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It is easy to see that in the classical theory (1) leads to
the correct results. As in the classical theory all the scat-
tering is dipole scattering, we must simply insert for 0.

O

the full Thomson's scattering cross section, this leading to
e2/ns PC&X.

We now apply (1) to the quantum theory of the electron.
We must first of all transform the Klein-Nishina formula
to the proper frame of reference and then take part of the
scattering corresponding to the angular momentum of the
order 1. This gives o.o~(e'/mc')'mc'/E (E being the energy
of the photon in the frame of reference where the electron
is at rest). 0.0 differs from the total cross section by the
absence of the factor log E/mc' which arises from the
scattering with large angular momenta. The energy e of
the photon in the frame of reference moving with the center
of inertia is given by 2e'=mc'E (when E))nzc') so that
'A~AC/e kc/(rrtc'E)&. The energy E disappears now from
(1) and we get e'«Ac which is always fulfilled. This means
that in the quantum theory of the electron there are no
limits of its applicability, arising from itself. The "radius"
of the electron in quantum electrodynamics is in some
sense equal to zero.

One gets the same result for particles with zero spin, if
the corresponding expression for Compton effect' is used.

The Compton effect for particles with spin 1 (mass p)
was recently calculated by F. Booth and A. H. Wilson'
and by J. Smorodinski. ' The result is o.o~(e'/pc')'E/pc'.
Hence the condition (1) gives E«yc'Ac/e~. The "radius"
of the particle is equal to the corresponding wave-length
in the frame of reference in which the particle is at rest, i.e.

r Plc/E e~/Ij. c2. (2)

Hence the "radius" of the particle with spin 1 is equal to
its classical value.

A more detailed discussion of the problem with the
application to the scattering of particles with spin 1 by a
charged particle, is to be published in Journal of Physics,
volume 3, 1940.
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(S3~ =H(ij)/kv;;, (3)

where II(ij) is the matrix element of the Hamiltonian.
Furthermore, the deviation of the central component of the
triplet from the interval rule is

sw= pa(i~) yp, ;;.

According to Houston, ' we may take for P states

(4)

if A is the constant of the spin-orbit interaction Al' S. In
practice A is determined from the over-all width of the
triplet, 3A. The theoretical expression for A is

2 18VA= R3g ——r:"dr.
16~'vPc' r Br

(6)

The radial wave function, R3p, of the triplet state is here
assumed to be identical with that of the singlet state.

Since the relative intensities found from (1), (3), and (5)
are in only fair agreement with observation, King and Van
Vleck' have suggested that an undetermined parameter )
be inserted in (5) and (6) to account for the difference
between R3z and R1z which was previously neglected.
Then A refers to the integral (6) with R3p in the integrand
while ) A denotes the integral with R3pR1p. The value of 'A

is determined so as to make the deviation (4) from the
interval rule correct. In this way King and Van Vleck'
find for the atoms Hg, Cd, Zn, Ba, Sr, and Ca that X~0.8.
If, however, we try to apply their procedure to the transi-
tion 3s' S—3s3P P of Mg, we find X=2.4, a value out of
line with those previously found. It seems, then, that in
this case the deviations from the interval rule are not due
simply to perturbations by 'P but that other effects enter.
Mg is so light that spin-spin interaction may contribute
appreciably to the observed deviation, 0.3 cm ', from the
interva1 rule. One should therefore not place much trust in
the value of ) for Mg derived above.

It is thus uncertain whether to use the value X=0.8 by
analogy with previous calculations, or merely to use the
Houston formula, where X=1. The relative intensities
found in the two cases are

singlet state by the triplet state; that is, approximately

4 ('P) = A('P)+S3A('P), (2)

where the Po's are Russell-Saunders wave functions. One
has from perturbation theory

Relative Intensities of 'S —'P and 'S —'P
Transitions in Mg

'I'he relative intensity of singlet-triplet and singlet-
singlet transitions in cases where the spin-orbit interaction
is weak is given by

'r =
( ~3 1'(»/»)f~,

where the subscripts 3 and 1 denote singlet-triplet and
singlet-singlet values, respectively. The factor S& is the
coefficient which represents the contamination of the

fi/f3=340, 000 for 'A=1,

fy/fs =530,000 for X =0.8.

We may consider these values as correct within a factor 2
of 3o

I am indebted to Professor D. H. Menzel for suggesting
this problem and Professor J.H. Van Vleck for his guidance
and advice.
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