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This table, together with Table II in Margenau
and Watson's paper, ' and Table II in Ny and
Ch'en's' paper gives a complete tabulation of a11

available results for testing Margenau's theory.

'H. Margenau and W. W. Watson, Rev. Mod. Phys. 8,
44 (1936).

Ny Tsi-Ze and Ch'en Shang-Yi. Phys. Rev. 52, 1160
(1937).

The varying of the ratio hv~~&„between 1.2 and 8
is certainly not strong support for it. '

Finally the authors wish to thank Dr. Ny
Tsi-ze, Director of Institute of Physics, National
Academy of Peiping, for his interest and
encouragement.

' Thanks to Dr. H. Kuhn of the Clarendon I.aboratory,
Oxford, for his private communication to one of the authors
regarding the point.
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Two refinements of the theory of the resonance method of determining magnetic moments
as given by Rabi are considered quantitatively: (1) A correction is included because of the fact
that an oscillating, rather than a rotating, field is used, (2) the "end effect" pointed out by
Millman is taken into account. The results caused by (1) agree with those found by Bloch and
Siegert, but the method of calculation is simpler. In the case of (2), it is shown that, under as-
sumptions which mean that the effect is small, and which are usually well satisfied in practice,
the effect can be worked out without making more than very general assumptions as to the
nature of the field in the end regions. Results are given for the displacement of the maximum,
and the asymmetry in the curve, which depend on the sign of the magnetic moment. The sign
of the displacement is in agreement with experiment, but that of the asymmetry is not;. the
discrepancy can, however, be explained when account is taken of the inhomogeneity of the
velocities in the beam. The effects increase as the square of the amplitude of the oscillating field.

HIS paper is concerned with two refine-
ments of the theory of the molecular beam

resonance method of determining nuclear mag-
netic moments as developed by Rabi and his
collaborators. ' In the first place, there is included
a correction resulting from the fact that in the
experiments an oscillating magnetic field is used,
whereas Rabi's original theory' assumed a rotat-
ing field. Secondly, the "end effect" due to the
passage of the beam into the region of the os-
cillating field is considered quantitatively. This
effect was pointed out by Millman, ' who showed
that it was of importance as enabling the sign of
the magnetic moment to be determined experi-
mentally.

' I. I. Rabi, S. Vtlillman, P. Kusch and J. R. Zacharias,
Phys. Rev. 55, 526 (1939), and subsequent papers.' I. I.Rabi, Phys. Rev. 51, 652 (1937), and reference 1.'S. Millman, Phys, Rev. 55, 628 (1939).

It is evident that both effects can be made
small by choosing the proper experimental con-
ditions, but it seems desirable, nevertheless, to
have some quantitative estimate of them. The
first ("nonrotating") effect has already been
considered by Bloch and Siegert4 in a paper which
appeared after the present calculations were
begun; but inasmuch as the method of calcula-
tion used here is simpler than that of these
authors, it is perhaps still of interest to include a
brief account of it. Our results agree with theirs
as far as this part of the calculation is concerned.

2.

We consider only the case where we deal,
effectively, with a single atom for which I=-,',
X=0. The case where I is arbitrary and J=0
can be deduced from this simple one by means

4 F. Block and A. Seigert, Phys. Rev. 57, 522 (1940).
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The critical case ace = +2, for which the transi-
tion probability need not be small even though n
is small, arises when

H=Hp kca——/2[tt [.

Ho is the field for which the Larmor precession
frequency is ~/2tr. When H Ho, the important
terms in a in (2), which give rise to the secular
terms, are the first ones within the square bracket
in each equation if u &0, and the second ones if
a &0. Neglecting the unimportant terms is equiv-
alent to replacing the oscillating field by a rotat-
ing field of half the amplitude (the sense of rota-
tion depending on the sign of a); the presence of
these terms gives rise to the nonrotating effect.

Let us consider the case a) 0. It is then con-
venient to put

gi (a) t+8)~~

Equations (2) then become

ia) =$+ot[1+e"'"t+"]g'

iud'= (ctco 1)g'+tt [—1+e 2t&" t+—'&]$
(6)

The important terms in n are now the constant
ones. We first recall the solution when only these
terms are retained. It can be written

$ =ps'&«+ +st»t

rl' = kist~«P (1/—k) +st»t

where A, B are arbitrary constants, and

aha ———1+ak, aX2 ———1 —n/k,

k=0+(I+I')'
&= (I/~) (I —

I
ct

I ~/2) = 2(H Ho)/Ht. .

(7)

(8)

P= (I+I') ' sin' B(1+0')'J,
where

0 =«/ la I

=
I ~ IHiI/»s,

(9)

(10)

With the initial conditions (=1, q=g'=0 when

t =0, we find for the probability of the transition
+-',k-+ —t25, P, say (P=

~ g j'),

the optimum value of P is tr/2, i.e. , the optimum
value of Ht is trkv/

~ p ~

I. For larger values of P, P
may have a minimum for P =0, or maxima other
than P =0 may be of importance. The half-width
of the P curve (width at half-maximum), regard-
ing P as a function of P, or H, ' depends on f.
For P=tr/2, the half-maximum values are at
about P= +0.8, so that the half-width AH is
about 0.8III.

It should be noted, however, that (9) and (10)
apply for an atom of definite velocity v. Actually,
the beam will contain atoms (or molecules) of
different velocities, and an average over these
velocities must be taken. This will have the
effect of "smoothing out" the (sin')-term in (9),
making this factor more nearly a constant, so
that I' will probably always have a maximum for

P =0. The value of P, at this maximum, and the
half-width, will also be affected by this averaging
process. That this effect is operative can be seen
from the experimental curves, which show no
trace of the subsidiary maxima demanded by (9).

3.

We consider now the nonrotating effect, and
sketch a method of approximating to the solution
of the complete Eqs. (6) for small Ot. We first

note, from (9) and (8), that within the important
part of the P curve in the neighborhood of the
maximum, which is all that we need be concerned
with, ~P~ varies between 0 and a quantity of the
order of unity, and hence

( ~
a

~

c0 —2
( n, k 1,

1/k- i.
Equations (6), being linear with periodic co-

efficients, possess an integral which is accurately
of the form

where f, g are periodic functions with the same

period (2tr/a&). In general, there will be two inde-

pendent integrals of this form. From (7), we

have, for the zero-order solution corresponding

l being the length of the purely oscillating field,
and v the velocity of the atom. The result (9) for
the transition probability, which is independent
of the sign of a, is that obtained by Rabi. '

If f(tr, P has a maximum for P= 0, or H= Ho,

' We shall always regard I' in this manner, as in most
of the experiments II is varied and the other parameters
kept constant. In some of the latest experiments, however
(P. Kusch, S. Millman and I. I. Rabi, Phys. Rev. 5'7, 765
(1940)), II is kept constant, and the frequency co varied.
The shape of the curve is exactly similar in this case, since
P is a linear function of both H and +.
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to (11), X'=)), g/f= —k, or l('=X2, g/f=1/k.
Considering the integral for which 'A' )1, we

therefore assume expansions of the form

f=1+~f)+~'f~+, g= —k+()'g)+()"g2+

~'=Z, +c,~+c,~2y .

'(Ve then obtain a series of equations for the f's
~nd g's which can be solved in succession. The
condition that only periodic terms shall occur
determines the constants c, and also effectively
determines the arbitrary constants arising in the
course of the work; any indeterminacy which

remains is equivalent to multiplying the integral

(11) by a constant fa,ctor. The method is suf-

ficiently well known, and the calculations need
not be reproduced in detail. ' In a similar manner,

we can find an integral of the form (11) for which

X2. With a convenient choice of the arbitrary
constants, we thus obtain as the general solution
of (2), for a)0, and correct to the first order
in 010

nk( 2
]=Ac'"~' 1+—

~

— +e2(('
~

4 E k2+1

nk( 2 1
+Be'~&" 1+—

~

— ——e"~
~

4 0 k'+1 k' )
O.k

where
0.' k' —i.

a~, '=a~, +—
4 k'+1

1 nk
+—Pe') 2" 1+—e—""'&

k 4

0,' k' —1
aX2'=c) 2

——~

4 k'+1

and A, 8 are arbitrary constants. If a(0, we

need only change the sign of @ throughout, if we

retain the definitions (8) of k, X), X2.

With the initial conditions )=1, ))=0 when

t=0, we obtain for the transition probability,
for either sign of a, correct to the first order in n,

I'= (1+P') 'L1 —(u/2)P(1+P') '] sin' $P(1+P')'(1 —(()/4)P(1+P') ')].

We have omitted terms proportional to cos 2b,

sin 28, since we are dealing with a beans of par-

ticles, and must therefore average over the initial

phases b.4 To the same order, we may write

where

I'= (1+P") ' sin' LP(1+P")*']

P' = P+().p/4, ().0 =H)/2H p.

Comparing with (9), we see that the shape of the
curve is unaltered, but that the maximum is

shifted to p= —ao/4, or

H =Iio II)2/16IIO—
in agreement with the result of Bloch and
Siegert. 4 It will be seen that our method is more

straightforward than theirs, which requires some-

what elaborate transformations. "
' See, for instance, the very full account in Moulton et cl.,

Periodic Orbits (Carnegie Institution, Washington, 1920),
Chap. 1, Section 3. We can also proceed direct from
Eqs. (2)."It can be shown that in order to calculate P to the
first order, it is necessary to calculate X' to the second order.

"The slightly more general case considered by them
can be treated with equal facility by the present method,
as can also the case (not considered by them) where the
oscillating field has a component parallel to the uniform
field. In this latter case, the effect is of the same order of
magnitude as the "nonrotating" effect.

4

~ P) Ls
—((rut+5) +s~(~5+6)]))

(X+ f P') [s
'
( t+5 ) +s—'

( )+6)]$
(12)

Evidently X and Y are functions with an

upper bound of the order unity. Consideration of

12 A possible s component would only give rise to a
second-order effect. Cf, reference 1&,

We consider now the end effect. While the
atom is under the influence of the end effects at
0 or 0' (Fig. 1), there will be both x and y com-

ponents to the oscillating field, " these compo-

nents depending on the y coordinate of the atom

as well as the current in the circuit. We therefore

put in (1)

II,=X(y)Ii) cos ((et+8),
II„=V(y)H) cos (cut+8), Ii, = &II,

where X(y) denotes, at any moment, the ratio of

the amplitude of II, at the point whose coordi-

nate is y to the amplitude at a point where the

field is purely oscillatory, and V(y) denotes a

similar ratio for II„.Equations (1) then become,

in the same notation,
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2«1, v/bee«1 (14)

It will be shown that we can then integrate (12)
approximately without making any further as-
sumptions as to the functions X and Y beyond
the very general ones already mentioned.

From (13), we see that the first of (14) is
satisfied if b/l«1, provided f has a value which
does not differ much from the optimum one,
namely 2r/2. The condition b/l«1 is well satis-
fied in the actual apparatus. According to meas-
urements given by Millman, ' the distance be-
tween the axes of the wires is about ~ cm, and
the length of the circuit about 6 cm, so that
b/I 1/25. In a later form of the apparatus
described, " f&/I 1/50. The second of (14) is

also usually well satisfied; thus for v = 10'

the field arising from the circuit of Fig. 1 shows
that X and V are positive in the neighborhood
of 0, while X)0, V&0 in the neighborhood of 0'.
The end effects will be negligible except in regions
in the neighborhood of 0 and 0' whose length is
of the order b, where b denotes the distance GB
between the wires. The actual circuit may not
conform very well to the idealized one of Fig. 1;
but if the latter represents at all well the general
features of the circuit, it is evident that the above
statements are true.

We further define a parameter e by

2=~b/~a~v= ~/ ~~)b/2»=lb/I, (13)

and assume

cm/sec. , co/22r=3 megacycles, b=-,' cm, we have
v/b(o 1/45.

The assumptions (14) ensure, as we shall see,
that the end effect is small. The second assump-
tion is not essential to the method of solution,
but simplifies the analysis. It will be shown that
the end effects are proportional to &III, and
therefore increase as Hp. Hence IXI must be
increased beyond the optimum value in order to
bring out the end effects prominently.

We suppose now that the end effect at 0 lasts
from t = —t& to 1=0, the purely oscillating field
from t=0 to t=T, and the end effect at 0'
(which need not be identical with that of 0) from
t = T to t = T+t2. We suppose a)0 for definite-
ness. For O(t(T, the solution (neglecting the
nonrotating effect) is given by (7). During the
end effects, we solve (12) for $, 2) as power
series in n.

For —tI (t(0, we assume, with the initial
conditions /=1, t)=0 when t,= t(, —

S (t/a) (t+tt)+—&2$ +&22) +. . .

'g =0!/I+ CL $2+ '
(15)

where the initial conditions require the vanishing
of $), 2)t, . for t = tt. The firs—t approximation
gives

2agt —$( = 0~

2ag +g (~/2 It)(gi(at+2) /tv —t(at+2) j

Hence, taking account of the initial conditions,

(g
——0,

t t

(2/a)t)(t/a) (t+tt) tvi(8 —att) I (X+2I )st(a—2/a) ( + td/tt+&i(s8 atl) t Q—+2 I )si(a+2/a) (t+tt)d)t
—t1

Changing the variable of integration from t to y(dy/dt=v) in both integrals, and using (13), we

therefore have

&2&) t (0) 22sttt/a Si (2— tl) a( )( +2 I )

tv(�

(a 2/a) (tt—~Jt)/ v(dy/t)t)—
Jq,

(a V2

+s '&2 att)
j~

(X+&I)st&"+2/a&&tt »&/v(dy/$), (16)
Vt

where y&, y2 are the values of y at the beginning and end of the end effect at O.
Now, as remarked in Section 3,

~

aa& —2
~

is (fora )0) of the order t)t within the important part of the
P curve, so that, since (y2 —y)) b according to our assumptions, the argument of the exponential

"J.M. B. Kellogg, I. I. Rabi, N. F. Ramsey and J. R. Zacharias, Phys. Rev. 56, 728 (1939).
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in the first integral in (16) is of order nb/as= e. Hence the first integral in (16) is, in absolute value,
of the order unity, and we can put the exponential in this integral equal to 1 if we are only working
to the first order in e. In the second integral in (16), on the other hand, the argument of the expo-
nential rv(y —yi)/((. From the second of (14), we therefore see that the real and imaginary parts
of this integral are rapidly oscillating functions with an upper bound of the order unity within the
domain of integration, and the absolute value of the second integral will not exceed ((/b(0 in order of
magnitude. Hence, to the first order in e and @/bee we can neglect the second integral in (16), and
can write

where
(x»(0) i,«'((as+i ~(»(I,+iI,)

Ii = t Xdy/b, Ii I F——dy/b

Ij, I2 are positive dimensionless quantities of the order unity.
Thus

~
nit((0)

~
e, and it is clear that the development (15) is just(fiable, and that a good approxi-

mation is obtained by stopping at the first term. To the first order in e, v /bee we therefore have,
from (15),

((0)—s—i(g/a it(0) («f((&la+6 ra(»(I —+iI )

Similarly the end e6ect at 0' is dealt with. We assume, analogously to (15),

~=a(T) ('& '-('&-+ a+" ~=s(T) "'(' "+ ~-+

and find, to the same order,

where
s(T+t2) =s"" in(T) ~«'"+"-"(Ii'+'Im')k(T)3

(20)

and yi', y2' are the values of y at the beginning and end of the end eR'ect at O'. The constants Ii',
I2' are also of the order unity, and Ii') 0, I2'(0. It is not necessary to give the value of $(T+tm).

We now use (18) to determine the arbitrary constants A, I3 in (7), calculate P(T), it(T) from (7),
and then use (19) to determine r((T+t2). To the first order, we find

exp i[(1/a)(ti —t2) —(coT+b) j (%+1/k)g(T+t, ) = s'»r+—e'»r

—i.[(I,+a,)(us*'»+(1/X)s'" )+(I,'+~I,')((I/k)s ~ +k""I')) (21).

Equation (21) applies for a)0. In a similar
manner the calculation for a &0 is carried
through, and we find that we need merely change
the signs of ~, 8, e where they occur explicitly in
(21), if we retain the definition (13) of e. With the
help of (8), and using T=l/v, we find from (21)
that the transition probability, P= ~rt(T+t2) ~',
can be expressed, correct to the first order, in
the form

&=(1+P')-'(1—2.CP) sin' [y'(1+P2)-'*j, (22)

where

0'= 0+~C', C=Ii Im', C' =Ii+Ii'. —

Equation (22) holds, of course, only within the

important part of the P curve (~P~ 1), and is
for the case a&0. If a&0, we must change the
sign of e in the second factor of (22) (but not in
the definition of f'!). The constants C, C' are
positive, and of order unity. '4

The presence of the constant C' merely has the

i4 A rough estimate of them may be made by supposing
that the circuit of Fig. 1 consists of ideal linear circuits
AB, BC, . ~ ~, with right angles at B, ~ ~ ~, and which can
be treated as being of infinite length in comparison with b.
For the field in the neighborhood of 0 we then 6nd

X2=1+2 (yP +4 y)
i, 2 Y=b'/(b'+4y')

and can suppose that the end effect at 0 is confined (say) to
the region —3b/2 « y ~&3b/2. Ke then 6nd

Ii =Ii' =1.5, Ig ———Ig' =0.625,

whence C= l.25, C'=.3.0.
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effect of increasing the effective length l of the
circuit, and is unimportant; but the presence of
the second factor in (22) shifts the maximum of
the P curve and introduces an asymmetry. Al-

ways working to the first order in e, and taking
the case a)0 again, we find that the maximum
occurs at

P = —Ce/(1- P' cot P'),
or

H =H0 CeFIi—/(1 —P' cot P').

For P'=s./2, this becomes

H =H p CeHg/—2.

(23)

(24)

P'= 1 —eC, —1 —eC,

where P'=P+eC, so that the origin for P is

The shift of the maximum given by (23) is
toward the low field side if P' &s., and it is prob-
able that when an average over molecular veloci-
ties is taken, the shift is always in this direction
(cf. the discussion in Section 2). Thus, the max
imttm is shifted to the Low fieLd or high fieLd side
according as a is positive or negative. As already
discussed, the sign of a depends on the sign of p
and the direction of the uniform field relative to
the circuit. This result is in accordance with the
results of Millman. '

As regards the asymmetry, (22) makes the
curve steeper on the low field or high field side of
the maximum according as a is positive or nega-
tive, which is precisely the opposite of the result
found experimentally. The discrepancy can, how-
ever, be explained when the already mentioned
averaging over molecular velocities is taken into
account. For this would make the (sin')-terms in

(22) more nearly a constant, and would probably
have the effect of reversing the asymmetry. This
is certainly the case if we assume as a rough ap-
proximation that the (sin')-terms in (22) can be
put equal to a constant. The values of p for which
P has half the maximum value are then given by

transferred to the maximum. Hence the digerertce
in the half-widths on either side of the maximum
is 2eC, or, in terms of H,

AHg —AH2 ——CeIII ) (25)

the curve being wider on the low field or high
field side according as a is positive or negative.
The displacement of the maximum is again
given by (24).

A quantitative comparison of our results with
experiment is scarcely possible at present, since
the value of II& is not usually made clear in the
experiments, and most of the curves are given for
one direction only of the uniform field, so that
only the asymmetry can be judged, for which,
as pointed out, the averaging over molecular
velocities is of importance. A possible source of
comparison is furnished by I'ig. 3 of Millman's

paper, ' where curves for LiC1 molecules are shown
with both directions of the uniform field. If we
assume that (24) and (25) hold for this case, we
see that the difference in the half-widths for either
curve should be equal to the distance between
the intensity minima (I' maxima) of the two
curves. Actually, the difference in the half-
widths is only about one-half of this. The discre-
pancy can be accounted for by the fact that (25)
is obtained by quite a crude assumption as to
velocity averaging.

The calculations of this section all relate to the
case where the end effect is small (e«1). If the
amplitude of the oscillating field H~ is so large
that our analysis becomes inapplicable, it is not
surprising that the P curve becomes more com-
plicated and may show additional maxima. ' But
for most purposes it is, of course, desirable to
make the end effect small. "

I wish to acknowledge some helpful suggestions
made by the referee.

"Note added in proof.—The end effect could be reduced
by rotating the loop CDPF of the circuit (Fig. 1) through
180' about CF, should such a change be feasible, for this
would change the sign of I2', and hence reduce C.


