. The Jacobian
of the transformation from the original coordi-
nates is unity and the normalization integral of
the whole wave function retains its form.

Within the channels the wave function can be
represented as

P= P&La&exp (ik&r&)+b&exp ( ikiri)]ui/—«,

k i = p ~v g/k.

The index l specifies here the channel, the state of
the fragments and the relative angular mo-

mentum of the fragments; a~, b~ are constants;
p, &, v&, r& are respectively the reduced mass,
relative velocity and distance between the frag-
ments. Each term in the above sum corresponds
to a mode of disintegration. All modes of disinte-

gration in the same channel correspond to the
same p~, r~. The function u~ is normalized so that
~u~~' gives unity when integrated over the
coordinates of the center of mass of the system,
the internal coordinates of each fragment and the
angular coordinates of the relative position of the
fragments.

Special solutions are now considered for a
system having n independent modes of disinte-
gration. Within the channels these are given by

ZlÃl ul

y('= [&;( exp ( ik&r&)—+a&; exp (ik)r))j//r(
(1.2)

Each P&' is obtained by solving (1) subject to the
boundary condition of there being only one
incident wave u; exp ( ik;r;)/—r; The m. atrix
(aq;) is called the scattering matrix. Although a
solution of Eq. (1) is practically impossible some
information can be obtained by studying the a&;.

A surface is passed so as to cut across the
channels. Within each channel the surface
satisfies the equation r&

——const. The radius of a
sphere inscribed into the surface is made
»m)&range of force. The wave function on the
surface is thus negligible except at the channels.
From Eq. (1) one obtains

1
g.pm pm/ g pq p'

M; 3f;

This formula is integrated through the 3m-
dimensional volume contained within the surface
and the integral is transformed into a surface
integral by Green's theorem. The transformation
from the original coordinates to the channel
variables takes the form of orthogonal trans-
formations if one uses (M;) lx; instead of x„and
p, l times relative coordinate at each stage. To
each r~ there correspond the coordinates X~, Y~,

Z~ which correspond to @~&X~, p, ~& V~, p, ~&Z~ in the
Euclidean space. In the integrand there corre-
sponds to them

The factor p&v~ brought down by differentiation
on account of Eq. (1.1) combines with 1/p&

leaving v~. Only terms with the same l contribute
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to the result because the u~ are orthogonal to each
other and because the channels do not overlap on
the surface. One obtains on substituting Eq. (1.2)

V~G~j=V&Cj~. (2)

This relation holds for real or complex E. For
real E one obtains additional simple relations by
considering P'* and P~ in Green's formula vis

Zk'4&kj&kl = bjl~i (2.1)

It is convenient to introduce

for which
bkt = (&k/~t) '+k t (2.2)

bk) =by„gbk(bk;= bg;. (2.3)

The latter of these equations shows that ~~bk&~~ is a
unitary matrix. According to Eq. (2.2) there are
~bk&~' systems leaving by way of the disinte-
gration mode k per unit incident system in state
l. Relations (2.3) have as a consequence the
conservation of the number of systems as has
been pointed out by Wheeler. The symmetry of
~~b~k~~means detailed balance at high temperatures.

COMPLEX ENERGIES

For complex energies it is also possible to use a
scattering matrix. Equation (2.1) does not hold
in this case and the matrix ~~b~k~~ is not unitary.
It is symmetric, however. The values of E will
have in most of the calculation negative imagi-
nary parts. In such cases v will be taken to have
positive real and negative imaginary parts. The
factors exp [ipvr/b], exp [ ipvr/b) will —have
exponentially increasing and decreasing ampli-
tudes for large r. The energy states of the
fragments still correspond to real internal
energies. For values of E with a small imaginary
part one has solutions of the wave equation which
are similar to solutions for real E as long as one
does not go too far out in the channels. If the
imaginary part of E is not sufficiently small,
however, there will be no predominance of the
rapidity of decrease of states with negative
kinetic energy in the channels over the decrease
of exp [ ipvr/b:jand the d—istinction between the
interior and exterior of the channel disappears.
The imaginary part of E will be supposed to be
sufficiently small so that this does not happen.

For a suitably chosen complex E=E, it may be
possible to have

q, =n, exp (ik,r,)/r„ (3)

so that only outgoing waves are present in the
channels. Such solutions are, of course, impossible
for real energies, since their existence would
contradict the conservation of the number of
systems. The state (3) will be referred to as the
radioactive state. Its normalization is immaterial
at this stage. By superposing solutions of the
form (1.2) it should be possible to obtain (3).
This can only happen if some of the a~j become
infinite at E=E,. The simplest possibility for
this will be considered

cgj
~s~'— +d tgE E

(3 1)

Here the c&j, d&j are constants and the equation is
meant to be only an approximation in the
neighborhood of the complex eigenvalue. On the
other hand the number of independent solutions
of the wave equation must be still n. There must
exist, therefore, n —1 linearly independent combi-
nations of the P' for which the solution is not (3).
The equation

p«;x;= 0
j=1

(3.2)

must have, therefore, n —1 linearly independent
solutions and all the minors of det ~~«;~~ are zero.
According to Eq. (2) one has

V(clj =Vjcjl (3.3)

and one obtains, therefore, as the general form
of cij

«; = (s;/s&)~6&;. (3.4)

5'O, j=v; Cj; cg; =vjn~n;5 (3.5)

The wave equation (1) is real. If Z=E,* there
must exist, therefore, an cntirodioactive state con-
sisting entirely of incoming waves and it should
be possible to superpose the solutions P' linearly
so as to obtain this state. The required linear
combination is Pa;*P'(E,*) bees, use only with
this combination are the ratios of the coefficients
of exp (—ik&r&) correct. From Eq. (3.4) it follows
that one may take
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and hence

P;v;—&C;*
cg&

+d); ——0, (3.6)

so that

and

hatt'= (vt/vt') 'dt& = gt t,

b» = C«t/(& &.)+et—
(4)

(4.1)

CCi* C;
Z;b;tb;t —— Z'I c'I +

lz —z, l' 8 z. —

because the terms exp (iktrt) must disappear in
the antiradioactive state O.ne has in Eq. (3.6) n
conditions on the d&;. Formally, according to this
presentation, one must use complex v;, v& in Eqs.
(3.4) and (3.6). The approximation (3.1), how-
ever, is not exactly consistent with Eq. (2) for
constant c~; as E is varied. Since it is important to
represent scattering for real E, the real values of
v;, vt corresponding to E=(Z,+Z,*)/2 will be
used.

It will be shown next that the restrictions on
ll«tll imposed by Eq. (3.6) a«such that llbtt'll is
unitary for real Z. On account of Eq. (2) it is
convenient to introduce

of Ilg;;II together with (4.3) is also sufficient for
the unitary, symmetric nature of lib;;II.

In the above presentation Eq. (4.3) has been
obtained from a consideration of the anti-
radioactive state. It may possibly be preferred to
use the notion of the radioactive state only to the
extent of suggesting the form (4.1) as an approxi-
mation for the scattering matrix close to reso-
nance. This may be done either through Eq. (3.2)
as has been explained or else this form can be
made reasonable by observing that for E—E, the
ratios of the b&; for fixed j are equal to the ratios
of the corresponding C&. This means that any
single incident wave of type (ut/rt) exp [—iktrt7
gives rise for E—B. to a multiple of the radio-
active state. Having decided on (4.1) as the
desired approximation one can derive the rela-
tions (4.3) as well as the unitary symmetric
nature of lip;;II from the consideration of the
scattering matrix for real E alone as follows.
Since bt;=b;t it follows from (4.1) that gt; ti,t-—
Substituting (4.1) into the left side of (4.2), one
obtains (4.2). On the other hand the left side of
(4.2) = 8;t which is independent of Z. Rearranging
the right side of (4.2) one has

+ Z'c*"g';+Zc'v*t (42)

The first three terms in this formula depend on E
and it appears strange that this could be recon-
ciled with the unitary nature of llbt;II expressed
by Eq. (2.3). The relations (3.6), however,
connect the g~; with the C~ in such a way that
only the last term in Eq. (4.2) survives. Substi-
tuting (3.4) into (3.6) one has

(4.3)

This formula and its complex conjugate are used
in (4.2) and the first three terms are then seen to
cancel. One has, therefore,

Qatftt'hatt = fttt' (4.4)

These, however, are the necessary and sufficient
conditions for IItt;; to be a unitary matrix. It is
necessary for Iq;; to be unitary in order that
Ilb;;II be unitary. The unitary symmetric nature

Ci* C;+ 2'le*I'+2'c a

+Ra'ta*t —~tt=o (45)

This relation is of the form At/(Z —Z.)+Am/
(E—E,*)+8=0 where A t, A 2, 8 are independent
of E and it must be satisfied for all real E. It
follows that 8=0 and that either E,=Z." (which
is not the case) or else At=Aq ——0. From B=0
one obtains (4.4) so that llgt;II is unitary. Am ——0
says that either C&*——0 or else the square bracket
multiplying Ct in (4.5) vanishes. Varying I in
(4.5) from 1 to n and keeping j fixed, one will find
at least one C~*AO. Otherwise there is no
resonance scattering. The square bracket in (4.5)
is, therefore=0 for any j so that Eq. (4.3) holds
for all i.

The matrix lip;;II gives the background to the
resonance scattering. It is reasonable that it
turns out to be unitary and symmetric because
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for large IE E,—I6;;=g;;. The conditions (4.3)
will now be studied.

THE BACKGROUND MATRIX AND MEAN LII E

Making use of the fact that I!g;;II is unitary
and symmetric one solves (4.3) for C;* and
obtains

P; I C; I

' = i(E, E—,')

and hence from Eq. (4.3) one has

(6)

configuration space out of which the wave
function leaks into the channels;

I C„ I'/h is thus
the rate of disintegration caused by the mode j.

According to (5.2) the imaginary part of E, is
negative. On account of (5.1) one has, therefore,

Q;q&;C;"=iCI, (6.1)

as the conditions on I!q&;II that must be required
and comparing this with the complex conjugate

in addition to having it unitary and symmetric.
of 4.3 one has These conditions can be simplified by letting

C;=p; exp (—i8;) (6.2)

The quantity -',
I
E, E,

I
is—the absolute value of

the imaginary part of E, and
I
E, E,*

I

is-,
therefore, the resonance half-width. According
to Eq. (5.1) this half-width is equal to the sum of
partial half-widths

I
C;I'=hv;!a;I' each of which

is associated with one of the modes of disinte-
gration. One has here a connection between the
numerators of the dispersion terms of the scat-
tering matrix and the resonance width. Fquation
(5.1) has a simple meaning in terms of mean life.
For B=E. the time-dependent wave equation
has a solution of the form (3) with a time factor
exp I

—iE,t/kj. The reciprocal of the mean life of
this state is IE. E,*I /It and ac—cording to (5.1)
this transition probability can be considered as
the sum of elementary transition probabilities

On the other hand, another formula for the
mean life is obtained from Eq. (1) and its complex
conjugate for the radioactive state. Eliminating
V by multiplication with P,* and P, and sub-

traction and then applying Green's theorem one
obtains on account of Eq. (3)

with p; real and positive and 0; real. Substituting
this into (6.1) one has

(6.3)

p(;=i-'q(; exp! i(8;+8()]. (6.4)

y''=E(S 'PS)' y;

One makes besides

(6.5)

The matrix I!p&;II is symmetric and unitary as a
consequence of the same properties of I!q&;!1.

Besides it is restricted by (6.3). For many modes
of disintegration the restrictions (6.3) allow con-

siderable freedom on p~; because these restrictions
mean that IIP&;II has an eigenvalue 1 and that the
vector corresponding to this eigenvalue is parallel
to (pq, p2, ~ ~, p„).The most general form of p~; is

obtained as follows.
One considers the general transformation of n

variables x&, ~ ~, x, x =Pp;;x; simultaneously
with x,=+S;;y;, x =PS;;y . The matrix S;; is

taken to be real orthogonal. One has then

.
—

J 14'I 'dr—=2» I
~c

I

'
Ai

5.2
One has

Sg; ——p,/(Q p ) l = S„g. (6.6)

so that comparing with (5.1) (S—'pS), ;=QS,g pp)S); ——QSk~pgS;( ——(S—'pS);;.

Hence S 'pS is symmetric and unitary. Con-
(5 3) versely if it is symmetric and unitary then p is

also. On account of (6.6) one has

This means that the normalization of the radio-
active state made by setting n;= 5 'v; &C; is such

as to give (5.3), i.e. , one system in the region of =2 u»/(Ec')'=yi (6 &)
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where Pp;p;; = /)/ has been used in accordance
with (6.3). Comparing (6.7) with (6.5) one sees
that (S 'pS)l; ——()2/. Since S 'ps is symmetric
(S 'PS);l ——b;l. The only nonvanishing element in
the first row and column of S 'pS is the diagonal
element which is unity. The elements (S 'pS);;
with i, j running from 2 to n must be, therefore,
those of an n-1-dimensional symmetric unitary
matrix U. Aside from these requirements the
conditions used do not restrict U. Conversely for
any symmetric unitary U one can form

One mode
ExAMPLEs

where

9=6= ie—~'e ie~'&sc—e)

B—K
e-"K= (E E.*)/(—E E,), —

(7)

(7.1)

The scattering matrix consists of one element.
The notation is simplified by dropping the
suffixes. One has p=1, q=ie "' C= pe "
E,—E,*=—ip' and

(1 0)
!Ip,, l! =s{ Is-2

io U)

so that X is real and varies from 0 to x as E
(6.8) passes through (E,+E,*)/2 from smaller to

larger values. The asymptotic form of ry is

and (6.3) as well as the other conditions for IIp;;II
are then satisfied. and

p +~g
—&kr+ g i(kr+2K —2e)

1.siI /2yr82~sin (py I 2r/2) s i(kr —Lr/2)! 1+2si(2K 28+Lr)]-
2i 2i

(7.2)

If the channel represents disintegration with relative angular momentum I, the second term repre-
sents the addition to the function usually called Fl.. The square of the absolute value of this term is

sin'! X—(/+ (2I —1)2r/4]

and the scattering cross section is

0 .= (2I.+1)(/12/2I) sin 2 LX —0+ (2L —1)2r/4]. (7.3)

According to (7.1) the rate of variation of E with E is a maximum for E= (E,+E, )/2 and there is a
correspondingly rapid variation of the argument of sin' in (7.3) at this energy.

Two modes

The matrix U in Eq. (6.8) has one element and its most general form is e2'& with a real $. The general
form of IIp;;II is thus easily obtained. Substituting it into (4.1) one has

with

LSS '(8'+8')
y (rS S (82 CS8 f (82+8—

Ilb 'I =2e"K{ I+2e"&I
( $2S i(81+82) 82S 2(82) LES

—i(81+82) L2S—2i82)

/)1/(/)l +/)2 ) i ~ /)2/(/)1+P2)

(8)

(8.1)

and I(. as in Eq. (7.1).To the modes of disintegration 1 and 2 there correspond angular momenta of
relative motion L&, L&. By means of the above matrix one forms the asymptotic solutions

1 1
&iL2r/2y + ~S(n (p y L ~/2) {Si(klrl Llr/2)+&L& & iK2+—2& & $]2&2((r +2kllr2/2 —L281)

I
.

2i 2i

1
sil /2y + 2rr~ 2 ((/)/2/2), ggL82(K s2it]si(k2r2 —82—82+Llr/2)

2i

These formulas give the collision cross sections 0.
~ ~, 0~ ~ corresponding to incidence in channel 1
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giving rise to scattering and disintegration via channel 2, respectively. One obtains in this way

(2II+1)AI' (2L,+1)A11 s(pi'+pa')'
sin' (Z —g) (8.3)

2LQ+ 1
&1~1+0'1~2= &I Lpl cos' (I~ —el)+pa cos (5 el)l/(pl +p& )i

2L'+1
Ir, ,+o, i —— A, 'Lp, ' cos' (X—OI)+pi' cos' ((—0,) j/(pl'+ p, ').

(8.4)

20;=28;—(2I.~+1)Ir/2. (8.5)

Equation (8.3) shows the well-known reciprocity
of cross sections which may be derived by
considerations of detailed balance. Resono, neo is
again de6ned most simply as that energy at which
dZ/dE ls a maximum. According to (8.3) this

. energy can be determined, in principle, from a
graph of 0~ 2 against E which may then be used
also for a determination of g as weil as pl/p1. The
latter quantity cannot be determined uniquely
from al~1'and 01 I since pi/pI and p2/pl can be
interchanged. The width of resonance determines
pP+pP and hence in principle one has from the
experimental Oq 2 two possibilities for pj, p2 as
well as values of P and (Z, +E,*)/2. It is obvi-
ously possible to use these values in data on
0 1 1+01 1 and to test by means of the 6rst
eqllatloll (8.4) tile va11dlty of 'tllls fol'lllllla.

Equation (8) gives a unitary symmetric matrix
independently of whether Eq. (7.1) is obeyed or
not. The only essential point is that E, 8j, 0~, c, s
be real and that c'+s'= 1. Discarding Eq. P.1)
and adopting (8) ad hoc one still obtains (8.3) and
(8.4) but without an explicit connection between

p~'+p22 and the width of resonance. Such a con-
nection is not necessary, however, in such a
formulation because (8.3), (8.4) are homogeneous
of degree zero in p~, pg. Only c, s enter into the
observable cross sections. Such a formulation
can also be tested experimentally by using (8.3)
to determine II.—p as a function of the energy.
On the assumption that the maximum of (8.3)
corresponds to sin' (J $) = 1 on—e obtains cs and
hence the first Eq. (8.4) contains only one
adjustable constant $ —01.

The contribution due to II.—Ol in (8.4) varies
with E while the term in cos ($—O'I) is inde-
pendent of the energy and behaves as a back-
ground. If pP&&p~' the background may be large
ln comparison with the maximum Auctua-
tion in 01 1+01 2 near resonance which is
(2I I+1)AI pl /Ir(pl +p1 ). Tlllls, for exanlple,
Eq. (8.4) does not exclude the possibility of a
scattering + disintegration cross section of slow
neutrons of the order A„', the resonance con-
tribution on the other hand is limited to

4„'p„'/(p„'+p~') which is of the same order
as the capture cross section. The maximum value
of 01 1+01 1 for best values of X—Ol, p

—01 is
(2L,1+1)A p/Ir.


