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though this identity was to be expected a priori
The same argument holds also for the last and

simplest of the three problems mentioned above:
if x is any fixed or randomly chosen point in
0 &x &D —T, the conditional probability that the
next event will occur between x+v and x+~+d7.
is obviously

e ~'fdr e f~ '~If(D —r) I" "/(n —1) 'P(B)

n p

DE

and hence we get by a single integration again the
correct answer (3).
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The deviations from ohm's law at high current densities
are calculated on the basis of the wave-mechanical theory
of conductivity. A current density of 10' amp. /cm' causes
a 1 percent deviation only. No observable deviations are to
be expected at the experimental current densities available
at present (10' amp. /cm'). This is in agreement with the
experiments of Barlow, neither does it contradict those of
Bridgman, if the effects found by him are due to secondary
factors. The method used consists in the actual solving of
the fundamental equation for conductivity in a higher
approximation. It is proved that in the Lorentz model

(fixed metal ions) the fundamental equation is not soluble
in the second approximation in the field strength. A solu-
tion in this approximation can be obtained only by assum-
ing inelastic collisions between the electrons and the metal
ions. The analogy between the distribution function con-
taining the influence of the electric field and a distribution
function found by Pidduck for the motion of ions in gases
is pointed out. A generalization of the present theory is
indicated by taking into account the influence of the ex-
ternal field on the lattice waves.

INTRODUCTION

~ HM'S law has been extraordinarily suc-
cessful for many decades; but our present

knowledge makes it clear that this law can be,
not a fundamental law (such as Coulomb's law),
but a derived law, which describes reality only to
a first approximation. Therefore, attempts have
been made to fix its limits experimentally. As
early as 1876, Maxwell made observations up to a
current density of 5 &(104 amp. /cm', but obtained
only negative results. Later, measurements by
Lecher and Rausch von Traubenberg also gave
negative results up to current densities of 107

amp. /cm' within the limits of error of their
experiments. Bridgman' performed more accu-

rate experiments using Ag and Au foils of 10 ' cm
thickness, and his measurements seemed to indi-
cate that deviations from Ohm's law existed at
current densities of 10' amp. /cm'. His results,
however, are contested by Barlow, 2 who con-
siders Ohm's law valid up to 2)&10' amp. /cm'.

Until the present time all theories of metals
consider only the first approximation of the
dependence of the current upon the electric field,
and it is supposed that deviations from Ohm's

law can be explained without further assumptions
by simply computing higher approximations.
This has been carried out in this paper, and the
deviations from Ohm's law which are auto-
matically obtained at high current densities show

* The joint investigations of the authors, on which this
paper is based took place in 1936—38. The present article
has been prepared by the senior author (E. G.).' P. W. Bridgman, Phys. Rev. 19, 387 (1922); Proc. Am.
Acad. Arts 5'7, 131 (1922). Professor Bridgman, in a
conversation, pointed out that the effects he observed were
certainly real, but at that time the question had not been

settled as to whether the effects could be accounted for by
some minute phenomena not yet studied in detail. Such
phenomena are, for instance, (a) time lag in the thermal
conductivity, (b) some kind of electromotive forces con-
nected with a change in temperature (cf. Bridgman, second
reference above, p. 145).

~ H. M. Barlow, Phil. Mag. 9, 1041 (1931).
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the possible limitations of this law. While detailed
treatment is given only to the region of high
temperatures, the only region in which the
whole theory of metallic conduction has a safe
foundation, indications will be made as to how
the theory could be extended to the region of low

temperatures.
Our result is that deviations should be ob-

servable at a current density of 10' amp. /cm'
only. Thus, Ohm's law should hold for all

present available experimental current densities.
In order to obtain this result, a general method of
solving the wave-mechanical equation for con-
ductivity which is applicable for the case of a
strong electric field was developed. The distri-
bution function showing the influence of the
field is compared with Pidduck's distribution
function obtained for the problem of motions of
ions in gases.

THE VALIDITY oF LoRENTz APPRoxIMATIQN

H. A. Lorentz' first established a systematic
theory of metals in terms of the "electron-gas"
picture. He considered the metal to consist of a
mixture of two gases, an electron gas and a gas of
metal ions, and applied the kinetic theory of gases
to this model. The problem was simplified by
Lorentz in making the assumption that the mass
of an ion is infinitely large in comparison with the
mass of an electron, thus allowing one to consider
the ions as being practically immovable in

electron-ion collisions.
The following notations used in describing the

motion of the electrons are due to Lorentz:

(x, y, s) =a point in position space,
g, q, l ) =a point in velocity space before col-

lision,
&= (P+n'+V)'

($', g', I') =a point in velocity space after col-
lision,

n =number of atoms per unit volume,
R = radius of sphere of action of an

electron for a collision with an atom,
oo=azimuth around the $ axis,
X=eF/m = force acting on electron,
/= electric field strength assumed to act

in the x direction.

'H. A. Lorentz, Theory of Electrons (Leipzig, 1909), p.
266.

The motion of the electrons is describable by a
distribution function f(x, y, s, g, g, l ). If there is
no temperature gradient, fr'educes to a function
of the velocity coordinates alone, and the
following equation of Lorentz' holds:

8
Xcos 8 sin 6d8d&p=X —.(1)

8$

The left side represents the change of the
distribution function by the impacts of electrons
with the ions. The right side is the change due to
the electric field. To integrate over total solid

angle, a new variable 0= 28 is introduced:

nR2r p m ~2m.

J' If(t' n', I') f(h, n—, 0) I
4 o "o

8
)(sin ed8dp=X —.(2)

8$

Lorentz obtains an approximate solution of this
equation by substituting

f=fo(r)+g; g«fo

He shows that g X; therefore, f may be ex-
panded in powers of the parameter X

f=fo+Xfi+X'fo+

Substituting this in (2) and comparing the
coefficients of X, we obtain the following
equations:

nR'r p o

(f~' —f~) sin Od|jdp=X, (4)
o ~o 8$

2y 8
(fo' —fo) sin edgdy=X . (5)

~o o Bf

If we put X=P, any function of r alone will

solve Eq. (2), so that fo is not determined by this
equation. It was this very fact that allowed
Sommerfeld to reconstruct the theory of metals

by assuming the Fermi distribution instead of
the Maxwell distribution for the electrons without
any change in the Lorentz equation itself.

If fo is given, the necessary and sufhcient
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condition for the solubility of the equation

i~' (f' f—) sin ed&de =C

C f(r) sin Pdfdp =0
~o ~o

and applying this condition to (4)

~w )pw gf
sin fdfdp

~o "o

(6)

df ~w ~2+
sin P cos p sin Pdfdp=0.

dr ~p ~p

Hence (4) has a solution. The result of the first
approximation, as obtained by Lorentz, ' is:

eF $ tdfpf= fp (/=1/nR'r). (7)I rrdr
To obtain a higher approximation, we calcu-

late the right side of (5)

~fg t dfp 5' d t' t dfp t

(8)
BP r' dr r dr(r' dr)

From the condition of solubility (6) follows a
restriction for fp which cannot possibly be ful-
filled. Therefore, Fq. (5) cannot be solved, and
consequently (1) has physical sense only in the
first approximation. '

is that the right-hand side C be orthogonal to the
solutions of the homogeneous equation. It can be
shown that (4) has only solutions which are
functions of r alone. The condition for solubility
is, therefore,

7l fl+ 2%

The reason for the insolubility of (1) in the
second approximation for the field strength may
be ascertained by an examination of the funda-
mental restriction, which Lorentz took as a basis
for his calculations. If the ratio of the mass of
the metal ion to the mass of the conduction
electron does not have a finite value, then there
can occur no transfer of energy during collision.
In the first approximation this does not matter.
However, in the second approximation a sta-
tionary state does not exist because the electrons
continually absorb energy from the electric field,
the absorption being proportional to F', and are
therefore accelerated more and more. This ab-
sorption of energy is easily seen to be simply the
Joulean heat. According to the Lorentz model,
all this heat would be stored in kinetic energy of
the electrons. Actually, this is not the case. The
electron-ion collisions are not elastic. Conse-
quently, in virtue of the small specific heat of the
electrons as compared to that of the ions, in
thermal equilibrium practically all Joulean heat
will be received by the ions.

Because of these limitations, Lorentz' equa-
tion cannot be used for our case, and one must
look for a generalization of it in which the above
assumption is not made. In the theory of metals,
only those generalizations are useful which lead
to the Fermi distribution in the zero-order approx-
imation: either a generalization of Nordheim's
equation' for the mixture of two Fermi gases or
the wave-mechanical one of Bloch. On account of
the uncertainty of the limits of the electron-gas
picture, the wave-mechanical theory will be
considered.

THE WAvE-MEcHANIcAL THEQRY oF CQNDUcTIvITY

If one considers the interaction of the electrons with the lattice, the following equation for the
distribution function is valid:

(Bf/Bt); p„t,+(itf/itt) g;, ip ——0.

According to Sommerfeld and Bethe, 7 the first term is

(~fi
- —~ —

I ~l(&~+.-&~-"")~(' —f("))f("+q)(Np+') —f(")(' —f(k+q»Npj
48t); p„g 9Mb Bt & pp,

+O(E„+,—E,+hv)L1 —f(k)f(k+q)Np —f(k)(1 —f(k+q))(No+1)] I,
4 Reference 3, p. 269.
B. Davydow, Physik. Zeits. Sowjetunion 8, 59 (1935) is not correct in stating that the expansion into powers of the

field diverges and that the second approximation becomes infinite.' L. W. Nordheim, Proc. Roy. Soc. A119, 689 (1928).
~ Sommerfeld-Bethe, Handbuch der I'hysik, Vol. 24/2, formula (34,40).
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where f(k) is the number of electrons having the wave vector k. X is the number of quanta of the
elastic vibrations of the lattice in the state

he =A~q, i.e. ,
' X=

~hv/k T

g is the vector by which k is changed in a transition: k' =k+ q. The prime designates, as previously,
the state after an impact. For other abbreviations we refer to Sommerfeld-Bethe. Furthermore, it is
always assumed that: P.=k'k'/2tn.

Instead of summing, one can integrate, and there follows:

(2~/ n&o
d y sin Bd8.

~p

1l 27rk
0 sin Bdd= '

Bt ~p gdP/dk
If cv = upg, there results

(BA
q dg dip J,

&fit) v ct, 935 uodP/dk2orsn~o "o

2C' 2x

where

Only when energy is conserved will the function 0 not vanish, and therefore the integral can be
evaluated:

J= (1—f(k))f(k+q, Z+kv) (¹+1)—f(k) (1—f(k+q, Z+kv))¹
+(1—f(k))f(k+q, E—kv)¹—f(k)(1 —f(k+q, Z —kv))(¹+1)

I (1 fs)f+s+o—&'""' fs(1 f+—s+ ) ——(1—f.)f s+.) —fo(1 —f s+ )&"'"'I.

Here

Finally, we obtain

f+&+o denotes f(k+q)
Ea~o=Zt+kv.

1 oo 8F fff
Q' dg dpJ=+

183fuo(dB/dk)vr' n &o ~o k Bk,

where the right-hand side represents the 6eld term. This is a functional equation, for the unknown
function f not only appears for the energy E, but also for P&kv To solve th. is equation, the distri-
bution functions are developed into spherical harmonics:

where
f(k) =4'o+»4 t+Psgs+; f(k+q) =it o+lyupt+fpsit s+

k*
P,= ;Ps ———',(3Pts ——1)

k

k.+q.
i fPt i (Ps s (3 fP$ 1)

jk+q[

Since the values of 6'&, 6'2 are different for emission and absorption of sound quanta a distinction will

be made between these two cases by upper indices (P&+; 6'j . The same notation will be used for the
lt' go+, iso . Collecting the coefficients of spherical harmonics on the left-hand side, the coefficient
of I'p becomes:

(1 4o)4 o+&"""' 4o(1—ko+)+ (1 4—o)4 o
—4o(1 4' —)&"""'— — (10)

' Boltzmann's constant k should not be mistaken for k= ~k~ because it is nearly always with T: kT.' Sommerfeld-Bethe, reference 7.
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Further, we have

e'""
L
—Pig igo++&i+(I —4o)4i"]—Pili(1 ko—+)+&i+ifoA PA—Ao

X(Pi (1 4o)—4i LP—

gati(1

fo—) &i—foPi ]e""'or. (11)
On the right-hand side we obtain

eF Bf eF&BPp 1 k, k, k, Bfi
+4i ————+— +

hBk hEBk. k k'k krak

eF 2 E t'Bgi 1 ) O' Bifp=———Poi +—6 i+ Pik —+
h 3 k &BE E ) m BE

(12)

THE CAsE FoR ZERQ ELEcTRIc FIELD

When the electric field is zero, the right-hand side of (9) vanishes, so that the integrand of the
left-hand side must vanish. If the coefficient of Pp (10) is set equal to zero, we obtain the functional
equation for fp.

(1-0o(E))4o(E+hv)e"""'—4o(E)(1-0o(E+h ))
+(1—&o(E))&o(E—h ) —4o(E)(1—4o(E —h )) '"'"'=o,

which may be solved by expanding into a Taylor series

dip (hv)' d'Pp hv 1
Pp(E+hv) =Pp+hv + +

dE 2 .' dE' B 1000

It is advantageous to change the variables by introducing

dig p n d leap

x=E/kT; n=hv/kT; Pp(E+hv) =fp+n +— +
dx 2 dg

(13)

When the coefficients of the various powers of n are set equal to zero, each gives an equation for leap,

provided they do not vanish identically. The first and second coefficients vanish; the third coefficient
gives

(4'p 4'p l 4'p4'p (1 Pp) Pp ( fp 1 lj'pl
(1 4'o)) +go'+ — )+ + tl'o( — +go'+

)
=0

E2 2) 2 2 ( 2 2 )
or

This equation is the derivative of
4o"+Co'(I —2A) =o.

4o'+go —4o'= o.

(14)

(14a)

The constant of integration is equal to zero. flaking use of the transformation (PpAO)s= 1/Pp we
obtain

s' —a+1 =0.
The general solution is

s=Ce*+1; or Pp
——1/Ce io +1.

All solutions of (14) are Fermi distributions and differ only in the values of the constant C which is
usually written as 1/A. The other coefficients of n give equations of the Fermi distributions also,
but of higher order. The Fermi distribution is the result of the interaction between the electron-waves
and the impacts alone. It is not necessary to consider the whole impact term (10) in order to obtain
the Fermi distribution; we may use one-half of the expression on the. left and equate to zero. The
same method of expansion into a power series of n may be employed, and we obtain a differential
equation of every order of the Fermi distribution.
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The distribution function of the electrons is determined by (10) alone. This is also valid if Pauli s
principle is neglected, but then one obtains the Maxwell distribution:

P + ekv/ kT P +P — g ekv/kT 0 . po"+po' ——0; pp A——e *=—A e e/—"r (15)

The essential point is that an exchange of energy between the electrons and the lattice must take
place. If the impacts are elastic and the lattice is rigid (kv=0), then in the case of zero field, (10)
vanishes identically, and the approximation of order zero remains indefinite. Again we arrive at
Lorentz' approximation, where the ratio of the masses of metal ions to electrons is infinite.

Thus, one can say that in any kinetic theory of gases and metals the distribution function of
order zero is determined only if the impacts are not elastic.

GENERAL CASE

Considering (11) and expanding, we obtain:

dip A d fp
fp~ ——Pp+n—+———+. ; a=hv jkT

dx 2 dx'

n'
I

I+~+—+"
I

—&~~~I Wp+~W'+ ~"+ I+/P '(1 —+o) I ~~+~~'+ +~"+—
2 ) E 2 ) E 2 )

—&igil 1 Po ///4o' ————4o"+ I+/Pi+Col 4i+o/fi'+ 4i"+-
4 2 ) E 2 )

—
&pupal Wp ~Wo'+ Wo"+ . —I+/1'p (1 —tfo)l O~ ~W~'+ W"+—

2 ) E 2 )
(

I+/p'+ —+ ' ' '
I +&&&I 1 4o+pp0'o' fo"+ ' ' '

I
/Pi Pol &i —+&i'+—4"'+ ' ' '

) 2 ~ ( 1

Collecting the coefficients of the powers of o. .
coefficient of

coefficient of
~': —2&A i+ (/Pp++/Pp )6,

pp ~ $1 ((Pl /PI ) +$1(/pl /f 1 )+$0/1(/I I /1 1 ).
Inserting this into the expression for J and having expanded also the Bose-Planck distribution of
lattice vibrations, we have:

kT
I (0 o"+So'(1 —24 o))~'&o+4i( —2&k+/I'1 +/P1 + ((~))+ ' ' '].

hv

The symbol ((/p. )) means that there are terms of order n' still present, but that they can be neglected.
We may now integrate over y and obtain approximately

1 f' kv l ( /Ip kv
a,+d&=-I 1—

kL 2Z) 4 2k' 2Z )
1(

hvar

t' q' kv
cP dpp= —

I
1+ I2 k,

l
1+

k E 2E// 0 2k' 2E )
If terms of higher order are neglected, there results

"Reference 7 (35,15).

2~k2'

(/P, ++a,-)dk =
~p

~ 2.
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Using the abbreviation

we have
R = C'Qom/18m'3fupk',

and since

kT

a =kv/kT= kcup/kT =SQpg/kT,

oaf~ R k~q, ' 4x kT qp4

Po ' 2x —(0 o"+1bo'(1 —2&o)) —Ps
4&t); „.„k kT 4 2k' Sup 4

(Bfq R t« g2
q'dg Po(go"+go (1—2$o))n'27r+Pi 4~/i

EBt); o,.g k ~p 2k' hv

Finally, comparing the coefficients of n of the impact term and the field term

/Bfq eF 2 1 1
(x6'+6)+P~—Ik

I

nz kr
fp" +Pp'(1 —2go) =eF A(xg, '+P, ); A =4 (2/3)kT/SR 2xgp'Sup,

we obtain
eFBx'P—p' ,

' B=4m 2up/O'Rxqp',

Po"(1+Px')+1bp'(1 —2fo+3Px') =0; P = (eF)'AB. (16)

This equation determines that part of the dis-
tribution function of the electrons which does not
depend on direction. (16) differs from the dilfer-
ential equation of the Fermi distribution (14) by
an additional term proportional to P=F'. For
weak electric fields it is permissible to equate this
term to zero and then the Fermi distribution is
obtained.

Equation (16) is the derivative of the fol-
lowing:

Pp'(1+ Px') +Po —1bp' ——0. (16a)

Le't us compare this equation with the differ-
ential equation of first order, which the distribu-
tion function of Pidduck" obeys:

~' F. B. Pidduck, Proc. Lond. Math. Soc. (11) 15, 89
(1915).Pidduck treats the mixture of two gases according
to the classical kinetic theory of gases applying Boltz-
mann's equations. He starts with the equation

fff' d f bdbf' ~, '(f'F fF)=X—
taking for F the Maxwellian distribution and assuming a
finite ratio of the masses. After transforming this equation
into one with a symmetric kernel, he deduces a series of
equations by expansion into spherical harmonics. These
equations are solved then by another expansion into the
ratio of the masses. In this v.ay the following distribution
function as modified by the inHuence of thee electric field is
obtained:

f0=Ac 'k '(F./kT+b)"
b=(eF/kT)2 l/6; l: mean free path.

The same distribution function was rediscovered twenty
years later by B. Davydow (Physik. Zeits. Sowjetunion 9,
433 (1936)) who started from a different equation. The
identity of the results of Pidduck and Davydow was first
pointed out by Mayerhofer (Thesis, Vienna, June 1937).
Pidduck himself noticed it (Phys. Rev. 53, 197 (1938)).

f=Ae E'"r(E/kT+b)', f'(1+b/x)+ f=0;

x=E/kT.

Both equations refer to relatively strong electric
fields, but one from the classical point of view,
the other from the quantum point of view. We
know from the preceding section that in the
case of P=p, by omitting —Ppo, the differential
equation of first order for the Fermi distribution
reduces to that of the Maxwell distribution. The
only difference, therefore, lies in the form of the
dependence of the additional term upon the
energy. According to Pidduck b is proportional
to the square of the mean free path of an electron,
but according to wave mechanics l depends on
the square of energy. So b is proportional to the
fourth power of x, b/x x' and the conformity is
clear.

To obtain the solution of (16a) we proceed as
in the case of zero field. The general solution is:

dx
1bp

——1/C exp ' +1.
1+Px'

Practically, px' is always very small compared
to 1, and the denominator may be expanded,
obtaining

f p = 1/Ce*—&~*"4&+1.

To compute the current, we start from the
Sommerfeld-Bethe equation (36.9) a,nd replace f
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by |t'o:
i." 1 1 2iit dingJ= —(2/3) e'F I

— —4ir E l(E—)dE,
k (2m.)' k' dE

where

Pf E q—= —lgo C exp
dE kT 4 &kT)

1 (x—
I

1-ttl —
l l

kTE EkT] )

Furthermore, the bracket and just as well E and
l(E) may be factored out of the integral, if their
value is taken at the point po, and the current
becomes

J'= Jo[1—P(Eo/kT) '7,

where Jo is the current for very small fields, or
explicitly

gee'F'
J= 0oFl 1 — Eo-

(kT)'
(17)

This formula gives the dependence of the current
upon higher powers of the electric field in the
case where the second term is relatively small
compared to the first.

If the second term of (17) is small, then Ohm's
law is valid. If it is not small, then the limits of
Ohm's law have been reached. To evaluate it
numerically we take"

0=217; C=6.7 ev; Eo ——5.5 ev

and calculate the field strength at which the
additional term amounts to 1 percent. We ob-
tain about 5 abs. e.s.u. corresponding to a current
density of"

J= o F= 6 X 7 X 10"X 5 e.s.u. = 10' amp. /cm. '
'2 According to E. L. Peterson and L. W. Nordheim,

Phys. Rev. 51, 355 (1937).Cf. also J. Bardeen, Phys. Rev.
52, 688 (1937)."A very crude estimate can be obtained as follows:
For Lorentz' development: f=fp+f1, the condition f1((fp
must hold, because f1 on the right-hand side of his equation

It is not necessary to compute the integral
exactly. If we neglect the terms in the exponential
function and denote by fo the Fermi function, we
have

d4o dfo
[1 ft (E—/k T)'7

dE dE

This then is the current density at which the
deviation from Ohm's law is of the order of 1

percent. Since this current density is almost 1000
times greater than those applied by, Bridgman
and Barlow, no observable deviations from
Ohm's law should occur in their experiments,
a fact which is in agreement with Barlow who
states that Ohm's law is valid for current
densities up to 2X10' amp. /cm'.

INFLUENCE OF THE FLECTRIC FIELD ON THE

LATTIcE WAvEs

In the present theory of conductivity as used
in this paper, the inHuence of the electric field
only upon the distribution function of the elec-
trons is considered. In a more consistent theory
the equilibrium of the electron waves and the lat-
tice waves must be considered. This is analogous
to the case of a mixture of two gases where (ac-
cording to Boltzmann) a system of two simul-
taneous integro-diA'erential equations holds. If
we denote the distribution functions of electrons
and lattice waves by f and X, respectively, then
the fundamental equations written symbolically
would be as follows:

(f,f)+ (f, N) = (itf/itt) i;,io,

P r &)+ (Xf) = (&&/&t)dissipation

In the first approximation the perturbation of
the lattice waves is small. Consequently, in the
first equation f may be assumed to be constant
and in the second equation, N. The. two equa-
tions are not coupled then. The first equation
reduces to the fundamental equation of the
present theory, the second being omitted.

In the second approximation, however, the
two equations are simultaneous. For a solution
we may start from the first approximation con-
sidering the coupling as a perturbation. The
inHuence of the external field on the lattice may
be connected with the problem of the so-called
"Umklapp-Prozesse. '"
can be neglected only in this case. Assuming

f 1 leFdfog
(1 f) leF 10,

fp fp r m dr r 3tclT

we obtain J= o-F~10' amp. /cm'. Such an estimate was
also made by Dr. Nordheim.

"Cf.also W. V. Houston, Phys. Rev. 55, 1255 (1939).


