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v, ~ and E are energies of the initial quantum, final quantum, and electron in units of mc and o. is

the fine structure constant 1j137. We divide this by z to get the number of scattered quanta per
second. This is also, of course, the number of recoil electrons per second. It is given in terms of D
which is unknown. But the total number of electrons internally converted in the E shell for a dipole
transition is also given in terms of D. It is'

4 (v+2' '¹g=—
i i

(v'+2)D'Z'n4
3E v)

Dividing the above expression for the number of electrons scattered per second in the energy range
dE by this gives:

NgdB 3a(' v ) & TVg'
dZ,

N~ 2' (v+2) v~+2

i.e. , the number of electrons scattered in dB per electron internally converted. I he above asymptotic
expression for 8'~ gives a number about twice as large as that calculated from the more exact
formula in the energy range 2.39—2.52 Mev for the 2.62-Mev gamma-ray. The average magnitude of
the exact form of Ws in this range is about 800. This gives about 1/60 for the number of electrons
scattered in this range per electron internally converted.

The authors are grateful to Professor J. R. Oppenheimer for suggesting this problem and for his

kind guidance throughout the work.
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A critical study of the previous theoretical treatments
of the process of neutron capture by heavy nuclei bom-
barded with deuterons shows that while the dependence of
the transmutation function on the incident deuteron energy,
W, has been given correctly, the energy distribution of the
outgoing protons has not been satisfactorily estimated.
In I, the application to the Oppenheimer-Phillips process
of the usual formula for the cross section is shown to be
justified for restricted values of the atomic number Z and
of the deuteron energy. Bethe's method is used to express
the partial cross section as a product of three factors: the
penetrability of the potential barrier, the sticking proba-
bility of the neutron, and the energy transfer factor. In
II, methods of obtaining the deuteron wave-function are

discussed. Calculations of the transmutation function
are extended to higher values of Z and W, and results
obtained by using the 0-P-Bethe and the Kapur methods
are compared. In I II, the proton energy distribution is

discussed. A re-evaluation of the dependence of the trans-
fer factor on the proton energy, E', leads to a result differ-

ing from Bethe's. The transfer factor is found to have a
fairly sharp maximum, and to determine essentially the
proton energy distribution. For high Z and low W the
position and half-breadth of this maximum is given roughly

by %0~8' and AX&~3.3 WZ &. Lifshitz' and Kapur's
treatments of proton energies are examined, and found to
be unsatisfactory.

INTRoDUcTIoN
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~GENERAL theoretical treatment of the
nuclear reactions induced by deuteron bom-

bardment is made difficult by the fact that they
* Royal Society of Canada Fellow.

are many-body processes to which ordinary

perturbation methods are not applicable because

of the strong short-range forces involved. An

attempt to simplify the problem may be made by
considering first the probabilities of the proton
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and the neutron penetrating to the surface of the
nucleus, and then treating the interaction of these
particles with the nucleus schematically in terms
of a "sticking probability. " Such a method is
useful in discussing a mechanism proposed by
Oppenheimer and Phillips' to describe the process
of neutron capture by heavy nuclei bombarded
with deuterons. According to this mechanism the
deuteron is polarized by the Coulomb field, the
neutron penetrates to the surface of the nucleus
where it is captured, while the proton is repelled
by the Coulomb field without penetrating deeply
into the potential barrier. This mechanism
undoubtedly is important for describing neutron
capture reactions in light as well as in heavy
nuclei, and over a wide range of deuteron bom-
barding energies. However, the theoretical treat-
ment of this process based on considering
separately the penetrabilities and the "sticking
probabilities" of the particles is shown to be
justified only for deuteron energies considerably
smaller than the Coulomb barrier of the nucleus
involved in the reaction.

In this paper we consider only the neutron capture proc-
ess occurring under bombardment with deuterons whose
energy satisfies the above restriction. Oppenheimer and
Phillips' first found the dependence of the transmutation
function on the incident deuteron energy. Kapur~ re-
peated the calculation using a different approximation for
the deuteron wave-function obtained by a generalization
of the K.K.B. method developed by Kapur and Peierls. 3

Lifshitz, 4 although starting from a point of view different
from that of Kapqr, arrives at results identical with those
of Kapur for the dependence of the transmutation function
on the incident deuteron energy. Finally, Bethe' expresses
the cross section for this process in terms of the "sticking
probability" of the neutron, and the penetrability of the
potential barrier. Lifshitz, 4 Bethe~ and Kapur' give discus-
sions of the outgoing proton energies, but their methods of
treating this question turn out to be unsatisfactory. How-
ever, Bethe's treatment needs modification in only one
essential point, and is taken as the basis of the present
discussion of proton energies.

The purpose of this paper is threefold: (a) to
show under what restrictions the usual pertur-
bation-theoretic formula for the cross section in

' J. R. Oppenheimer and M. Phillips, Phys. Rev. 48,
500 (1935)~' P. L. Kapur, Proc. Roy. Soc. A163, 553 {1937).' P. L. Kapur and R. Peierls, Proc. Roy. Soc. A163,
606. (1937)~

E. Lifshitz, Physik. Zeits. d. Sowjetunion 13, 324
(1938).

5 H. A. Bethe, Phys. Rev. 53, 39 (1938).
6 P. L. Kapur, Ind. J. Phys. 13, 87 (1939).

terms of the square of the matrix element of the
perturbing interaction is applicable to this
problem where the perturbation is not small;
(b) to extend the calculations of the transmuta-
tion function to higher Z and higher bombarding
energies, comparing the results of the O-P-Bethe,
and the Kapur methods; and (c) to give a
qualitative discussion of the proton energy
distribution with reference to previous theoretical
treatments of this topic.

I. DERIVATION OF THE CROSS SECTION FOR THE
0-P PRocEss

Bethe's' derivation of the cross section for the
0-P process is based on the application to this
problem of the formula

0=(2m.jA) )I'Vg(N, n)x.*(N)yg*(P, n)

2

&&xs(N, n)gx(P)dNdndf', (1)

where N, p, n denote the coordinates of the
particles in the initial nucleus, A, and in the
incoming deuteron, y~ and Px are properly
normalized Coulomb-field wave functions of the
incoming deuteron of energy, W, and the out-
going proton of energy, X, x& and x& are the
internal wave functions for the initial and final

nuclei, and Ug is the schematic interaction
between the original nucleus and the neutron.
The usual perturbation-theoretic derivation of
(1) is based on considering transitions between
orthogonal states under the action of a seal/
perturbing potential U~, so that terms of order
Uz' in the matrix element may be neglected. The
validity of applying (1) to the 0-P process in
which Ug is not small must therefore be ex-
amined. We make the restriction to sufficiently
high Z and low 5' to make the probability of
both the proton and the neutron penetrating to
the surface of the nucleus much smaller than that
for the neutron alone, so that the short range
non-Coulomb interaction V"'(N, p) of the proton
with the nucleus, and the e8ects of direct
deuteron capture may be neglected. The 0-P
process may then be represented by transitions
between two almost orthogonal states. In the
initial state the system is well described by
y"(N)y~(P, n) where the effects of the nuclear
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Coulomb potential V, (N, p) and of the proton-
neutron interaction V(n, p) are considered in
calculating ps (p, n), and U~(N, n) and U~'(N, p)
are neglected. The final state of the system is
represented by xs(N, n)Px(p) where xs(N, n)
takes into account the effect of Vg(N, n), but the
influence of only U.(N, p) on Px(p) is considered,
the short-range interaction of the proton with the
compound nucleus being neglected. These two
states are not completely orthogonal since dif-
ferent parts of the total interaction are left out in
obtaining them, but will approach orthogonality
more and more closely as the deuteron energy TV

is reduced making the penetration of the proton
to the surface of the nucleus less and less likely.
Oppenheimer's' method of treating transitions
between almost orthogonal states may be applied
to this problem. It gives (1) for the first-order
term in the cross section, while the second-order
correction to the matrix element is of order VV~
instead of being of order V&' as given by the
usual perturbation theory for transitions between
orthogonal states. Although both V and V~ are
large, the matrix element of their product will be
small for the states under consideration, as both
interactions are of short range, differing from
zero only in small practically non-overlapping
regions if the above restriction on the deuteron
energy is made. Since no correction terms in Vz'
appear, and the term in VV~ is small, the partial
cross section to any specified final state is given
by (1), subject to the condition on Z and W.

If all the variables specifying the final state
except the proton energy X are integrated out of
(1), the energy distribution of the outgoing
protons for a given S' will be obtained, and
another integral over X will then give the total
cross section as a function of W', i.e. the transmu-
tation function. Carrying out these integrations
in accordance with the arguments given by
Bethe, ' we obtain as a rough. approximation for
the proton energy distribution, leaving out
numerical factors independent of X and S',

o(K, W)dK-i qs(PO, R) ~'T(K)&(Zs)dK. (2)

The principal simplifying assumptions made in
obtaining (2) include the following:

(a) In order to factor out the sticking probability g, it is
assumed that the principal contribution to (1) comes from

~ J. R. Oppenheimer, Phys. Rev. 31, 66 (1928).

the positions of the neutron on the surface of the nucleus.
Since the neutron-nucleus interaction is of short range,
regions outside the nucleus will not contribute appreciably,
and since the neutron does not penetrate deeply into the
nucleus undisturbed, but rapidly shares its energy with
the nuclear particles, the. whole neutron-nucleus interac-
tion may be throught of as confined to a region about the
surface of the nucleus much smaller than the dimensions of
the polarized deuteron, which are illustrated in Fig. 3.

(b) The effects of only the spherically symmetric partial
waves for both the proton and the neutron are considered
in (2). The effects of the higher partial waves are important
for the determination of the angular distribution of the
outgoing protons, or of the absolute value of the cross
section, but do not introduce appreciable changes into
the estimates of the transmutation function or the proton
energy distribution. If the higher partial waves were taken
into account, then the first two factors in (2) would be
replaced by a sum of products of similar factors taken over
the various values of the angular momenta allowed by the
conservation laws. The general character of the dependence
of each of these factors on X and S' is shown in the follow-
ing sections to be the same as for the one appearing in (2),
so that the summation will affect the absolute value of the
cross section, but not appreciably its dependence on X
and W;

(c) The integrations over the angles of the proton and the
neutron are assumed to introduce no factors dependent
strongly on the distance of the proton from the nucleus
or on the deuteron energy 8". For a given nuclear radius
and a given distance of the proton from the heavy nucleus
the principal contribution in integrating over the angles
will come from those positions of the proton and the
neutron when they are very nearly in a straight line with
the heavy nucleus. As the particles deviate from the
straight line position, the center of mass moves in towards
the nucleus and the proton-neutron distance increases.
Both these effects tend to diminish the deuteron wave
function. For high values of Z and low values of S" to
which we are restricted the wave function will fall off quite
rapidly.

The first factor in (2) gives the dependence of
the penetrability of the potential barrier on the
incident deuteron energy, and determines es-
sentially the tranmsutation function. ps (p, R) is
the spherically symmetric partial wave of the
deuteron Coulomb-field wave function normalized
to unit Aux. It is calculated by methods described
in the next section as a function of the proton
coordinate with the proton, neutron and nucleus
kept in the same straight line, and the neutron
held fixed at the surface of the nucleus. po is the
value of the proton coordinate which makes
ps (p, R) a maximum, and will be referred to'as
"the most probable proton coordinate. " R is the
nuclear radius.
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The second factor describes the transfer of
kinetic energy to the proton when its coupling to
the neutron is suddenly terminated by the
neutron being captured, and also takes into
account the gain in energy by the liberated
proton under the action of the Coulomb field.
Ke shall refer to it as the "transfer" factor. It is
given by

2

~(z) =z*
J

"p'dps(p)frr(p) =—z*'
I
~(z) I' (3)

where S(p) —= ps (p, R)iyrr(po, R), and fir(p) is
the spherically symmetric Coulomb-field partial
wave for the proton as given for instance by Mott
and Massey. ' It is in the evaluation of this factor
that we differ from Bethe. His rough estimate of
it yields T(Z) Z ', except at very low proton
energies, so that he is led to the conclusion that
compared to the sticking probability the transfer
factor is slowly varying, and is not important in
determining the proton energy distribution.
However, our re-evaluation of this factor dis-
cussed in Section III shows it to be a peaked
function of X essentially determining the proton
energy distribution.

The last factor &(2&) is called by Bethe the
modified neutron sticking probability, and is
defined in terms of the level spacing and the
neutron width of the levels of the compound
nucleus. It is introduced to give an approximate
averaged out result of the effect on the proton
energy distribution of the various nuclear levels
into which the neutron may be captured. The
function & is assumed to be a function of the
excitation energy E& of the nucleus formed by
neutron capture measured from the ground
state of the compound nucleus. Through E~ and
the conservation of energy

TV—I—Ig =X—Ig+E~. (4)

Therefore $ is a function of W—Z. Here Ig and
Ig are the binding energies of the ground states
of the initial and final nuclei, while I is the
binding energy of the deuteron. Little direct
experimental information in regard to the sticking
probability is available, but a plausible assump-
tion seems to be that for low-lying and inter-
mediate levels of the compound nucleus it is
proportional to the level density, increasing until

' N. F. Mott and H. S.%. Massey, The Theory of Atomic
Collisions (Oxford, 1933), p. 39.

a value of nearly unity is reached, and then
remaining approximately constant for the highly
excited states of the compound nucleus. Actually,
of course, the effect of nuclear levels .will vary
irregularly from level to level depending not
only on the energy, but on the angular momentum
and other characteristics of the indiv'idual levels.
Therefore if the neutron is captured into low-

lying levels (low values of Bs, hence high values
of Z) whose spacing is large compared to their
breadth, so that effects due to individual levels
must be considered, then this way of describing
the process will fail. The energy distribution of
protons may show group structure at high
energies, and our only reliable information about
the effect of sticking probability on the high
energy part of the proton energy distribution
curve will be the maximum possible value of Z
allowed by (4) corresponding to the neutron
being captured into the ground level. However,
if the neutron is captured into one of the highly
excited levels of the compound nucleus in the
region where the spacing of the levels is com-
parable with their breadth, then the function &

giving the smeared out effect of a large number of
levels will be a satisfactory way of describing the
inHuence of nuclear structure on the low energy
end of the proton energy distribution curve. The
transfer factor is found to have quite a sharp
maximum at values of X corresponding to the
neutron being captured into the higher lying
levels in the region in which the sticking proba-
bility gives a good schematized description of
the interaction resulting in neutron capture.
Moreover, for these high levels ( probably varies
only slowly with the energy, so that the proton
energy distribution is determined essentially by
the peaked transfer factor.

Integrating (2) over Z, and retaining only the
factor most strongly dependent on S' we obtain
for the transmutation function

(II')-
I ~ (p. , R) I' (5)

The Gamow transmutation function derived on
the assumption that the deuteron is not polarized,
and the proton and neutron both reach the
surface of the nucleus, may be obtained from (5)
by replacing the most probable proton coordinate
po by the nuclear radius R:

«(II') -
I
~~(R R) I' (6)
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II. THE DEUTERQN WAvE FUNcTIoN AND THE

TRANSMUTATION FUNCTION

Oppenheimer and Phillips' used the adiabatic
and W. K. B. approximations to calculate the
spherically symmetric Coulomb-field partial
wave for the straight line positions of the
deuteron as a function of the proton and neutron
coordinates. Kapur' avoids the use of the
adiabatic approximation, and uses a two-di-
mensional extension of the W. K. B. method to
evaluate this wave function only at the most
probable proton coordinate when the neutron is
held at the surface of the nucleus, thus deter-
mining the transmutation function. His method
is easily extended to determine this wave function
for other straight line positions of the proton,
neutron and nucleus. Lifshitz' obtains the same
result as Kapur for the transmutation function,
and the relation of his work to the two other
methods is discussed at the end of Section III.
To facilitate comparison all results are stated in
terms of Bethe's notation. R is the nuclear
radius, p and n the proton and neutron coordi-
nates, and r = —', (p+n) the coordinate of the center
of mass. It is convenient to introduce the reduced
dimensionless quantities p=IR/Ze', x=Ip/Ze',
y=In/Ze', q=Ir/Ze'= ,'(x jy), ~= W-/I. Most
of the results can be obtained in terms of these
reduced quantities, and assumptions in regard to
the magnitude of the nuclear radii have to be
introduced only in the final stages of the calcu-
lations. We take the nuclear radii to be given by
R=ROA' with Ro ——1.4)&10 " cm which makes
R=3.5X10 "cm for oxygen, and R=8.7)&10 "
cm for uranium.

The adiabatic approximation used by Oppen-
heimer and Phillips' and Bethes to separate the
internal motion of the deuteron from the motion
of its center of mass makes use of the fact that
the effective time of collision of the deuteron
with the nucleus is long compared to the period
of the internal motion of the deuteron, so that the
change in the external forces acting on the
deuteron over a period of its internal motion may
be neglected. The relative motion is approxi-
mately given by the solution of the wave
equation when r, the distance of the center of
mass of the deuteron from the nucleus, is held

fixed, The center of mass moves in an effective

potential which is the energy of the relative
motion expressed as a function of r. The W. K. B.
method is applied separately to the two i esulting
equations, and gives (for p) n)

qs (p, n) =exp
2Ze' (Mq l

I

—
I

Fop(~ x») (7)
a EI)

where M is the proton mass, and

1 1) ~

Fop(e, x, y) =
I dni 1+———

[
u g)

—=cos—' u& —[a(1—n)]& 0—.u=1. (10)

This is imaginary for n&1, and hence is neg-
lected, as only the real part of Ii is of interest.
The result is given in this form by Bethe, ' and
reduces on setting y=0 (zero nuclear radius) to
that of Oppenheimer and Phillips. '

Kapur does not make the first adiabatic
approximation, but directly substitutes ys (p, n)
=exp [—1/55&(W, p, n)] into ' the deuteron
equation, and leaves out certain terms in the
resulting expression. Whereas in the adiabatic
approximation the variation of the relative-
motion wave function with the coordinate of the
center of mass is completely neglected in calcu-
lating the center-of-mass wave function, Kapur's
procedure takes into account its variation with
the magnitude, but not with the direction of the
coordinate of the center of mass. If Sx(W, p, n)
= 2Ze'(M/I)'*Fx(e, x, y), then Fx satisfies the
equation

F '+F '=-', (1/x —&+1)

with the boundary condition (for p )n)

(F. F„).=„=1. — (12)

This may be solved either by a process of
minimization of a line integral as done by
Kapur, ' or by the method of characteristics. The
latter method is more straightforward. The

+ ~' ds~ ——
) (8)

&s )
lf(-erf)+rli i 1—

v) i—

X If«-» -f(I1-&I I2-y&- I) I

f(~) = —»nh—'( —~)' —[(—~)(1—~)]'
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characteristics are given by

dx dy dF

2F, 2 F„2(F,'+ F.„')

dF,. dFy

1/2x' 0

x =y = s is chosen as the initial line. The values of

F, and F„along this line as obtained from (11)
and (12) are:

F,(s) = -', [1—(1/s —e) l],

F„(s)= —,'[—1 —(1/s —e)']

and the value of Falong the initial line is given by
&1/e

/ j
F(s) =

I F'(s)ds=
i

——e
i

ds. (15)
$/g g ES )

From (13) we see that the characteristics are the lines of steepest descent. Integration of (13) leads to

FK(~, x, y, ) =2 l
~ dx~ ——c+1

~

(1.+y")'+ ~

)
——~

~
ds,

(x ) J., (s ) (16)

where the first integral is taken along the characteristic passing through the point (x, y) until it
meets the initial line at the point (x~, x~). The slope of the characteristic at any point (x=y) is given
by

y'= ~0[2(1/x .+1—',13']—--:, (17)

where + is taken for P~2, while —is chosen for 1=P&2 along the initial line x=y, but changes to
+ when the denominator of (17) vanishes in integrating along a characteristic. xq and P are de-
termined in terms of e, x and y by

and
(1/x, —e) l =P —1

(19)

taken along the characteristic. For e~ 2, (W~-', I) integration of (19) gives P as the root of

tan '
, +p

(P' —2+2e)'*

(tl' —2+2') & (P' —2+2&) **[P(P—1)+e—1]
~[(~-1)'+ ]

2
(20)

0 x(P' —2+2&)

where G(o) —= tan ' n+n/(1+a'). The value of P= 1 gives the characteristic which separates regions
of real and complex values of FK. In the latter region this method of obtaining FK is inapplicable. The
real values of FK(P—1) are given by:

1 P —1 P(P —1)+e—1 P'+e —1
FK(e, x, y) =—tan —' —+

C' p [(/3 —1)"+6] p

2
ax(P'+2e —2) l (21)

x(P' —2+2&)

where the value of P and the sign are the same as
in (20). Similar expressions are obtained for
e & 2, (W&-,'I), but are not given here, as we are
not interested in such low bombarding energies.

The difference between F&p of (8) and FE of
(16) is that the paths of integration differ as
shown in Fig. 1, and in the former 1/g~ ~ occurs
instead of ~ in the first integrand. We are
interested primarily in F(e, x, y) as a function of
x for a fixed y= p. The graphs of both Fop and FK

are given for a special case in Fig. 2. It is seen
that the two are quite similar.

To obtain the transmutation function we must
know the value of F(e, x, p) at its minimum at
xo Ipo/Ze2. The de——pendence of xo on e for
Fpp(e, x, p) and a given p is obtained from
xp 2go p where go is determined by BFpp/Br/= 0
in the manner described by Bethe. s For p &0.172
(i.e. for those heavy nuclei whose radii satisfy the
condition R&0.172Ze'/I=0. 116Z&(10 "cm) the
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Frt". 1. Paths of integration for zero
nuclear radius for the different approxi-
mations to the deuteron wave-function:
0-P-B-Oppenheimer-Phillips-Bethe; K-
Kapur; L-Lifshitz.

FIG. 2. Dependence of Fop(~, x, p)
and FK(~, x, p) on the reduced pro-
ton coordinate x = Ip/Ze' for e =0.5,
p =0.17.

FIG. 3. Dependence on the deu-
teron energy W of the most prob-
able proton coordinate pp= x0.Ze /I
when the neutron is at the surface
of the nucleus, for different values
of the atomic number Z.

minimum of Fop(e, x, p) at certain energies will

lie in a region of complex values of Fop, but since
only the real part of F is of interest, all imaginary
terms are left out whenever they appear in

(9), (10) or BF/Br1=0 The minim. um in FK(e, x, p)
occurs at the point where a characteristic (a line

of steepest descent of FE) is perpendicular to the
line y= p. From (17) we find

xp ——2/(Pp' —2+2e), (22)

so that Pe is determined as a function of e for a
given p by (20) with the right side set equal to
zero. The dependence of xo on e for a given p is
then obtained from (22), and the result is found
to be practically the same as the one for the
0-P-Bethe method. As in the 0-P-Bethe method,
for heavy nuclei (R(0.191Ze'/I=0. 129Z)&10 "
cm, p(0.191) the minimum of Fr, at certain
energies lies in the region of complex values of FK.
Since this method does not give a solution in that
region, neither the most probable proton coordi-
nate nor the value of the transmutation function
at those energies can be obtained by this method.
The dependence on Z and S'of the most probable
proton coordinate pp=xpZe'/I when the neutron
is kept at the surface of the nucleus is shown in

Fig. 3, and illustrates the extent of the polariza-
. tion of the deuteron by the Coulomb field. po is

roughly given by Ze'/ W, (x& ——1/e). For a given Z
the most probable proton coordinate decreases
with increasing W until at W, =Ze'/R I= U. I— —
it is found by both the 0-P-Bethe and the Kapur
method to be equal to the nuclear radius. W,

'

is
thus the critical bombarding energy above which
the 0-P and the Gamow penetration functions
coincide.

The transmutation functions of (5) and (6) are
given by

o(W)
~
ys ~'=exp

=exp L
—0.61ZF]. (23)

Both Fop(e, x, p) and FK(e, x, p) reduce for
x=p (both proton and neutron at the surface
of the nucleus) to the same value FG('e, p, p)
= e 'f(ep) which inserted in (23) gives the
Gamow transmutation function. FG =0 for
e= 1/p, (W=Ze'/R= U,), i.e. , when the deuteron
bombarding energy is equal to the top of the
nuclear Coulomb barrier, and increases with
decreasing bombarding energy. Above the critical
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value e, =1/p —1, (W, =Ze'/R I)—, Fop and FK
coincide with FG. As e decreases and xo becomes
larger than p, Fop and FK become smaller than
FG, making the 0-P penetrability larger than the
Gamow penetrability. In Fig. 4, graphs of
FG —Fop and FG —FK are given for several p. It
is seen that the 0-P-Bethe and the Kapur
approximations yield slightly different results,
the deviation being most pronounced for p =0
(zero nuclear radius), and quite small for the
other values of p considered. The dependence of
the ratio of the 0-P penetrability to the Gamow
penetrability on the bombarding energy for
different Z is calculated by means of

v=
I ~~(po R)l~~(R, R) I'

= exp [0.61Z(Fo Fpp) ] (24)

and is plotted on a logarithmic scale in Fig. 5.
The quantity 1/y is a measure of the probability
of both the proton and the neutron reaching the
surface of the nucleus compared to that of the
neutron penetrating alone. Since the theory of
Section I applies only when 1/y is small, it is
seen that the calculations of this paper become
increasingly less reliable as the bombarding energy
approaches the critical energy W, =Ze'/R I. —

The approximation for the higher partial waves
of the deuteron beam would have in the second
integrand in (8) in addition to the Coulomb
potential 1/s(=Ze'/rI) a centrifugal potential
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FIG. 4. Dependence on the reduced deuteron energy
E = W/I of FG(E, p, p) —Fpp(E, xp, p) and FG(E, p, p)—
FK(E, xp, p) for different values of the reduced nuclear
radius p=IR/Ze .

term L/s' with

l(l+1) t key ' I l(l+1)
I.=

I

—
)

=10.7
4Z' 4e') Mc' Z'

The ratio of the centrifugal to the Coulomb
potential is given by I./s= 10.7l(l+1)/Z's. The
important values of s are s go=-', (xo+p) 1/2e
+p/2. For these values L/s=21. 4/(l+1) W/Z'I,
so that the effect of the centrifugal potential is
unimportant for /()+1) (Z2I/20W. This gives
l(6 for 2-Mev deuterons on zinc, and jt(11 for
5-Mev deuterons on lead. Thus both the absolute
value and the shape of the erst few deuteron
partial waves considered as functions of the
proton coordinate with the neutron kept at the
surface of the nucleus will not be strongly
dependent on /. The fact that several partial
waves contribute appreciably to the cross section
leads us to expect a nonisotropic angular distri-
bution for the outgoing protons. However, in the
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FIG. 5. Dependence on the deuteron energy 8" of the
ratio of the Oppenheimer-Phillips to the Gamow penetra-
bility for diAerent values of the atomic number Z.

present paper we do not attempt to give a
discussion of this question.

III. THE PRoToN ENERGY DI sTRIBUTIQN

The transfer factor T(K) in the proton energy
distribution as given by (3) involves the integral
I(K) =fp'dpS(p)fx(p). The dependence of this
integral on K may be estimated as follows. S(p)
has a maximum at p=po Ze'/W. If it were
sharp hke a 8-function, I(K) pox(pp) As a.
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function of X this starts out Oat near the origin,
reaches a maximum roughly at X Ze'/pp, and
then oscillates with an amplitude falling o6' as
K & for large K. Since actually S(p) has quite a
broad maximum, it will not resolve the oscilla-
tions of f&(p) as they crowd in with increasing K,
so that after a few oscillations of rapidly de-
creasing amplitude I(X) will fall off mono-
tonically. The position of the maximum and
the general shape of S(p) is about the same for
the first few deuteron partial waves, and the

proton partial waves differ little from one
another except for the relative positions of their
maxima and minima. It is therefore expected
that for low proton partial waves the general
dependence on K of integrals of the type I(K)
will be roughly the same as of the one here
calculated, while for higher proton partial waves
these integrals will fail off' in absolute value
because of the more rapid oscillation of fx(p)
with p for higher I; X being chosen to fix the first
maximum of fx(P) at P PI.

An analytic estimate of I(X) is obtained as follows. For any particular Z and W, S(p) can be
fitted quite well by a curve of the type

( d
S(p)=(p+a)-e-- =I ——+a }

e=
do. ) (25)

with suitably chosen a, n, and an integral value of m. Using the contour integral representation for
fx(p) given by Mott and Massey, ' and interchanging in I(K) the order of contour integration and
integration over the proton coordinate we obtain:

with
I(K) {K'*[1—exp (—2~8K ')]} lJ(X) (26)

1+v/~
I(K)-I —+I I exp {—28X—' tan —' (yX—

&) }
(X+~') '

g-+2(v, K)
exp {—28X ** tan ' (yX &)}. (27)

(Z+~2) m+ 9

X+y' dg,

28 dy
g +~(» Z) =

I
1+—Z }+ ~+ ~' g

——
26 ) 8 26

Here g +2(y, K) is a polynomial of the mth degree in K with a nonzero constant term. It is obtained
from g2(y, X) —=1+y/8 by an m-fold application of the recursion relation

If X is measured in Mev, then 5 defined by n =Ze'/k@= 8/K& is given by 8 =0.158Z. y and I are de-
termined in terms of n and a of (25) by

y = 1 08n/8 . I = ba/1. 08,

if a and n are expressed in terms of Ze'/I taken as the unit of length.
The dependence of the partial cross section on proton energy for a given lV is then given by

a(K)dX fKl
I
I(K) I'dK= f.T(K)dK

exp [—48K—'* tan ' (yZ &)]
T(Z) =[1—exp ( —2s.bX l)] ' la.+2(K) I'

(X+~2)2m+4

(29)

—= [1—exp (—2s.8Z '*)] 'G(Z)g'(X). (30)

G(Z) is the dominant factor in T(Z) giving a pronounced peak. The first factor is practically unity
over the range of X where G(K) is appreciable. g'(K) describes the oscillations mentioned at the
beginning of this section. The calculation of g +2(X) by means of (28) is quite laborious for high
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values of m. However, numerical calculations for particular cases show that for the values of Z and lV
considered the first zero of g„+p(E) comes at a much higher value of Z than the peak of G(Z), so
that g +p(E) is slowly varying over the important range of values of Z, and the position and half-
breadth of the maximum of the transfer factor are determined essentially by G(Z).

For any particular Z and W the dependence of G(Z) on Z may be found by substituting in (30)
the values of m and y obtained by fitting a curve of the type (25) to S(p) numerically calculated for
that case by methods of Section II. A very rough, but helpful estimate of the dependence on Z and
W of Zp, the position of the maximum of G(Z), and its half-breadth ~Zp, may be obtained as
follows. We first estimate the dependence on Z and W of m and y. If we write

Fpp(p, x, p) Fop(p, xp, p)=X[(x xp)/xp log (x/xp)],

we find that over the range of Z and W (i.e. , of p and p) of interest to us X is practically a constant
0.6. xp was shown to be given roughly by 1/p. So we can take

S(P) —=exP [—0.3Z{F(x)—F(xp) }]-[xe '*)'-"z

making ns=0. 18Z, y=1.08X0.18WZ/)I=0. 57W, /=0. With these values G(Z) becomes

G(E) ~exp [—0.63ZE '* tan ' (057WZ &)]/(Z+0.325W) '+. (31)

Xp is determined by

G'(Zp) =0

and AXp by

(32)

1+{1+1.3W(1+11.1/Z) }
i

Ep= W
2(1+11.1/Z)

which shows that Ep W for small W and
large Z. Using Zp W, and G'(Zp) =0, we ob-
tain from (33)

0.72Z 0.36Z+ 4
AEp ——2

W' W'(1+0.325 W)'

=2%'Z ' 0.72—
0.36+4/Z

(1+0.325 W)'

which shows that for small W and large Z,
AXp 3.3WZ &. These rough estimates give for

Z =30
Z=82

S"=2 Mev %0~2 Mev bZ0 1 ~ 2 Mev
IV=1 Mev E0~1 Mev AZ0~0. 36 Mev.

More exact calculations using values of y and m

fitted to the above values of Z and 8' yield

Z=30
Z =82

W = 2 Mev X0= 1.9 Mev
5"=1 Mev E0= 1.35 Mev

AXp ——1.4 Mev
b,E'0=0.52 Mev.

~Zp ——2[—G(Zp)/G" (Zp)]l. (33)

For W not too large we replace in (31) tan '

X(0.57WE &) by its argument. Then (32) gives
for Xp

It should be emphasized again that the latter
part of the above discussion of proton energies is

only qualitative, and yields only the order of
magnitude of Xp and AEp. However, it brings
out the importance of the transfer factor in

determining the proton energy distribution. Since
Xp t/V, the conservation of energy shows that
for a proton to come off with this energy the
neutron must be captured in a high lying state
of the compound nucleus 8 with an excitation
energy of E & I&—I&—I 6 Mev above the
ground level. For such states the "sticking
probability" $ is a valid way of describing the
neutron-nucleus interaction and is expected to be
roughly proportional to the level density in that
region which, according to Weisskopf, is given by
co(Bs) exp [2(Bs/a) &] with a 0.2 Mev. Since
the half-breadth of the transfer factor is quite
small, the sticking probability might vary by a
factor of two or three over the breadth of the
transfer factor, but the latter would still be the
determining factor for the proton energy
distribution.

We conclude with a reference to the work of Lifshitz4 and
Kapur. Lifshitz sets out to evaluate the matrix element of
the perturbing energy (really the scalar product of the
initial and final wave-functions, as all non-exponential
factors are left out) by using a semiclassical method
(analogous to the W.K.B. approximation). In our present
notation his expression for the transition probability

' V. Weisskopf, Phys. Rev. 52, 295 (1937).
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where

+ —f 2„(—,—Z, dx'

g is named by him the coordinate of the "transition point. "
E„and E„are interpreted by him as the energies of the
neutron and the proton at "the instant of break-up" of the
deuteron at the "transition point, " the interpretation
being based on a classical application of the energy and
momentum conservation laws, and the use of the classical
concept of the action function in a region classically in-
accessible to the particles. E and E„are given in terms
of sand (by

E = —-'I1+(1/k —)~j'
E„=.—1+-,'t 1+(1/P —.) &j2 (36)

Since 1/& is connected by (36) with E„Lifshitz interprets
the variation of o-(&, 8') with ( as describing the dependence
of the cross section on the outgoing proton energy, and
takes the transmutation function to be determined by
a(&0, 8') where &0 is the value of ( which makes o-(&, S") a
maximum.

We compare FL(e, g) of (35) with FK'(e, x, y) of (16) with
y=0. The last integrals are of the same form. The first
integral in (16) is taken along the characteristic through
the point (x, 0), and may be written as

f""[2—(1/x 'E„E,)1]&dt. — —

In (35) it is replaced by an integral along the x axis from a
point (x=1/E„, 0) to (g, 0), plus another integral along a
vertical line from (g, 0) to (&, P), as shown in Fig. 2. Thus
formally Fop, FK, and Fz, are very much alike. The paths of
integration differ somewhat, the points at which the path
of integration joins the line x =y differ, but are in each case
uniquely determined by the point (x, 0) and the integrands
along a part of the path differ, but the general dependence
of any of these three functions on x is the same.

FK is given explicitly by (20) and (21). The correspond-
ing results for FL are

1 5 —1
Fg(&, x, 0) = —tan '

1 2 —8+ tan-'. . . (3'7)
(~ —2+2.) ~ (~' —2+2.)"

where 8 is given in terms of e and x by

2/x =8'—2+2~. (38)

(using zero nuclear radius) is:

4Ze' M
0 (5 ~) exp FL(& $) (34)I

g is given by

(1/g —e) & =5—1 (similar to (18)). (39)

The 5 determined by (38) is in general different from the p
determined by (20), so that ( is different from x~, and FL is
different from FK. However, differentiation of FL shows
that its minimum is given by the same equation for 80 as is
satisfied by Po, i.e. by (20) with the right side equal to zero
and y= 0, and in that case it so happens that the positions
of the minima, the values of FL and FK at that point, and
the. points g and x& fortuitously coincide, thus making
Lifshitz' result for the transmutation function identical
with Kapur's.

In view of the above it seems that Lifshitz' expression
for the cross section (34) should be interpreted not as the
square of the scalar product of the deuteron and proton
wave functions given as a function of the outgoing proton
energy, but rather as another approximation (analogous
to the 0-P-Bethe and Kapur approximations) to the square
of the deuteron wave function considered as a function
of the proton coordinate p with the neutron kept at
the surface of the nucleus. Considered as a function of
E~=Ze'/p instead of p, (34) gives a measure of the proba-
bility of the deuteron penetrating into the classically inac-
cessible region and being so polarized by the Coulomb
field that the proton is found at a point p where its Cou-
lomb energy is given by E„=1/p while the neutron pene-
trates to the surface of the nucleus. The energy distribution
of the outgoing protons, however, is determined not only
by the energy gained by the proton from the Coulomb
field, but also by the transfer of the kinetic energy to the
proton when its connection with the neutron is severed.
The two effects are taken into account in the transfer
factor discussed above.

Kapure interprets the process in a very classical way.
Assuming the path of integration corresponding to the
point (xo, p) to be the actual path taken by the deuteron
after penetrating the potential barrier he interprets the
point (x~, xi) as the point at which the deuteron breaks
up (analogous to Lifshitz' interpretation of the point g),
and. assumes the proton always to come out with an energy
equal to its Coulomb energy at that point uniquely de-
termined in terms of p and xo. This interpretation is quite
inconsistent, since it is based on describing the motion of
the particles in terms of a well-defined classical trajectory
in a region classically inaccessible to them.
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