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Magnetic Moments of Odd Nuclei
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To understand the grouping of the nuclear magnetic
moments a generalization of Schmidt s single-particle
model is considered. In the first approximation, the ground
state of an odd nucleus is taken to be a doublet state with
definite partition quantum numbers, but involving both
possible values of the azimuthal quantum number L. Only

very general assumptions are made concerning the de-
tailed composition of the wave function. On this basis the
orbital part of the magnetic moment turns out to be es-

sentially that following from the liquid drop model; the
spin part is identical with that of Schmidt. The limits of

the magnetic moments, when plotted against J, are given

by the solid lines on Fig. 1. Next, we have calculated the
deviations from the magnetic moments thus obtained
which arise from the admixture of states with higher par-
tition quantum numbers to the original wave function. The
result is that the magnetic moment is not greatly changed
even when the partition quantum numbers are no longer
sharp. (Cf. Fig, 2.) The present model fails to explain the
near equality of the moments of isotopes which has been
found experimentally.

MAGNETIC MOMENTS OF ODD NUCLEI

1. The rapid accumulation of experimental
data on the magnetic moments of nuclei through-
out the periodic table on the one hand and the
great accuracy which can now be achieved in

their measurement on the other, encourage theo-
retical consideration in this field. Previous calcu-
lations of magnetic moments may be divided into
two groups: those proceeding with detailed as-
sumptions about nuclear forces and the structure
of the nucleus, ' and others in which more general
and qualitative ideas are used. The former
calculations are restricted to light nuclei. They
involve rather detailed assumptions concerning
the nuclear wave functions such as the inde-

pendent particle model or the a-particle model.
Furthermore, Russell-Saunders coupling was as-
sumed throughout until recently when Rose and
especially Phillips emphasized the significance of
the spin-spin interaction, particularly for the
magnetic moments of even nuclei with odd
number of protons and neutrons. These calcu-
lations were extended and critically reviewed
recently by Inglis. '

* Member of Institute for Advanced Study, Princeton,
Autumn, 1939.

' M. E. Rose and H. Bethe, Phys. Rev. 51, 205 (1937);
H. Bethe, Phys. Rev. 53, 842 (1938); L. R. Hafstad and
E. Teller, Phys. Rev. 54, 681 (1938); M. E. Rose, Phys.
Rev. 56, 1064 (1939); M. Phillips, Phys. Rev. 57, 160
(1940); D. Inglis, Phys. Rev. 51, 531 (1937);53, 882 (1938);
55, 329 (1939);R. G. Sachs, Phys. Rev. 55, 825 (1939).' D, R. Inglis, Phys, Rev. 56, 1175 (1939).

The more schematic considerations of Schuler,
Schmidt and Hund' as well as those of the
present paper are based on the fact that the
magnetic moments p, plotted as function of the
total angular momentum J, lie between two
rather close curves. This regularity holds for odd
nuclei, and the two curves for nuclei with an odd
number of protons and those for nuclei with an
odd number of neutrons are different. The
experimental material at present available is

illustrated in Fig. 1.
In order to explain this regularity, the above

authors assumed tentatively that the whole mag-
netic moment is due to a single particle, which is
a proton in the former and a neutron in the
latter case. Its state can be described by a total
and an orbital angular momentum. The former is
the total J of the nucleus, the latter, l, is either
J+-,'- or J—-', . The magnetic moment is calcu-
lated by the customary Lande-Goudsmit formula
and should lie either on the upper or on the lower

broken line of Fig. 1, corresponding to the two
possibilities /= I&—', .

One would be tempted to interpret the fact
that the observed magnetic moments lie between

rather than on these curves by assuming a
deviation from the L—5 scheme. However, no

' Th. Schmidt, Zeits. f. Physik 106, 358 (1937); H,
Schuler, Zeits. f. Physik 10/, 12 (1937); F, Hund, Physik
Zeits, 38, 929 (1937).
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such deviation exists in the nonrelativistic' one-
body problem, on account of the parity rule. The
nearest one could come to the above picture
would be to assume for the correct wave function
a linear combination of two wave functions of the
above kind. These would correspond, respec-
tively, to an even and an odd state of the core,
both with angular momentum zero. The orbital
angular momentum of the outside particle would
be J—-,'in one and J+-,'in the other wave
function. Such a model would naturally and
directly lead to magnetic moments between the
two Schmidt curves. The assumption concerning
the angular momentum of the core finds support
in the fact that all nuclei with an even number of
both protons and neutrons have no angular
momentum. The assumption that the whole
orbital angular momentum is carried by one
particle is to some extent supported by the
remark of Hund that the total angular mo-

mentum is never greater than —,
' plus what the

angular momentum of a single particle would be,
assuming a reasonable shell structure. '

In spite of this, and in spite of the apparent
success of the above model for the explanation of
nuclear magnetic moments, it seems to us to be
somewhat too specialized. In the first place, it is
hard to understand that the core wave function
should contain only states with zero angular
momenta, considering that states with higher
angular momenta of the core alone (an even-even
nucleus) are known in many cases to be very
close to the normal state. It appears indeed

highly doubtful that the first excited state of
even-even nuclei is a state with zero angular
momentum in the majority of all cases. In addi-
tion to this, no simple two-particle operator has
matrix elements between two wave functions of
the above described character. The fact that
both occur in an actual wave function would be,
therefore, most probably due to the coupling of
both to a third part in the wave function which
corresponds to a core with a finite angular
momentum. Although this third part could be

4 H. Margenau, Phys. Rev. 57, 383 (1940). This calcu-
lation shows that the relativistic corrections to the rnag-
netic niomenta are too small to explain the deviation of
the measured momenta from the curves of Fig. 1.

o W. Elsasser, J. de phys. et rad. 4, 549 (1933); 5, 389
635 (1934); H. Margenau, Phys. Rev. 46, 613 (1934);
F. Hund, reference 3.
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FIG. 1. Magnetic moments of odd nuclei plotted against
J. Circles represent experimental values. Solid lines are
upper and lower limits as obtained in this paper if only the
lowest partition quantum numbers are taken into account.
Dotted lines are limits obtained by Schmidt on the basis
of a one-particle model.

very small, it appears improbable that it should

couple only such states in which the core has no
angular momentum. It may be mentioned, fur-

thermore, that, as Bethe' has pointed out, there
should be a marked difference between the
Couloumb energies of nuclei with even and odd Z
if a single particle model were valid for the last
particle. Recent measurements indicate that such
an effect, if it exists, is very small. ' We have
decided, therefore, to look for a more general
model which is capable of explaining the grouping
of the magnetic moments between the two
Schmidt curves.

' H. A. Bethe, Phys. Rev. 54, 436 (1938).
'r Recent measurements of W. H. Barkas, E. C. Creutz,

L. A. Delsasso and M. G. White and of R, O. Haxby,
W. E. Shoupp, W. E. Stephens and W. H. Wells (cf, also
Bull. Am. Phys. Soc., New York meeting, February, 1940)
show that the Coulomb energy diff'erence is a much
smoother function of the atomic mass than appeared at the
time reference6 was written. This applies, according to a
kind personal communication of Dr. Stephens, particularly
for nuclei with a mass number greater than 9.
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This has been attempted before by K. Way'
using an extreme form of the liquid drop model.
She assumed that all particles participate about
equally in the orbital motion so that the g factor
(2 3A/Ae times p/J) for the orbital motion is

n„/(n, „+n&) Thi.s appears quite reasonable. Way
assumes a similar g factor for the spin moment
also. This would correspond to a very broad
distribution of the spin angular momenta over all

possible values —an assumption which is hardly
acceptable. In the present paper, the g factor of
the spin angular momentum will be calculated
with a "symmetric Hamiltonian. "This will give,
essentially, the same g factor for the spin which
obtains in Schmidt's model. This part of the
model is, thus, to a large degree independent of
the assumption that the moment is due to a
single particle. For the g factor of the orbital
moment, on the other hand, our result is identical
with that of K. Way. Assuming Russell-Saunders
coupling, we arrive at the conclusion that the
magnetic moments should lie on the full lines of
Fig. 1 while deviations from Russell-Saunders
coupling (which are, of course, quite possible in
our model) would shift the magnetic moments to
the region between the full lines.

2. In describing the ground states of odd
nuclei the assumption will be made that a spin-
independent, symmetric Hamiltonian is a good
starting point for the calculation of wave func-
tions. In this approximation the states can be
characterized by partition quantum numbers
(PP'P") and the normal states of all odd nuclei
are doublet states, and also the azimuthal
quantum number L and Yr ——', burros hav-e sharp
values. ' Considering now interactions which do
not satisfy the above requirements, states with
different S, L, etc. will mix. The mixing will be

K. Way, Phys. Rev. 55, 963 (1939).' E. Wigner, Phys. Rev. 51, 106 (1937); F. Hund, Zeits.
f. Physik 105, 202 (1937).In explanation of the terminology
here used it may be stated that (PP'P") is the name of a
supermultiplet, just as S in atomic spectra labels a multi-
plet. P is the highest value which either S„Tg, or Fy can
take, just as, for ordinary multiplets, S is the highest
value which S, can take. P' is the highest value of one of
the remaining pair (e.g. S, or Yg if Tg=P); P" is the
highest possible value of the remaining operator (e.g, , Yg
if Tg=P, S,=P'). Mathematically, S„Tg and Yy play
entirely identical roles. The normal state of a nucleus has
as small values of P, P', P" as possible. Since P~P'~P",
the best choice for P is the value of Ty. Thus, for the low-
est state, P= Tg, and P' and P" are as small as possible.
For the low excited states we still have P = Tp, but P' and
P". are somewhat greater than for the ground state.

much stronger between states with different L
and equal S and (PP'P"), than for states which
differ also in S and (PP'P"). The reason for this
is that states with different L can be very close to
the normal state" while states with higher S or
(PP'P") belong to a different "supermultiplet"
and lie necessarily much higher in first approxi-
mation. Our assumption for the normal state will

be, that the state has 5=-,' and the lowest
possible partition quantum numbers (cf. further
below), while for L only the assumption will be
made that it can give, together with S=-'„ the
total J of the nucleus. Thus, the wave function
will contain both an L=J——,

' and an L=J+&
part. These assumptions will make the spin
moment equal to the value assumed by Schmidt.

In the following two sections, we shall carry
out the calculations which were outlined above.
Assuming a symmetric Hamiltonian, we could
assume that the wave function has the lowest
possible partition quantum numbers. This would
allow us to calculate the magnetic moments, as
outlined above. However, it would not permit us
to estimate the deviation from this magnetic
moment which is caused by an admixture of
states with other partition quantum numbers to
the original wave function. This, however, is
quite necessary because the (PP'P") cannot be
expected to be good quantum numbers for heavy
nuclei. In spite of this, most of the heavy nuclei,
also, fall between our two curves. This can be
understood on the basis of the above picture only
if moderate deviations from the assumed wave
functions do not give very large changes in the
magnetic moment, i.e. , if the magnitude of p is
not changed very strongly even when (PP'P")
loses its strict significance as a quantum number.
This will indeed turn out to be the case. In view
of this, it should be noted, even the fact that the
moments of al/ light nuclei are between the two
curves does not prove that (PP'P") is a very good
quantum number for them.

3. The so-called magnetic moment of the
nucleus, y, is the component Mg of the magnetic
moment in a direction Z in which the component
of the total angular momentum Jz is equal to the
total angular momentum J. The magnetic mo-
ment consists of two parts, the orbital magnetic

&' E, Teller and J. A. Wheeler, Phys. Rev. 53, 778 (1938).
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moment Az and the spin magnetic moment Zz.
It has been discussed repeatedly" whether it is
permissible to consider the magnetic moment as
the sum of the orbital and spin moments of the
different particles. We shall assume here that
this is permissible within the accuracy of our
calculations.

We shall consider first the orbital magnetic
moment which is, in units of the Bohr nuclear
magneton, equal to the Z component of the
orbital momenta of the protons, in units of k. As
mentioned before, it is not possible to carry out
the calculation of this quantity rigorously but we
shall adduce a plausibility argument for the
correctness of the value assumed by Way.

Let us decompose the total wave function &I

into parts with definite L and S

+= E&is+rs. .

If Russell-Saunders coupling could be assumed,
(1) would consist of only one term. The @r.s are
assumed to be normalized, the sum of the squares
of the

l
ar. s

l
is 1. Since the total orbital angular

momentum does not commute with the Z com-
ponent of the orbital proton momentum, there
will appear in the calculation of (O', Az+) certain
cross terms between +I,s and +L, s. These are
generally small in comparison with the diagonal
terms and will here be disregarded. Justification
for this procedure will be given at the end of this
section. Thus the orbital magnetic moment for 0
will be taken to be the sum of the magnetic
moments of the different parts of 4 in (1):

(+, ~z+) =Q I&r. s l'(+s. s, &z+I.s)
1$

(2)

The gq do not depend on m or p. but depend, of
course, on all other quantum numbers. The

"Cf. W. F. Lamb and L. I. SchiE, Phys. Ilev. 53, 651
(1938); D. R, Inglis, rekrencg. 2.

'I he oisin (1) hav, e a definite Z component of the
total angular momentum J7 but no definite Z
components of L and S. We can denote the
functions with definite Z components of L and S,
out of which Ol. s is compounded, by +I.s,„„where
nz and p, are the Z components Lz and Sz of L
and S, respectively. We can then define a g factor
for every one of these functions by the equation

(+r.s „&z+rs„)=gi, (LS)ni.. (3)

matrix elements for +I.s can be calculated from
the g& by the well-known Lande-Goudsmit
formula

Our task is therefore to calculate the gq(LS). For
this purpose we can further decompose each
41,s „ into parts in which the total orbital mo-
menta of the protons and neutrons alone have
definite values, l and l':

I I8 2 bLSll'+Lzll
ll'

Again the sum of
l
bi, zii l' over I and t' is 1, and

the matrix element (4i,z, Az+r s) ca.n be calcu-
lated as the sum of the matrix elements of Az for
the different +I,s~~ separately. Formulas derivable
from the vector addition principle yield immedi-
ately (since the g factor for protons is 1, for
neutrons 0)

L(L+ 1) + I (3+1) —I'(I'+ 1)
gA(LS) =& lbisi "—

ll' (6)2L(I.+1)

The summation in (6) must be carried out, in

general, over all values of / and /' which can give a
total L according to the vector addition model.
Eqs. (4) and (6) give the average value of Az for
the wave function +I,s in terms of the proba-
bilities for this L being composed in the different
possible ways out of orbital momenta of protons
and neutrons, I and l,'. At this point it is necessary
to make some assumption concerning these proba-
bilities. For a nucleus with an equal number of
neutrons and protons, it follows from the sym-
metry of the Hamiltonian with respect to protons
and neutrons that the probability for the angular
momenta 1 and l' for protons and neutrons, is

equal to the probability for the momenta l' and L.

This means lbr, z« l'= lbrsi il2 and, under this
condition, (6) can be summed up and gives z. This
is in agreement with Way's value ni /(n„+n&). It
can be shown, furthermore, that for npAn~, the
deviation of (6) from z is proportional to the
neutron excess. This is also in agreement with
Way's assumption. It is not possible to show, in

general, that the proportionality constant is
', (np+nii) -'; in fact, it could be different for

(+l, z& ~z+I.8)

J(J+1)+L(L+1)—S(S+1)=Jz- gi (LS) (4)
2J(J+1)
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different isotopic spin multiplets. However, it
clearly has this value if nr =0 (in this case 1 = 0 in

(6)) and we shall assume it henceforth.
Schmidt's assumption, on the other hand,

would amount to SLY~~ =0 unless I' =0 in case of
an odd np, and bL8~~ =0 unless 1 =0 in case of odd
n~. Although, as mentioned before, this gives
results which are in closer agreement with experi-
mental data than our results are, we could not
satisfy ourselves that it conforms with the
picture of nuclear structure formed on the basis
of other lines of evidence. It should be men-
tioned, however, that the nuclear moment does
not depend critically on the validity of these
assumptions since the whole orbital magnetic
moment plays only a subordinate role in the total
moment. Thus our curves do not differ greatly
from Schmidt's.

Our final result for the orbital part of the
magnetic moment is

np
(4, I1g+) = Q ~II&s~'— Jg

LS np+n

J(J+1)yZ. (1-+1)—S(S+1)
X (7)

2J(J+1)

of their squares is unity, the result of the summa-
tion is further diminished. (The Hartree model
would be quite unsuited for the calculation of the
above sums since it gives only a small number of
b's and since the above pl, pl are closely related
to the pl', pl'. )

4. For the calculation of the spin magnetic
moment we decompose the wave function into
parts which have definite partition quantum
numbers (PP'P") and definite angular mo-
menta L

4 = Qcl I+P'L

P is an abbreviation for (PP'P") (the (STY) of
reference 9). The 4'pr are assumed to be nor-
malized, the sum of the squares of

~
cr c

~

is 1. If the
"first approximation" of reference 9 could be
assumed to be valid, (8) would contain only one
term, corresponding to a single partition and a
single L. Actually, it will be necessary to assume
that terms corresponding to more than one value
of I, at least, occur in (8). The operator for the
magnetic moment is

&z=~p 2 k(1 rr')oz'—+~~ 2 2(1+rr )oz;
(9)

=2(ap+rr v)Z oz;+ '. (rlI- rrp) 2-rr o—z'

The ~ars~' will be determined later.
We have neglected some cross terms in Fq. (2)

and we wish now to give an estimate for them.
Their exact calculation would, of course, necessi-
tate the use of a specific nuclear model which
would yield the coefficients bL&«, whose number
is unlimited. Fach cross term involves a summa-
tion of the type

Q bI sll' I I 'sll'(+I. sll )I1g+L s'll ').).
1 l,'

These cross terms vanish, of course, unless
L' =L&1.For their evaluation it is important to
note that the proton and neutron wave functions
pl and pl out of which Ocsll is composed, are in

general difFerent from the wave functions |f l' and
lfrl

' out of which +r. s« is composed. However,
the matrix elements of Ag are largest if lfrl=pl'
and pl =lfrl ' and are otherwise proportional to
the scalar products of these wave functions. These
scalar products must be expected to be quite
small. Furthermore, the b will vary quite irregu-
larly as to sign and magnitude, and since the sum

Here, ~~; is the isotopic spin coordinate for the ith
particle. Its value is 1 for neutrons, —1 for
protons. The 0-z; are the usual matrices for the Z
components of the spin angular momenta, with
characteristic values +1 and —1. The pP and p~
are the magnetic moments of proton and neutron.
If we again express all magnetic moments in
nuclear Bohr magnetons ek/211', (9) becomes

where
~z=0 855Sz —4 715 V

Sg ——
g Q o.g;, Yr=g Q rr ;oz;. .

(')a)

Since (9a) does not depend on space coordinates,
it has no matrix elements between parts of the
wave function which belong to different L or to
different partitions. Its mean value is, therefore

(+, &z+) =Z ", cr c
~

(+r r. , &z+rr), (10)
PL

i.e. , simply the sum of the magnetic moments of
the different parts of +. In atomic spectra, the
partition quantum number completely deter-
mines the total spin angular momentum S, and
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conversely S determines the partition quantum
number so that it is suAicient to specify one of
these. In nuclear problems, on the other hand,
because of the existence of the isotopic spin, we
have "supermultiplets" and, except for special
cases, several S values belong to one super-
multiplet and have the same energy if we disre-
gard spin dependent forces. Nevertheless, S can
be specified simultaneously with (PP'P"), J, Jz
and I.. Hence, 0'~1. can be decomposed again:

+)') = Q cs +pIs, ,
s

Introducing this into (10) we obtain

(+, &z+) = 2 ~
cpr ~'(cs""I,'(+) I.s, &z+pcs), (12)

PCS

plus nondiagonal matrix elements in which +PL, s
is combined with a +pL, s. We shall neglect the
latter, for reasons which will be apparent later. In
order to calculate the (+pcs, &z)I'pz, s), we c»
go over from the wave functions +Pl.s in which
J, Jz, L, S are specified, to wave functions
QpLs))))) in which J, L, S, Lz =m, Sz = 1) are
specified. We define in analogy to (3)

where again (+ LB)n)), ~z+ LS)))))) = g S(PS)P. (13)

J p SOUR CF. SOUR CI'.

'I-I 1

Li7
Bl'
F19
Na23
A[37
( [35
K39
K41
Sc45
V!1n55
Co59
( u63
Cuoo
Ga69
(za»
As75
Rbo'
Rb»
Ag107
A g109
I nl 15

Sb 121

Sbl23
[127

( sl 33

La»9

Odd Proton
1/2 2.79
3/2 3.25
3/2? 2.682
1/2 . 2.62
3/2 2.216
5/2 3.628
5/2? 1.365?
3/2 0.391
3/2 0.22
7/2 4.4-4.8
5/2 3.0
7/2 3.5
3/2 2.43
3/2 2.54
3/2 2.11
3/2 2.69
3/2 1,.5
5/2 1.34
3/2 2.74
1/2 —0.10
1/2 —0.19
9/2 6.4
5/2 3.7
7/2 2.8
5/2 2.8
7/2 2.57
7/2 2.8

1
2
3
2
4
5
6
4
7
8
9
10
11
11
12, 32
12, 32
13
6
6
14
14
15
16
16
17
4.
16

Fulo1
Eulr3
Lu175
Au197
T[203
T[205
Bi209

Beo
Zn67
Kro'
Sr87
Cdlll
Cd113
Sn117
Sn119
Xe»9
Xe"I
Ba135
Ba137

Yb»I
Yb173
Pt1 95

Hg199
H g201
Pb207

Odd Proton
5/2 3.4
5/2 1.5
7/2 2.6
3/2? 0.2
1/2 1.45
1/2 1.45
9!2 4.0

Odd Neutron
3/2? —1.175
5/2 0.9
9/2? —1.
9/2 ~ —1.1
1/2 —0.65
1/2 —0.65
1/2 —0.89
1/2 -0.89
1/2 —0.9
3/2 0.7
3/2 . 0.9
3/2 0.9
1/2 0.45
5/2 —0.65
1/2 0.6
1/2 0.5
3/2 —0.6
1/2 0.6

16
16
18
16
19
19
20

21
22
23.
24
25
25
26
26
23
27, 23
28
28
30
30
31
29
29
23
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TABLF. I. JI/Iagnetic moments of nuclei with odd protort and
with odd neutron.

Since the operator Zz contains only spin
quantities, its matrix elements are uniquely given
if the dependence of +&s „on the ordinary and
isotopic spin coordinates is known; that is, they
are given by the partition quantum numbers
(PP'P") and S. In particular, gs is independent
of I and the same for all wave functions with the
same (PP'P") and S. For (12) we have according
to the oft-quoted Lande-Goudsmit formula,

(+pI.si zz+ p Ls)

J(J+1)+S(S+1) L(I.+1)—
=Jg g,g(PS). (1—4)

2J(J+1)
The calculation of the spin part of the magnetic
moment is thus reduced to the calculation of the
~esp ~', the ~cspc~', and the gs(PS). The only
approximation made so far is the neglect of the
off-diagonal elements mentioned after Eq. (12).

The partition which has the lowest energy in

the approximation in which the spin dependent
forces are neglected is" (PP'P") = (Tr 2+ z) where

Tr ——)z(ns —np) is the isotopic spin. We thus
obtain to this approximation for the elements
with isotopic spin T~ only one S, namely S= ~1.

Hence the L values in (10) which are compatible
with a definite J are J—-,'and J+-', . If we assume
that this partition alone is present in 4, (10)
contains only two terms, P assuming only one
and L only two values. For both of these, (11)
contains only one term, corresponding to S=-'„
and there are, of course, no off-diagonal elements
in addition to the terms (12) so that (14) holds in

this case rigorously.

"E, Wign(. r, Phys. Rcv. 51, 947 (1937).
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The value of gs(PS) can be obtained rigorously
also. The first part of Zz in (9a) gives simply
0.855' in (13).The second part gives —4715 ts if
p, =Sz= s and if we have a (Trs —',) multiplet. It
gives +4715 —', if p=-', and we have a (Trts—-,')
multiplet. This is evident even from the definition
of the (PP'P") symbols: P is the maximum
possible value of the isotopic spin T~ for the
supermultiplet. P'=-', is the maximum value of
Sz, compatible with the value P for Tr (it is
because of this that S is uniquely given): P",
finally, is the maximum value of Yr (in our case
the only value) which is compatible with the
maximum values of P and P'. Hence we obtain
for

gs((Trs +s), I, s) =0.855%4.715. (15)

The sum P+P'+P" has the form 2k —', (ns+n—i)
with an integer k. In our case, furthermore,
P = —', (n~ —ni) so that P'+P" has the form
2k —n~. Since P'=-,', we have P"=+-,' if the
number of neutrons is odd, P"= —~ if the num-
ber of neutrons is even, that of the protons
therefore odd. In the former case the upper sign
holds in (15), in the latter case the lower. The gs
which one obtains in this way, —3.86 and 5.57
are 2@~ and 2p, ~, i.e. , the g factors for a single
neutron and proton. This had to be expected as
soon as it was established that the gq can be
calculated uniquely on the basis of our assump-
tions and are, thus, to a large degree independent
of a special model. In consequence hereof, the g
factor can be calculated using any special model
compatible with the validity of the first approxi-
mation of reference 9. Such a model is, e.g. , that
consisting of one extra particle outside a closed,
unmagnetic shell which contains an even number
of protons and neutrons. The g factor for such
a model is evidently that for the single particle
outside the shell. Thus the mean value of Zz is
identical with the one postulated by Schmidt.

We can now easily calculate the mean value of
Az also. If one assumes Russell-Saunders coupling,
L can be either J——', or J+-'„and thus either
(aq ii' or ~a~+ii ~' is one in (7), while all the
other al. g become zero. The whole magnetic
moment should correspond, therefore, to one of
these possibilities, represented by the full lines
of Fig. 1. However, it was pointed out in the
introduction that one hardly can expect strict
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FIG. 2. Solid lines represent limits of magnetic moments
for states of higher partition quantum numbers. Paren-
theses mean (P'P")(S). The two branches of the curves
correspond to L =

( J—S~ and L = J+S; the arrow points
in the direction from

(
J—S( to J+S. The broken lines

are identical with the full lines of Fig. 1.

L—S coupling, and this makes the whole region
between the full lines possible. Schmidt's curves
are given as broken lines. Table I contains the
experimental material used in preparing these
figures.

5. Figure 1 shows that most magnetic moments
lie in the region expected under the assumption
that the partition of the wave function is

(Tr s+s).ts This does not prove, of course, that
this assumption is correct because it remains
possible that the magnetic moments lie in this
region even if other partitions are also present.
In order to decide this point, it would be neces-
sary to calculate the magnetic moment without
the above assumption. This, however, is clearly
impossible, as long as the coefficients in (10) are
unknown. We have adopted, therefore, the
following procedure.

"The elements whose magnetic moments do not fall
between the full lines in Fig. 1 are: In"5 (odd proton), Kr"'
and Sr' (odd neutron). They all have J=9/2.
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Equation (12) shows that the total spin mag-
netic moment (4, Zzk) is the average of the spin
magnetic moments of the different +I'I 8 with
weights ~cp'esp~~' which are the probabilities
for the corresponding partition, azimuthal and
spin quantum numbers. In this, only the terms
omitted in (12) are neglected which are always
relatively small ~ The same thing holds for the
orbital magnetic moment, given by (7). We have,
therefore, calculated the total magnetic moment
assuming that only one P, S and L occur in the
total wave function but permitting various possi-
bilities for these. The real magnetic moment
would be a weighted average of the magnetic
moments obtained in this way.

The results of these calculations are given in

the Fig. 2. The broken lines are identical with the
full lines of Fig. 1 and correspond to the partition

(Tr —', ~-', ). The other lines correspond to higher
multiplets (PP'P"), all with P=Tr while

(P'P")(S) are given in brackets. The S is,

naturally, always smaller than or equal to P'
~

The two branches of the curves correspond to
L =

~

J—S
~

and L = J+S, the arrow points in the
direction from

~
J—S~ to J+S.The valuesof the

magnetic moment for intermediate values of L
are in all cases between the two branches of the
curve.

For (7), n„/(n, +ny)=-', was assumed. In
order to calculate the spin magnetic moment by
(12) and (14) the gz(PS) of (13) must be known.
These consist of two parts, corresponding to the
two parts of Zz in (9a). The first part is evi-

dently 0.855. The second part depends on the
matrix elements of V~.

In all the partitions considered, every S occurs
only once in every supermultiplet for T~ =P.
This means that although several terms are
united to a supermultiplet, all these terms have
different S. The g8 for the largest S=P' is given

by the fact that the matrix element of V~ is P"
for the wave function with I ~

——P, Sg =S=P'.

For this S, therefore, the value of gz is 4.71'5P"/P'.
The sum of the matrix elements of Y~ for
Sz=P' —1 can be obtained from Fig. 1 of refer-
ence 9 as the sum of the possible values of Y~ for
this value of Sz and T~. If we subtract from this
value the matrix element corresponding to the
state Sz ——S—1, S=P', which is P"(S 1)/S,—we

obtain the matrix element for the state Sz =S
=P' —1 and this gives the g8 for S=P' —1 if
there is such a state. The matrix elements of V~

and' hence the g 8 and hence all the matrix,
elements of the spin magnetic moment can be
determined in this way. The calculation was
carried out for those (PP'P") which give, ac-
cording to Eqs. (10), (15) of reference 12 the
lowest energies.

The fact that all moments of light nuclei and
practically all moments of the other elements lie

between the limits valid for the (Tr —,'+z~)
multiplet indicates, at any rate, that this multiplet
plays a preponderant role in the normal state of
odd elements.

6. We wish to point in conclusion to an experi-
mental finding which gives reason to more serious
doubts in the considerations presented here than

anything mentioned above. According to the
preceding considerations, the magnetic moments

are expected to be distributed between the two

lines of Fig. 1 in a rather random fashion. We
cannot see any reason, however, why two isotopes
with equal total angular momenta should have

exactly equal magnetic moments. In fact we fail

to see any model which would explain such a
result. '4 In spite of this, so nearly equal moments

for isotopes seem to have been found in at least
three cases (Cu, Re, In) that it does not appear
possible to blame this on a chance coincidence.

We are unable to give an explanation for this

phenomenon.

'4 H. SchOler and H. Korsching, Zeits, f, Physik 105, 168
(1937).


