for supposing that the normal E and F layers are produced to a considerable extent by atomic rather than by blackbody radiation, and this must be attributed largely to hydrogen and helium. If this is so, the absence of any large disturbance of the E and F regions during fadeouts indicates independently that hydrogen or helium radiation *cannot* be responsible for fadeouts. It is then difficult to see to what type of radiation we can attribute fade-outs, unless we consider the possibility of x-rays. However, no independent evidence for the production of x-rays in eruptive areas of the sun seems to be suggested by our present incomplete theories of conditions in the chromosphere and of delayed disturbances in the earth's upper atmosphere following solar eruptions.

I particularly wish to express my appreciation to Professor Otto Oldenberg for many helpful discussions of the subject of this article.

Note: Just before the submission of this article for publication an article appeared by S. E. Williams (Nature 145 68 (1940)). Williams investigated the absorption of $Ly\alpha$ in oxygen, and found a coefficient approximately 50 times larger than that reported in the present paper. Lacking details of his experimental method, no explanation can be suggested for this huge difference. Nearly any impurity in his absorbing gas, particularly H₂O or CO₂, would result in too large a value for the absorption coefficient.

MAY 15, 1940

PHYSICAL REVIEW

VOLUME 57

The Arc Spectrum of Silver*

A. G. SHENSTONE Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received March 4, 1940)

A MONG all the simpler arc spectra, that of silver has been for years the best example of a badly analyzed spectrum. This is the result of inadequate observation of the spectrum by the many workers who have measured it. The reason for the incompleteness of the observations now appears to be the fact that instruments of too great dispersion were used for the detection of very diffuse lines. Such lines are numerous in silver and attain widths as great as 500 wave numbers.

New observations have been carried out in Princeton with various forms of arc. A preliminary report has been published.¹ The form of arc, which was found by R. Haskins in his senior thesis problem to be the most suitable for observations in the visible and infra-red, was as follows. The electrodes consisted of silver buttons about 5 mm in diameter screwed firmly to watercooling tubes. The arc was run at 6 to 8 amperes in air or oxygen with the anode down, the

cathode being focused on the slit of the spectrograph. Under these conditions the cathode disintegrates by sputtering and the anode increases in weight. The unusual procedure of observing arc lines at the cathode is effective in this case, I believe, because of the high excitation of most of the new lines. It has the added advantage of eliminating the band lines which occur rather strongly at the anode. In the infra-red some exposures were taken with a 20-ampere graphite arc and in the Schumann region small graphite arcs in pure nitrogen were used.² This type of arc was necessitated by the fact that silver arcs will hardly run at all in pure nitrogen. The arc observations were made on the following instruments. $\lambda 10,000-5000$ Steinheil three-prism glass spectrograph; λ5000–2100, Hilger El quartz spectrograph; λ 2100–1250, a 30,000 line 2-meter vacuum spectrograph.

In addition the spectra from a hollow cathode argon-filled tube were observed with the 30,000 line 21-ft. grating. The tube was run with the silver in the cathode molten, and very good pictures were obtained in less than an hour.

^{*} When this paper was in preparation there appeared a letter in Phys. Rev. 57, 243 (1940) from Ebbe Rasmussen in which some of the new levels of AgI, notably $s^2 {}^2D$, were given.

¹ A. G. Shenstone, Phys. Rev. 56, 209 (1939).

² A. G. Shenstone, Trans. Roy. Soc. 237, 453 (1938).

Origin	NAME	Level	n*	Origin	Name	Level	n*	
$4d^{10}5s$	$5s^2S_4$ 61106.50		1.34089 $4d^{10}11d$		$11d^2D_{11}$	1355.35?	8.99800	
$4d^{9}5s^{2}$	$5s^2 2D_{21}$	30864.40	1.25182	$4d^{10}11d$	$11d^2D_{21}$	1354.99?	8.99933	
$4d^{9}5s^{2}$	$5s^2 {}^2D_{11}$	26392.5		$4d^{10}12d$	$12d^{2}D^{-1}$	1098.9	9.994	
$4d^{10}6s$	$6s^2S_1$	18550.35	2.43220	$4d^{9}5s(^{3}D)6s$	5s6s4D31	-18306.4	2.293	
$4d^{10}5d$	$5d^2D_{11}$	12362.50	2.97932	$4d^{9}5s(^{3}D)6s$	$5s6s^4D_{2k}$	-19058	2.336	
$4d^{10}5d$	$5d^{2}D_{21}$	12342.28	2.98181	$4d^{9}5s(^{3}D)6s$	$5s6s^4D_{14}$	-20159		
$4d^{10}7s$	$7s^2S_1$	9219.52	3.4500	$4d^{9}5s(^{3}D)6s$	$e^2 D_{21}$	-20964		
$4d^{10}6d$	$6d^2D_{11}$	6903.37	3.98700	$4d^{9}5s(^{3}D)6s$	$5s6s^{4}D_{4}$	-22876.3		
$4d^{10}6d$	$6d^2D_{2k}$	6892.90	3.99003	$4d^{9}5s(^{3}D)6s$	e^2D_{11}	-23487		
$4d^{10}8s$	$8s^2S_1$	5525.21	4.45660	$4d^{9}5s(^{1}D)6s$	f^2D_{21}	-25378		
$4d^{10}7d$	$7d^2D_{11}$	4406.71	4.99022	$4d^{9}5s(^{3}D_{3})5d$	1134.44	-25789	2.864	
$4d^{10}7d$	$7d^2D_{21}$	4400.96	4.99344	$4d^{9}5s(^{3}D_{3})5d$	1231.41	-26015.5	2.889	
$4d^{10}5g$	$5g^2G^2$	4395.4	4.99665	$4d^{9}5s(^{3}D_{3})5d$	1324.34	-26037	2.891	
$4d^{10}9s$	9s2S1	3681.39	5.45971	$4d^{9}5s(^{3}D_{3})5d$	1421	-26116	2.900	
$4d^{10}8d$	$8d^2D_{11}$	3056.49	5.99190	$4d^{9}5s(^{3}D_{3})5d$	1531	-26205.5	2.910	
$4d^{10}8d$	$8d^2D_{21}$	3053.02	5,99530	$4d^{9}5s(^{3}D_{3})5d$	1631.41	-26250.1	2.915	
$4d^{10}10s$	$10s^2S_4$	2628.37	6.46150	$4d^{9}5s(^{3}D_{2})5d$	1721.31.41	-27487	2.877	
$4d^{10}9d$	$9d^2D_{11}$	2244.04	6.99400	$4d^{9}5s(^{3}D_{2})5d$	1821	-27632	2.893	
$4d^{10}9d$	$9d^2D_{21}$	2241.84	6.99650	$4d^{9}5s(^{3}D_{2})5d$	1921 21	-27710	2.902	
$4d^{10}11s$	$11s^2S_1$	1970.51	7.46260	$4d^{9}5s(^{3}D_{3})7s$	5s7s4D 24	-29260	3.329	
$4d^{10}10d$	$10d^2D_{11}$	1717.53	7.99360	$4d^{9}5s$?	2014 24	-29506	3.371	
$4d^{10}10d$	$10d^2D_{21}$	1715.78	7.99725	$4d^{9}5s^{3}D_{3}$	AgII	-39164		
$4d^{10}12s$	125 ² S1	1531.94	8.46375		0-*			

TABLE I. Even levels of AgI.

TABLE II. Odd levels of AgI.[†]

Origin	Name	LEVEL	n*	Origin	Name	Level	n*	Origin	Name	LEVEL	n*
$\begin{array}{c} 4d^{105}p\\ 4d^{105}p\\ 4d^{106}p\\ 4d^{106}p\\ 4d^{107}p\\ 4d^{107}p\\ 4d^{107}p\\ 4d^{108}p\\ 4d^{108}p\\ 4d^{108}p\\ 4d^{108}f\\ 4d^{105}f\\ 4d^{109}p\\ \end{array}$	$\begin{array}{c} 5p^2P_1\\ 5p^2P_{11}\\ 6p^2P_{12}\\ 6p^2P_{12}\\ 7p^2P_{12}\\ 7p^2P_{12}\\ 7p^2P_{12}\\ 4p^2P_{12}\\ 8p^2P_{12}\\ 8p^2P_{12}\\ 5p^2P_{12}\\ 5p^2P_{12}\\ 5p^2P_{12}\\ \end{array}$	$\begin{array}{c} 31554.45\\ 30633.79\\ 12809.31\\ 12605.90\\ 7065.1\\ 6985.6\\ 6901.9\\ 4883.2\\ 4488.2\\ 4446.1\\ 4397.1 \\ 7\\ 3079.6 \end{array}$	$\begin{array}{c} 1.86486\\ 1.89268\\ 2.92694\\ 2.95047\\ 3.94111\\ 3.96347\\ 3.98743\\ 4.94472\\ 4.96806\\ 4.99567\\ 5.96940\\ \end{array}$	$\begin{array}{c} 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{2}D)5p\\ 4d^{9}5s(^{2}D)5p\\ 4d^{9}5s(^{2}D)5p\\ 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{3}D)5p\\ 4d^{9}5s(^{3}D)5p\\ \end{array}$	$5s5p^4P_{13}$ $5s5p^4F_{13}$ $5s5p^4F_{13}$ $5s5p^4P_{13}$ $5s5p^4P_{13}$ $5s5p^4P_{13}$ $5s5p^4D_{23}$ $5s5p^4D_{13}$ $5s5p^4D_{13}$	$\begin{array}{c} 2601.8\\ 2316.8\\ 2204.6\\ 1785.4\\ 569.0\\ -135.4\\ -1075.1\\ -1827.2\\ -2424.2 \end{array}$		$\begin{array}{c} 4d^{9}5s^{(3)}5p\\ 4d^{9}5s^{(4)}5p\\ 4d^{9}5s^{(4)}5p\\ 4d^{9}5s^{(4)}5p\\ 4d^{9}5s^{(4)}5p\\ 4d^{9}5s^{(4)}5p\\ 4d^{9}5s^{(1)}5p^{9}F_{3}\\ 4d^{9}5s^{(1)}5p^{9}F_{3}\\ 4d^{9}5s^{(1)}5p^{2}F_{3}\\ 4d^{9}5s^{4}D_{3}\\ 4d^{9}5s^{4}D_{3}\\ \end{array}$	5x5p4D3 5x5p2F33 5x5p2P 5x5p2D13 5x5p2D13 5x5p2D23 1° 2° 3°	$\begin{array}{r} -3469. \\ -4531.1 \\ -4880 \\ -5234 \\ -5865.5 \\ -11228 \\ -12364 \\ -12421 \\ -39164 \end{array}$	

† The symbol for "odd level" has been omitted wherever the prefix based on electron configuration gives the parity.

These observations were chiefly useful in differentiating between types of lines and in determining the series limits very exactly.

The line list, Table III, includes all the lines from $\lambda 40,000$ to $\lambda 1250$ which I think can be safely attributed to AgI. There are 243 lines of which 148 are new. Some of the old lines were observed by Kayser, but not again until the present survey was made. The observations of Paul³ on absorption lines in the Schumann region include, I believe, some impurity lines. My reason for this statement is that Paul failed to observe many certain 5²S combinations and yet observed other absorptions in the same region. The emission spectrum down to $\lambda 1250$ definitely includes only three of Paul's lines. Some of his shorter lines may be due to silver but there is no conclusive evidence. I cannot accept his proposed series as real.

The most important term to find is $4d^{9}5s^{2} 2D$, which had been placed, by comparison with similar spectra, almost directly on top of $4d^{10}5p^{.4}$. This has now proved to be correct, the $^{2}D_{2i}$ being between the components of ^{2}P and therefore metastable and the $^{2}D_{1i}$ being higher by 4472 cm^{-1} , and therefore not metastable. The correct difference was found by McLennan and McLay⁵ in 1928 from three pairs of lines, one pair being very probably fortuitous. The most important combination of the $s^{2} 2D_{2i}$ term is that with $6p^{2}P_{1i}$ at λ 5475. This line is very strong in both arc and Schuler tube and can easily be

³ F. W. Paul, Phys. Rev. 52, 923 (1937).

⁴ H. A. Blair, Phys. Rev. 36, 1531 (1930).

⁶ J. C. McLennan and A. B. McLay, Trans. Roy. Soc. Can. 22, 1 (1928).

TABLE III. Wave-lengths, intensity, and classification of all the lines from $\lambda 40000$ to $\lambda 1250$ attributed to AgI. A letter n in column one indicates a new line. In column one the symbols have the following meaning: P—F. Paschen, Ann. d. Physik 33, 717 (1910); R—H. H. Randall, Astrophys. J. 34, 1 (1911); M—W. F. Meggers, letter; S—new observation; H—Hetzler, Bouman and Burns, Phys. Rev. 48, 656 (1935); W—F. M. Walters, Sci. Papers, Nat. Bur. Stand. No. 411, 1921; T—M. I. T. Wave-length Tables; Av—average of best values; B—H. A. Blair, Phys. Rev. 36, 1531 (1930). The wave-length λ was measured on Schuler tube plates where possible. I(arc) and I(ST) are the intensities in the arc and Schuler tube, respectively.

AUTHOR	-					AUTHOR-					
ITY (n INDI-						(n INDI-					
CATES						CATES					
LINE)	λ	I (ARC)	$I_{(ST)}$	ν	CLASSIFICATION	LINE)	λ	$I_{(ARC)}$	$I_{(ST)}$	ν	CLASSIFICATION
P P	39951 39889	8. 5		2502.4 2506.3	$\frac{4^{2}F - 7d^{2}D_{2}}{4^{2}F - 5^{2}G}$	S n S	4822.79 4796.2	5UU 20UU(r))	20729. 20844.	$5s5p^4P_1 - 5s6s^4D_{11}$ $5s5p^4F_{21} - 5s6s^4D_{21}$
R R	18382.5	15		5458.0 5460.7	$5d^2D_{1\frac{1}{2}} - 4f^2F$ $5d^2D_{2\frac{1}{2}} - 4f^2F$	S n	4745.93	2U		21064.8	$5s5p^2P_{31} - f^2D_{21}$ $5s5p^4D_{11} - e^2D_{11}$
R R	17416.7	20 60		5740.0 5043 0	$6s^2S_1 - 6p^2P_1$ $6s^2S_1 - 6p^2P_1$	S n	4702.3	2UU 30U(r)		21260.	5:544Fat -5:6:4Dat
Ř	12551.0	10		7965.4	$5d^2D_{1\frac{1}{2}} - 5f^2F^2$	Š	4668.478	500u	500	21414.28	$5p^2P_{1\frac{1}{2}} - 7s^2S_{\frac{1}{2}}$
м n S n	9001.1 8745.7	1U 1U		11106.7		3	4015.09	300		21659.2	$5s5p^{2}P_{2i} - 5s0s^{2}D_{2}$ $5s5p^{2}F_{2i} - e^{2}D_{1i}$
Sn Sn	8704.85 8645.70	10u 30u		11484.7	$6s^2S_1 - 7p^2P_1$ $6s^2S_1 - 7p^2P_{11}$	Sn Sn	4575.99 4564.02	2 0//		21847.1	$5s5p^2D_{23} - 19$ $5s^2 ^2D_{11} - 8p^2P_{13}$
Ŭ, Ĥ	8273.519	1000		12083.44	$5p^2P_{11} - 6s^2S_1$	ŝ.	4556.0	20UU		21943.	$5s5p^4F_{21} - 5s6s^4D_{11}$
S n	7402.96	0		13504.10	5p2r3-05253	S n	4499.30	500 <i>u</i>	500	22218.5 22334.92	$5p^2P_1 - 7s^2S_1$
Sn Sn	7359.96 7297.8	20 01/	10	13583.3 13699.	$5s^2 {}^2D_{1\frac{1}{2}} - 6p^2P_{\frac{1}{2}}$ $3^\circ - 14^{21}$	S S n	4396.23	20 1 <i>1</i>		22740.4 22750 0	$5s5p^{4}F_{11} - 5s6s^{4}D_{1}$ $5s5p^{4}F_{21} - e^{2}D_{21}$
S n	7251.53	5	5	13786.4	$5s^2 2D_{1\frac{1}{2}} - 6p^2P_{1\frac{1}{2}}$	S n	4372.90	3u		22761.7	5s5p4P11 -5s6s4D11
Sn	7088.10	5U	5	14002.	$6s^2S_1 - 8p^2P_{11}$	T	4334.7	50		22957. 23189.58	$5s5p^4P_{21} - 5s6s^4D_{31}$
Sn Sn	6861.0 6754.5	5UU 5UU		14571. 14801.	$1^{\circ} - 11$ $1^{\circ} - 13$	Sn Sn	4294.27 4281.16	5u 0U		23280.3 23351.6	$5s5p^4F_{3\frac{1}{2}} - e^2D_{2\frac{1}{2}}$ $5s5p^4F_{1\frac{1}{2}} - e^2D_{1\frac{1}{2}}$
S n	6706.67	5		14904.2	19-16	S n	4263.78	1U		23446.8	$5s5p^4P_1 - 5s6s^4D_1$
Sn	6621.08	20		15099.1	$5s5p^2D_{21} - e^2D_{21}$	S n	4228.7	5UU		23641.	$5s5p^2D_{21} - 20$
Sn Sn	6571.7 6537.6	$\frac{2U}{2U}$		15212.6	$3^{\circ} - 18_{2\frac{1}{2}}$ $5s5p^{2}P - 5s6s^{4}D_{1\frac{1}{2}}$?	S S n	4212.817 4212.520	100	100 5	$23730.42 \\ 23732.11$	$5p^2P_{1\frac{1}{2}} - 6d^2D_{1\frac{1}{2}}$ $5p^2P_{1\frac{1}{2}} - 4f^2F$
5 4	6461 80	077	2	15471 3	$3^{\circ} - 19$? $6s^{2}S_{1} - 9b^{2}P_{11}$	S .	4210.960	500	500	23740.89	$5p^2P_{11} - 6d^2D_{21}$
Sn	6268.50	10u	20	15948.4	6s ² S ₁ -5s5p ⁴ P ₁	Sn	4175.78	3u	10	23940.9	$5s5p^4P_{21} - 5s6s^4D_{21}$
S n S n	6230.63 6218.0	$\frac{1}{2U}$		16045.3	$5s5p^2P - e^2D_{2\frac{1}{2}}$?	S n S n	4172.016 4083.43	3u 10U	2	23962.50 24482. 3	$5s^2 {}^2D_{21} - 4f^2F$
S n	6191.8 6141.64	$\frac{0U}{2u}$		16146.	-	S n S n	4062.71	5u 5u		24607.2	$5s^2 {}^2D_{2\frac{1}{2}} - 5s5p^4F_2$
S n	6083.78	10U		16432.6	$5s5p^2F_{3\frac{1}{2}} - e^2D_{2\frac{1}{2}}$	Š.	4055.476	1000	500	24651.08	$5p^2P_1 - 6d^2D_{11}$
S n S n	6047.6 6010.1	20 5U		16531.	5s5p4D11 - 5s6s4D21	S n S n	4055.196 4015.68	0u	10	24652.78 24895.4	$5p^2P_3 - 4f^2P$
Sn Sn	5989.6 5801.92	1UU 5U		16691. 17230 9	$5s5p^4D_1 - 5s6s^4D_{11}$ $5s5p^4D_{21} - 5s6s^4D_{21}$?	S n	4012.99	0u 1011		24912.1 25042 1	5x504Da1-14a1
с.,	5672 15	F., 1		17600.0	$5s5p^2F_{21} - 5s6s^4D_{21}$	ŝ	3981.584	100U(r)	100	25108.56	$5p^2P_{11} - 8s^2S_{11}$
W^{n}	5667.34	100		17640.1	$5s5p^4D_{31} - 5s6s^4D_{31}$	S n	3979.44	5u 5u		25122.1	555p+D31 - 11
Sn Sn	$5637.01 \\ 5609.02$	$\frac{5U}{3U}$		17735.0 17823.5	$5s5p^4D_{1\frac{1}{2}} - 5s6s^4D_{1\frac{1}{2}}$ $5p^2P_{1\frac{1}{2}} - 6p^2P_{1\frac{1}{2}}$	S S	3942.972 3940.43	10u 10U	1	25354.43 25370.8	$5_{s}5_{p}^{4}D_{3\frac{1}{2}} - 12?$ $5_{s}5_{p}^{4}D_{3\frac{1}{2}} - 13$
S n	5559.58	10U		17982.0	$6s^2S_1 - 5s5p^4P_1$?	S n	3928.01	10U	15.3	25451.0	$5s5p4D_{31} - 14_{21}$
W	5545.67	20U		18027.1	$5p^2P_{11} - 6p^2P_{11}$	S n	3914.40	50u	3U	25478.50	$5s5p4D_{34} - 15_{34}$
S n S	$5475.382 \\5471.547$	20 50	20 100	18258.50 18271.29	$5s^2 {}^2D_{21} - 6p^2P_{11}$ $5p^2P_{11} - 5d^2D_{11}$	S S n	3907.41 3847.849	50u 15	50	25584.2 25981.20	$5s5p^4D_{3\frac{1}{2}} - 16$ $5s^2 {}^2D_{24} - 5s5p^4P_{24}$
S	5465.503 5436.00	1000	1000	18291.51	$5p^2P_{11} - 5d^2D_{21}$	S	3840.745	100u	100	26029.25	$5p^2P_1 - 8s^2S_1$
S	5403.22	1u		18502.0	$5s^2 {}^2D_{21} - 5d^2D_{11}$	s "	3810.940	200	200	26232.83	$5p^2P_{1\frac{1}{2}} - 7d^2D_{2\frac{1}{2}}$
S n	5400.46 5397.11	2u 0u		18511.8	$5s^2 {}^2D_{21} - 5d^2D_{21}$	Sn Sn	3791.89 3784.183	$1U \\ 0U$	15	26364.6 26418.30	$5s^{2} D_{2k} - 8p^{2}P_{1k}$
S Sn	$5333.62 \\ 5283.16$	$10U \\ 1U$		18743.8 18922.8	$5p^2P_1 - 6p^2P_1$ $5s5p^4F_{11} - 5s6s^4D_{21}$	Sn Sn	3771.07 3768.51	$\frac{1U}{5w}$		26510.2 26528.2	$5s^2 {}^2D_{14} - 5s5p^4F_1$
S S m	5276.36	5U		18947.2	$5p^2P_1 - 6p^2P_{11}$	S n	3764.53	3Ü		26556.2	$5s5p^4D_{21} - 18_{21}$
Sn	5238.35	5Ŭ	1000	19084.7	5s5p4D21-5s6s4D11	S n	3727.42	10U		26820.6	$5_{s5p4D_{31}} - 17$
S n	5209.078 5138.34	$5U^{1000}$	1000	19191.93	$5p^2P_1 - 5d^2D_{11}$ $5s^2 {}^2D_{11} - 7p^2P_1$	Sn S	3723.59 3714.28	2u 3u		26848.2 26915.5	
S n S n	5151.80 5129 30	2?		19405.3	$5s^2 2D_{11} - 7p^2P_{11}$ $5s^2 2D_{11} - 4f^2F$	S "	3709.196	50u	30	26952.38	$5p^2P_{11} - 9s^2S_{11}$
S	5123.50	15u		19512.5	$5s5p^2D_{2\frac{1}{2}} - f^2D_{2\frac{1}{2}}$	s "	3682.505	30	200	27147.73	$5p^2P_1 - 7d^2D_1$
S n S n	5032.75	$\frac{3u}{3U}$		19864.3 19889.4	$5s5p^4D_{2\frac{1}{2}} - e^2D_{2\frac{1}{2}}$	S n S n	3654.62 3639.578	5U Pb? 5u		27354.9 27467.91	$5s5p^4F_{11} - 17?$ $5s^2 {}^2D_{11} - 5s5p^4D_{21}$
S S n	4992.89	$20U \\ 1U$		20022.9	$5s5p^4F_{1\frac{1}{2}} - 5s6s^4D_{1\frac{1}{2}}$	S n	3625.132	504	50	27577.37	$5p^2P_{11} - 8d^2D_{11}$ $5p^2P_{11} - 8d^2D_{21}$
S n	4956.18	5		20171.2	$5s5p^2D_{21} - 13$	S n	3623.49	10 <i>u</i>		27589.5	
Sn	4935.75	10		20254.7	555 p+1/23 - 1423	s n S	3598.005	20u(r)	30	277873.07	$5p^2P_1 - 9s^2S_1$
Sn Sn	4934.07 4925.25	$\frac{5}{3U}$		20261.7 20297.9	$5s5p^4D_{31} - e^2D_{21}$	Sn Sn	3582.78 3571.13	3 <i>Ud</i> 0		27903.3 27994.4	$5s5p^4F_{41} - 11$
S n	4917.5	10ŪU		20330.	5 c5 d4D u = 5 c6 c4D	S n	3569.722	2	10	28005.42	$5p^2P_{11} - 10s^2S_{12}$
S n	4886.27	0		20459.8	555p.D1 = 5505.D1	s	3547.16	10 <i>u</i> (r) 10 <i>u</i>		28105.5	5s5p4D21 -5s7s4D31?
s s	4874.100 4847.82	30u(r)	10	20510.90 20622.1	$5s5p^{4}F_{44} - 5s6s^{4}D_{34}$ $5s5p^{4}F_{34} - 5s6s^{4}D_{34}$	S	3542,608	50	100	28219.76	$5s^2 {}^2D_{1\frac{1}{2}} - 5s5p^2F_{2\frac{1}{2}}?$ $5s5p^4F_{4\frac{1}{2}} - 12?$
S n	4840.28	0U		20654.2		S n	3537.23	5	1	28262.7	$5s^{2} ^{2}D_{2\frac{1}{2}} - 5s5p^{4}P_{1\frac{1}{2}}$

896

AUTHOR- ITY (n INDI- CATES NEW LINE)	λ	I _(ARC)	$I_{(ST)}$	ν	Classification	AUTHOR- ITY (<i>n</i> INDI- CATES NEW LINE)	λ	I _(ARC)	I _(ST)	ν	CLASSIFICATION
C	2522 44	27777		00006		C	2120.00	2011		21020 5	5-22D . 5-54D .
Sn	3533.11	300	5	28290.	5 .5 .4 F .1 - 122	2	3130.02	300		31939.5	$5s^2 2D_{21} - 5s^2 p^2 D_{21}$
S n S m	3526.334	30	3	20332.31	$5_{5}5_{5}5_{5}4F_{c1} = 13$	5	3039.10	20		32230.1	$33^{2} D_{1\frac{1}{2}} - 335 p^{2} D_{2\frac{1}{2}}$
5 1	3524 60	1		28363.0	535 <i>p</i> -1 32 - 15	5 "	2038 42	2011		34022	
Sn	3521.393	-	3	28389.77	$5h^2P_{11} - 9d^2D_{11}$	- S n	2933.00	200		34084.9	
Ŝ.	3521.122	10	10	28391.95	$5p^2P_{11} - 9d^2D_{21}$	- S n	2928.95	5		34143.6	5s5 +4P21 -5s7s4D31
Sn	3518.900	5u	5	28409.88	$5s5p^{4}F_{44} - 15_{24}$	S n	2926.77	10u		34157.4	
S	3515.99	2Ud		28433.4	$5s5p^4D_{24}-20$	S n	2920.70	12		34228.4	
S	3513.377	15u	3	28454.64	$5s5p^4F_{41} - 16$	S n	2919.03	5u		34248.0	
s	3508.030	20	30	28497.91	$5p^2P_1 - 8d^2D_{11}$	S n	2911.37	0U		34338.	
స్త	3505.015	5u	10	28522.42	$5s5p^4F_{33} - 15_{33}$	Sn	2909.51	10		34360.	
2	3501.921	20u	30	28547.02	$55^2 2D_{2\frac{1}{2}} - 555 p^4 P_{3\frac{1}{2}}$	Sn	2832.27	10011		35297.	5-99D - 5-540E -
5	3499.008	5u	2	28567.03	5 .5 At Fat - 16	2	2024.39	311		35393.3	$5s^2 D_{2j} - 5s5p^2 P_{3j}$
S	3487 700	5	3	28663.28	$5_{2} + 1_{3} + 1_{5} = 10$	5 11	2778 04	111		35086	33D2 -335p-1
S n	3481.22	3u	0	28717.4	$5s5p^4P_{14} - 14s^4$	S n	2775.88	$\frac{10}{3U}$		36014.	
S	3469.16	30		28817.2	5s2 2D11 -5s5 p4D11	- S n	2768.88	1U		36105.	
S n	3457.276		1	28916.24	$5p^2P_{11} - 10d^2D_{11}$	S.	2721.77	50		36729.9	$5s^2 {}^2D_{2k} - 5s5p^2D_{2k}$
S .	3457.066	5	5	28918.01	$5p^2P_{14} - 10^2D_{24}$	S n	2715.85	3UU		36810.	
S n	3456.102		5	28926.07	$5p^2P_1 - 10s^2S_1$	S	2595.51	2U		38516.6	
Sn	3435.227		0u	29101.85	$5p^2P_{1\frac{1}{2}} - 12s^2S_{\frac{1}{2}}$	S	2575.63	50 <i>U</i>		38813.8	$5s^2 2D_{1\frac{1}{2}} - 3^{\circ}$
Sn	3434.005	- 1	2	29106.61		S.	2375.02	5000		42092.	$5s^2 2D_{2\frac{1}{2}} - 1^{\circ}$
S n	3420.41	00	2	29227.9	5 49 P. 11 49 D. 1	5	2312.00	1000		43228.	$5S^2 2D_{21} - 2^{\circ}$
5 %	3414.307		3	29278.80	$5p^2P_{13} = 11d^2D_{13}r$	5	2309.30	300		43283.	$33^{2} - D_{21}^{2} = 3^{2}$
š	3410.784	8	10	29310.39	$5h^2P_1 - 9d^2D_{11}$		$\lambda(vac)$				
<i>S</i> п	3403.78	10U	10	29370.7	$5s5p^4F_{14} - 20^{13}$	S n	2170.68	15		46068.5	
S n	3398.38	1U		29417.4	$5s5p^4F_{24} - 18_{24}$	S n	2167.45	5		46137.2	
Av.	3382.893	1000R	1000	29552.04	$5s^2S_4 - 5p^2P_4$	S n	2147.40	5U		46567.9	
S n	3357.98	1		29771.3		S n	2143.50	5		46652.7	
S	3354.63	5u	_	29801.0	$5s5p^4F_{3} - 17$	S	2070.514	100	100	48297.19	$5s^2 S_1 - 6p^2 P_1$
2	3350.590	3	3	29830.94	$5p^2P_1 - 10d^2D_{11}$	<u>S</u> .	2061.830	200	200	48500.60	$5s^2S_1 - 0p^2P_{11}$
5	3339.20	5u 0u		29938.1	5 .5 AF 10	Sn	2051.07	Su		48/40.8	55251 - 54211115 50281 - 762D
5 "	3327.70	54		30042.2	335 <i>p</i> -1-35 - 19	S n	1847 73	20		54120.5	$5s^2S_1 - 7h^2P_1$
\tilde{B}	3310.51	2		30198.2	$5 d^2 P_4 - 11 d^2 D_{11}$	S n	1766.20	10%		56618.7	$5s^2S_1 - 8b^2P_1$
S n	3306.70	ī		30233.0	$5s5p^4P_{11} - 18_{21}$	S n	1763.69	0		56699.4	$5s^2S_1 - 7d^2D_{11}$?
S	3305.672	10u		30242.36	$5s^2\hat{S}_4 - 5s^2\hat{D}_{24}$	S n	1763.55	1		56703.8	$5s^2S_1^2 - 7d^2D_{21}^2$?
B	3282.53	3		30455.6	$5p^2P_1 - 12d^2D_{11}$	S n	1759.68	5		56828.5	
Av.	3280.680	1000R	1000	30472.73	$5s^2S_{\frac{1}{2}} - 5p^2P_{\frac{1}{2}}$	S	1709.26	50		58504.9	$5s^2S_{\frac{1}{2}} - 5s5p^4P_{\frac{1}{2}}$
Sn	3265.72	5		30612.3	5 5 (D) 42	Sn	1708.11	10		58544.2	5 4 5 5 4 7
2	3233.18	15		30920.4	$353p^{*}P_{21} - 13$	Sn	1622.80	1001		00537.4 61241 F	55451 - 555 p P1
S	3215 67	10		31088 8	$333 p^{*}r^{2}_{2} - 142_{2}$	Sn Sn	1032.88	25		63531.6	5 2 S1 - 5 5 5 4 D-1
S n	3188.36	211		31355.0	555 p-1 2g - 153g	S	1548 58	50 8111		64575	$5_{1}^{2}S_{1}^{2} - 5_{1}^{2}S_{1}^{2} + 5_{1}^{2}S_{1}^{2}$
š	3186.19	3u		31376.4		Š	1515.63	100 <i>RUU</i>		65979.	$5s^2S_1 - 5s5b^2P$
Sn	3177.33	5		31463.9	5s5p4F41 -5s7s4D21	ŝ	1507.37	50RUU		66341.	5s2S1 -5s5p2D11
T	3170.579	10 <i>u</i>		31530.99	5s2 2D21 -5s5p4D31	-					1
						1					

TABLE III—Continued.

observed visually. It appears in no published lists but was observed some years ago in this laboratory. It was so strong that, at that time, it was not thought that it could possibly be a silver line which had escaped previous observation.

The structure $4d^{9}5s5p$ is partly positive and partly negative, and includes in its combinations with $4d^{10}5s$ the three widest lines I have ever observed. One of them is about 500 cm⁻¹ wide with a central reversal about 100 cm⁻¹ wide, and it serves as a continuum for the absorption of the lines of a nitrogen band.

The term $4d^95s6s^4D$ was found in its predicted position and it accounts for most of the strongest lines by its combinations with $4d^95s5p$. As in CuI, the outer components $4D_{34}$ and 4D_4 give sharp lines and the inner two give diffuse lines. In addition one and possibly both of the ${}^{2}D$ terms from $4d^{9}5s6s$ have been discovered, as well as a number of levels of $4d^{9}5s5d$. A possible series member $4d^{9}5s7s^{4}D_{33}$ falls in the correct position. It is of interest to notice that the majority of the newly classified lines are between negative levels. It is surprising that the spectrum is as well developed as it is.

The numerical values of the levels are based on a new calculation of the ${}^{2}S$ series limit. From the accurate grating wave-lengths, the series was recalculated to fit the extended Ritz formula⁶

$$n^* = n + \mu + \alpha T + \beta T^2.$$

With the constants $\mu = -3.53427$, $\alpha = -1.600 \times 10^{-6}$, $\beta = -1.11 \times 10^{-12}$, all the levels except the lowest are represented quite accurately by

⁶ A. G. Shenstone, Trans. Roy. Soc. 235, 195 (1936).

the formula. The ^{2}D series is also nearly Ritzian but was not used because of the possibility of a perturbation due to $4s^2 {}^2D$.

All the even levels are collected in Table I and all the odd in Table II. Their combinations are given in Table III.

There are a number of peculiarities in the spectrum which should be noticed. Perhaps the most important of these is the rather large intensity of several ordinarily prohibited combinations. The best known are the $5p^2P - 6p^2P$ lines, which have been dealt with theoretically by Sambursky.7 That theory should now be modified in the light of the more complete analysis available. Lines which contravene both the parity and J rules and yet appear in the practically field free Schuler tube are $5s^2S - 5s^2 D_{23}$ and $5p^2P - 4^2F$. The former line is, like its counterpart in HgII observed by Paschen,8 a "nebular line." Other prohibited lines which appear faintly in the arc are $5s^2S - 5d^2D$, $5s^2S - 7d^2D$ and $5s^2 {}^2D_{2\frac{1}{2}} - 5d^2D$.

The intensities in the principal series show an unusual anomaly. The first two pairs of lines have about correct relative intensities, but in the third pair $5^2 S - 7^2 P_{1\frac{1}{2}}$ is relatively much too strong. In the fourth pair, $5^2S - 8^2P_{11}$ is entirely missing and $5^2S - 8^2P_3$ is stronger than the preceding $5^2S - 7^2P_i$. It is possible but improbable that these anomalies are caused by absorption in the lines of the bands of nitrogen, because the series $6^2 S - n^2 P$ seems quite normal.

Attention should be drawn to the following doubtful points.

 $5g^2G$. The value of 2G depends on a new identification of the two longest of Paschen's infra-red lines.

 $11d^2D_{1\frac{1}{2}}$, $^2D_{2\frac{1}{2}}$. These levels may be incorrect by a fraction of a wave number. The lines from which they were calculated have wrong intensities and may be spurious.

 y^2D_{2i} . This level may be spurious. It is based on two lines only and one of those is used elsewhere. It does, however, account for one strong line which has been tried as every other possible combination.

 $5f^2F$ is doubtful. It is based on the combination $5d^2D_{1\frac{1}{2}} - 5f^2F$ with no line to represent the stronger combination $5d^2D_{2i}-5f^2F$. If the line is assigned in the other way, 5^2F has a value far from the one expected.

 $5s5p^4D_1$, 2P , $^2D_{11}$ are based on the three extraordinarily wide lines observed in the Schumann region. There is no doubt of the reality of the levels, but the naming is arbitrarily made to agree best with the equivalent levels in CuI.

The level $5s5p^2F_{3\frac{1}{2}}$ at 4531.1 is one that would be found from one of McLennan's three $s^2 {}^2D$ differences. The two lines are, however, of completely different character and one of them is quite definitely assigned elsewhere. On that evidence it is not considered to be a combination with $s^2 {}^2D_{1\frac{1}{2}}$.

1°, 2°, 3° are probably the equivalent of the levels 6278, 5964, 5656, in CuI. Whether it is correct to connect these levels with the limit ^{1}D rather than with ^{3}D is doubtful.

Attention has been called to the extreme width of many of the silver arc lines. This width is, of course, an effect due to autoionization, but why is it so extreme in silver? Auto-ionization should theoretically be greatest quite close to the ionization point which initiates it, but this does not seem to be true in silver. A thorough experimental examination of the line widths might be well worth while.

898

 ⁷ S. Sambursky, Zeits. f. Physik 68, 774 (1931).
⁸ F. Paschen, Berichte d. Preuss. Akad. d. Wiss. 32, 536 (1928).