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theory as shown in Fig. 2. Fig. 3 gives the shape
of the diffraction maxima. The increasing diffuse-
ness with

~

6
~

is well illustrated; but the numerical
values for the half-widths are—as Fig. 4 shows—
smaller than the theory demands. This dis-

crepancy may be real, but more likely is due to
the limited accuracy of our photographic
rneasuremeo ts.

More accurate and more extensive measure-
ments, including observations at different temper-

atures and with different crystals, are of course
desirable and are already under way. It may be
mentioned that we have observed the new
diffraction maxima with calcite crystals and that
the maxima show the same general behavior as 6
is varied. Indeed, the theory of diffuse scattering
should apply also to perfect crystals since the
coupling interaction between incident and scat-
tered radiation is weak when no Bragg scattering
takes place.
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A formulation of the equations of motion of singularities in classical electromagnetic theory
is obtained. The general method introduced by Einstein, Infeld and Hoffmann leads in a simple

way, without any dii6culty with "infinities, " to the equations of motion obtained before by
Dirac. It is shown further that Dirac's introduction of the inertial term into the equations of
motion correspond in this method to the assumption of an energy-momentum tensor of matter.
The attempt to remove this arbitrary assumption leads in a simple and natural way to the
general theory of relativity, in which the equations of motion are obtained from the Einstein-
Maxwell field equations.

1. INTRoDUcTIoN

''N Maxwell's theory the motion of charged
~ - particles represented as singularities of the
field is not determined by the field equations.
Dirac' has shown that the equations of motion

are suggested by the conservation law for the
electromagnetic energy-momentum tensor. By
virtue of this law, it is demonstrated that the
integral representing the flux of energy and
momentum over a thin tube surrounding the
world-line of a singularity (electron) depends

only on the conditions at the ends of the tube.
Then the equations of motion are obtained by
assuming a simple expression for this flux. How-

ever, the integral takes an infinite value as the
tube shrinks to the world-line, and Dirac is

compelled to remove this difficulty artificially by
equating the flux to an expression containing an
infinite term and a finite term representing the
product of mass and acceleration. This, and the

' P. A. M. Dirac, Proc. Roy. Soc. A16'7, 148 (1938).

formal complications of the paper, constitute its
weak points.

The above procedure leads to familiar equa-
tions for the motion of electrons, but whereas
these equations were formerly considered to be
approximate, Dirac concludes that there is good
reason to assume them exact.

The general method of obtaining equations of
motion in the theory of relativity introduced by
Einstein, Infeld and Hoffmann' appears at first
sight fundamentally different from that of Dirac.
It is shown here, however, that the former
method can be adapted to the problem of motion
in an electromagnetic field. The method involves
only two-dimensional and not three-dimensional
surface integrals, avoids the difficulties of "in-
finities, " and leads in a simple manner, without
the use of b-functions, to the results obtained by
Dirac. But we believe that the advantage of the

2 Einstein, Infeld and Hoffmann, Ann. Math. 39, 65
(1938).
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method used in this paper lies not only in the
simplification of the derivation of the equations
of motion. It gives also a natural transition to the
problem of motion of charged particles in the
general theory of relativity.

We have tried to formulate the argument in
such a way that it may be understood without a
knowledge of the quoted papers.

2. THE SURFAcE INTEGRALs AND THE EQUATIoNs

oF MoTIoN

Throughout this section we shall use an es-
sentially 3-dimensional notation, Latin letters
running from 1 to 3, and repetition of an index
implying summation over this range. Ihe nota-
tion ",n" and ",0" will be used to denote ordi-
nary derivatives with respect to the coordinates
x" and time, respectively. The velocity of light is
taken as unity throughout.

We write down the conservation laws for the
electromagnetic energy-momentum tensor:

moment t and to this coordinate system. It is
because of this special choice of coordinate
system that it is convenient to use throughout
the three-dimensional notation.

We introduce now a vector P and a, scalar P.
satisfying the equations

t11t'm = Tmo, os

dP, = —T„„
(2.6)

(2.7)

where 6 is the La placian operator. Both P„and
P, will always exist outside the small sphere if we
assume the electromagnetic field to be known,
and the T's to be calculated from it. We can
therefore write (2.1) and (2.2) in the form

(2.8)

(2.9)

Assuming that the energy-momentum tensor
vanishes rapidly enough at infinity, we obtain
from Green's theorem, by virtue of Eqs. (2.8) and
(2.9), that the four surface integrals

where

Tmn, n ~mo, o~

Ton, n Too, o~

(2.1)

(2.2)
)f(T„„+P„,„)X"dS, (2.10)

'1 „=Maxwell stress tensor= F,F„,
+ms+rso 4~mrs~rsFrs+ j~mss~ss+ssi (2 ~ 3)

T,„=Poynting vector = F,.F, , (2.4)

Too Energy density = -~ F,,F,.+ '; F, ,F,.„
1 if m=n&
0 if mWnj

(2.5)

F..= J'". and F„,n= e „,II, where 2,, and XI, are
the electric and magnetic field, respectively, and

, is the "permutation symbol" defined in the
following manner: e n, =0 when two of m, n, s
are the same, = 1 when m, n, s form an even per-
mutation of 1, 2, 3, = —1 when m, n, s form an
odd permutation of 1, 2, 3.

Equations (2.1) and (2.2) break down only at
the point occupied by the singularity, which we
assume to be a simple electric pole. Let us sur-
round the singularity with a small sphere, and
accept the validity of the equations everywhere
outside. Furthermore, let us choose a Lorentz
frame of reference in which the singularity is
instantaneously at rest at the origin at some
moment t. All our calculations will refer to this

(2.11)

(where X" are the direction-cosines of the normal
to the surface of integration), are independent of
the shape and size of the surface chosen, and
hence can depend only on quantities charac-
terizing the singularity, in particular the coordi-
nates of the singularity and their time-deriva-
tives. We see from (2.6) and (2.7) that P„, and P,
are both arbitrary to within a harmonic function.
The only solid harmonic function which can give
a contribution to the surface integrals is one of
the form f(t)/r where r'=x'x' If we take as the.
surface of integration a sphere with center at the
singularity (the origin) the contribution to the
surface integral of a term of this type is 4rrf(t), —
i.e. , an arbitrary function of t. For

(f(t) /r) „= (x"/r') f(t), X"=—x"/r, and dS = r'd&o,

where d~ is the element of solid angle subtended
at the origin. Hence

(f(t) /r), „A"dS= —~ff(t)du = 47rf(t)—



MOT ION I N ELECTRO D YNA M I CS

It follows, then, that we can give the integrals
(2.10) and (2.11) arbitrary values by choosing
appropriately the functions f(t).

To assign consistent values to the four integrals
means to determine the motion of the singularity,
because the integrals depend only on the coordi-
nates of the singularity and their derivatives.
We proceed in the following manner: we assume
that the integrals are equal to zero—

(I o)'n+fw ts)X (l* = 0)

)3(T„„+p.„)X"d5=-(), (2.13)

f1N +el 0 I\ (2.14)

where P„„P.are the arbitrary harmonic func-
tions, and 0, O. are the solutions of the Poisson
equation which do not contain in their develop-
ment with respect to r an harmonic function of
the type 1/r

We let the coordinates of the singularity be
n "(t), where q"(t) = 0, j"(t) = 0 in our special
coordinate system, at the instant to which our
calculations refer. (Dots indicate derivatives
with respect to time. ) We assume that the field of
the singularity is represented by the advanced or
retarded potential, and that the external field is
superimposed upon this.

We are now prepared to determine the equa-
tions of motion by choosing the arbitrary func-
tion f,„.Since q'(t) = 0 and j"(&) = 0 the simplest
possible assumption aside from the trivial one

and shift the task of determining the motion to
the choice of the arbitrary harmonic functions.
We could equally well assume any value for the
integral, making a corresponding change in the
arbitrary harmonic function. Therefore our as-
sumptions (2.12) and (2.13) do not imply any
loss of generality.

The apparent anomaly of having four equa-
tions where three would appear to determine the
motion completely may be met by choosing the
arbitrary function in the last equation in such a
way that no new restriction is placed on the
motion.

We will write

which omits this term altogether is

with this choice the equations of motion (2.12)
become

where the integral on the right-hand side is
taken over an arbitrary surface surrounding the
singularity.

The form taken by the equations of motion
will depend upon the actual field from which T„„,
is calculated. The usual procedure is to divide the
field into two parts, the "external" field (which
Dirac calls the "incoming" field) and the field of
the singularity, taken as a retarded potential.
This procedure is, however, arbitrary. From the
formal point of view the solution corresponding
to -', (retarded+advanced) potential, which is
known as the "standing wave" solution and
which does not specify a privileged direction for
the flow of time, is the simplest which can be
gained from the use of the "new approximation
method. "' It was this solution which was dis-
cussed at the time of Bohr's theory, since it
represented an orbital motion without radiation.
The addition of radiation seems from this point
of view arbitrary, being obtained by super-
imposing upon the "standing field" a field equal
to 2 (retarded-advanced) potential.

The complete calculation of the equations of
motion is carried out in Appendix I. If we use the
"standing wave" solution for the field of the
electron we obtain from (2.16) the equations

~ ~m.g'" =e.„tE,
where, fE is evaluated at x'=0 and at the
moment t.

With regard to the fourth equation (2.13), the
contribution from the field is identically zero
(Appendix I), and hence the added harmonic
function P, must be taken equal to zero, since we
have laid down the condition that this equation
should place no new restriction upon the motion.

Hence the equations of motion formulated by
(2.12) and (2.13) and by the choice of the
harmonic functions P = m, ,(rI'"/r) and f, 0

3 L. Infeld, Phys. Ilev. 53, 836 (1938).
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leads through the "standing wave" solution to
(2.17) for the special coordinate system in which
the equations are formulated.

In the case where we take the retarded po-
tential and leave the harmonic functions as be-
fore (2.16) leads to the equations

m.u = e«1E»+-'3e'u'", (2.18)

where u"'= j; and (2.13) again imposes no new
restriction upon the motion.

We wish to remove the restriction imposed by
the choice of a particular coordinate-system. This
will involve a change to four-dimensional nota-
tion. We will consider a four-space with coordi-
nates. x&. Greek letters will be assumed to take
the values p, 1, 2, 3 where x" is the time-coordi-
nate and x', x', x' are the space-coordinates, as
before. We will assume that the four-space has
signature+ ———.The vector v& will be defined
as the four-dimensional velocity-vector of the
electron. Accents will indicate differentiation with
respect to arc-length in space-time. Then it may
be shown that in the "standing wave" case the
equations of motion may be written

is an identity. The second reduces to

'» K' »~0+ = ~ext, F0 '= ~ext~»z

which is precisely (2.17).
Consider the additional terms (-', e'v""+ 3s'v "-v")

which occur in (2.20). From (2.21) and (2.22) we
have:

and

«0+ 2e~p~2po &p2pZ", ]p" 2e2+r'CCr p3 3 3 3

-p V "'+—8 V V"'= —8 Qm'
3 3 3

therefore (2.20) is likewise an identity when zz= 0
and it reduces to (2.18) when p =m.

Hence Eqs. (2.19) and (2.20) are valid in one
coordinate-system. Since they are vector equa-
tions, it follows that they are valid in a11 Lorentz
coordinate-systems, and therefore give the general
form of the equations of motion.

Dirac assumes that (2.20) and not (2.19)
represent the rigorous equations of motion. The
present discussion tends to show that any choice
between them is from the formal point of view
arbitrary.

M ov ~ = &ext F ~& (2.19) 3. I'HE ENERGY-TENsoR oF MATTER

and in the case in which the retarded-potential
solution is chosen, they become

m,v'& = e„„&F,&v"+ ', e'v""+ ', e'-v"v&, (-2, .20)-

Hence

v"=1
pm p

v"=Q
p» gC1)z

1

V"0 = VC"u",
&«1n Qm

p 2 —p op 0 p 'my 1N — rg1rzg m (2.22)

Now Eqs. (2.19) can be written

~m~o~ ~extFV ~ 1 ~ocf eextFJ

where, t,F„" is evaluated at the world-point of
the singularity. We can prove this by verifying
that these equations reduce to (2.17) and (2.18),
respectively, in the particular coordinate system
chosen.

In this special coordinate-system in which our
calculations have been carried out, since j"=0,
we have the following values for the components
of v& and their derivatives:

In order to obtain the equations of motion we

have made three fundamental assumptions:
(1) A special choice for the arbitrary additive
harmonic functions in (2.12) and (2.13). (2) A

division of the field into "external" or "incoming"
field, and the field of the electron. (3) A special
choice for the field of the electron ("standing" or
"retarded").

The second and third assumptions cannot be
removed, since they are characteristic of the
whole structure of electrodynamics. This is not
true, however, of the first assumption. We ask
how we may generalize our scheme of equations
to rid ourselves of this assumption, and obtain a
logicallv simpler though formally more compli-
cated scheme.

We may show first. that the assumption (1)
corresponds to the choice of an energy-momentum
tensor for matter. From Eq. (2.12) we had

)I T X"dS+J p, X"dS=O,

In our special coordinate-syst. em the first of these where f,„=0„,—P„„P being a harmonic function.
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If we define a "mechanical" energy-momentum
tensor

By virtue of. the lenima, we deduce that if the
T's satisfy relations of the form

~me = 4'tan , tt'n, m+ &eantt'S, r r (3.1)

where tf„,= m.ij'"(r, then M,„„is symmetric in ttt

and n and satisfies the condition

Fmn+ ~mn =&mnl, fs

~on+ ~on —&one, f.,

(3.5)

(3.6)

M, „,n=0. (3.2)

(E.„„,+M„„,)X "dS= 0,
f

(3.3)

~mn being ~ mn++m, n++n, m, ~mn~ s, s.

Furthermore (2.13) may be put into the fonu

Then J'3E„„k"dS taken over any surface en-
closing the singularity is independent of the size
or shape of the surface. If a sphere with center at
the singularity is again used, it follows immedi-
ately that the contribution to the integral of the
last two terms of M „vanishes identically. The
first term yields J'P „X"dS,which has the value
—4mmoj". Hence (2.12) can now be written

where X„,nf. , X„„E are skew-symmetric in the
indices n and 1, then the equations of motion
have the form (3.3) and (3.4). Such relations are
therefore suAicient to ensure that the equations
of motion have this form. '

4. l llE LQUATIONS OF MOTION Ol' A (..BARGED

PARTICLE IN GENERAL REI.ATIVITY

The diAiculty which still remains is the
arbitrariness of the choice of the tensor M„, . We
shall show»ow how this may be removed by an
appeal to the general relativity theory.

Let us attempt to derive equatioris of motion
from field equations by a method similar to that
used by Einstein and Infeld. 5 We start from the
Einstein-Maxwell field equations

~~(F.„+M.„)X"dS= 0 (3 4) G„,+kT„„=O, (4. 1.)

if we take 3f.„=O, T,„+%,, „=J;„, i» the par-
ticular coordinate-system employed.

We now prove a lemma:
If we have a set of functions 8 b. ..f,.f. , skew-

symmetric in the indices k and l, the surface
integral

~ ~ ~

s~ .b" kf, l~ d ~

(8)

taken over an arbitrary closed surface S which
may enclose but may not pass through a singu-
larity of the field, vanishes identically.

For let us set

R„„+T„„=O. (4 2)

We shall write the fundamental metric tensor of
general relativity in the form

(4.3)
where

where G„,=R„,—-';g„„R,R„„being the Ricci tensor
and 7 „, the electromagnetic energy-momentum
tensor. We shall take k= i„as may obviously be
done if we choose appropriately the units of mass
and charge.

If Eq. (4.1) above be contracted, since T=O it
follows that R=O, and hence the field equations
may be written

~~tib ~ ~ 23 Cl& +nb ~ ~ 31 ~2t ~nb ~ ~ 12 ~ 3 ~

Then we can write the integral
0
.0

0 0
—i 0

0 —1

0 0

0
0

—1..

curl, „CdS,
"(&)

which may be transformed by Stokes' theorem
into a line integral around the rim of the surface;
but since the surface is closed this rim must have
zero length, so that the integral vanishes

identically.

We shall naake the following assumptions:
(i) We neglect nonlinear gravitational terms in

R„„. (ii) We neglect gravitational-electromag-
netic interactions. The second assumption is
equivalent to treating the term T„,as though the
metric tensor of space-time were r&„,.

4 Cf. M. H. L. Pryce, Proc. Iloy. Soc. A168, 302 (1938).
~ A. Einstein and L. Infelcl, Ann. Math. (In print. )
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Now Eq. (4.2) are six independent equations in
the ten unknowns h„,. Hence we may add to
these equations four nontensorial "coordinate
conditions" on the h„„. We introduce the
quantities (a) I 16„„„„XdS=-O,

As a consequence of the lenima of )2 we have,
since E, „„X.n, are skew-symmetric in the
indices n and s,

'"pi' 2 7p& I ~~p&'
po' ti (4 4) (4.11)

'I he coordinate conditions which will be itiiposed
are (b) E„n.. .Xnd5= 0,n

n

(4.5)

With the aid of the assumption (i) and the
coordinate condi tions, we derive the rela tion'

the integrals being over surfaces surrounding the
singularity of the field at g"(x"). Because of the
field-equations (4.10) the equations (4.11) lead to

+pv 1 37pv&

where is the d'Alembertian operator

(4.6)
(a)

go'(S'/SxoSx )

Hence the field equations becon&e

Ypv 2 2 tlv'

Ke noway write these as follows:

(4.7)

(a)

(b)

(c)

PYnn& S S P'YH n& OO Yn Yi. s

/7 n

+on, ss +on, uo & & un~

goo& ss Qou& oo ooi

(4.8)

and the coordina. te conditions (4.5) may be
written:

(a)

(b)

Now

Pni n, n Pnio, o

JOY&, n goo, o

(4 9)

and

by virtue of the coordinate-conditions (4.9) (a),
(4.9) (b), respectively. Hence (4.8) (a) and
(4.8) (b) may be written

(a) +m»s, s (7mns7»ls, n), s,

2Tmn+Pmn, oo Pmo, no.

(b) &ons, s = (7an, s 7os, n), s

(4 1o)

2 Ton+ +on, oo goo, no.

' A. S. Fddington, Mathematical Theory of Relativity
(Cambridge University Press, second edition, 1930), pp,
128—129, (57.4) and (57.5).

t(7„„„„—7„„,+27'.„)Xud5=0,

(4.12)

Vp y ++A (4.13)

where I' „are particular solutions of Eqs. (4.8)
obtained by a process of direct calculation and

7 This has been done by Mr. P. Ik. Wallace in a thesis at
present. in preparation.

and we call Eqs. (4.12) the "equations of niotion"
of the electron. For, as in f3, the integrals are
independent of the shape and size of the surface
of integration, and so can depend only on
quantities characterizing the singularity, in par-
ticular the coordinates of the singularity and
their time derivatives.

I hese equations of motion are obtained by
virtue of botk the field equations and the coordi-
nate conditions. In fact, the equations of motion
(4.12) are conditions which ensure the con-
sistency of Fqs. (4.8) and (4.9). Or, to formulate
it differently, (4.8) and (4.9) can be satisfied
only by. virtue of the equations of motion. This
becomes evident if we attempt to solve the
equations completely by means of the "new
approximation method. "

Thus we see that we are led to "equations of
motion" in general relativity theory without any
such assumptions as the first one in )3. This is
because the general theory of relativity has
provided us with an energy tensor of matter,
derived from the Ricci tensor R„„.

We may write the solutions of the field equa-
tions (4.7) in the form
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Emn+ ~mn

hymns,

s& E„„+3f„„=K,„,„
where E. n„X,„,, are skew-symmetric in n and s.
The E„„may be considered as arising from the
T„„and the I'„„,and the 3I„„ascoming from the
y„„. Then the equations of motion (4.12) take
the form of (3.3) and (3.4). But if the problem
had been attempted in its most general form,
the energy-momentum tensor would have ap-
peared in a form involving electromagnetic-
gravitational interactions, and could not have
been split in the above manner.

Thus the theory of relativity provides a

p„„are solutions of the corresponding homo-

geneous set:
(4.14)

The quantities I'„, are purely electromagnetic
in nature. On the other hand, the p„„may be
solved by retarded (or "standing") potentials of
the same form as those given for the electro-
magnetic potentials. In choosing the solution we

are guided by the consideration that when the
particle is not charged, i.e. , when e=0, the field

must reduce, in the first approximation, to the
Newtonian gravitational field. Therefore the y„„
represent the gravitational field of a particle of
mass m and zero charge.

Neither F„„nor p„„will be chosen to satisfy
the coordinate conditions separately, but solu-
tions may be obtained such that their sum
satisfies them by virtue of the equations of
motion.

Because of our simplifying assumptions, in-

volving neglect of nonlinear gravitational terms
and electromagnetic-gravitational interactions,
we have been able to obtain a "splitting" of the
field into gravitational and electromagnetic parts.
With these assumptions, the problem demon-
strates a formal similarity to that of )3. The
field equations (4.10) may be written, as in (3.5)
and (3.6), in the form

scheme which includes both the gravitational and
electromagnetic fields, whereas before the gravi-
tational field was introduced merely through an
arbitrary harmonic function and defined only in

a special coordinate system.
The coordinate conditions (4.5) are invariant

under a Lorentz transformation, from which it
follows that we may, as before, choose a coordi-
nate-system in which the electron is instanta-
neously at rest at some time t, and carry out
the calculation of the surface integrals with
reference to this particular coordinate-system
and this particular time. The removal of this
restriction, once the integrals have been calcu-
lated, will be carried out precisely as in )2.

The calculation of the equations of motion
from Eqs. (4.12) involves the computation of
three types of integrals: (i) those arising from
I'„„, (ii) those arising from the y„„, (iii) the
integrals of T, T.„. The latter have already
been calculated in Appendix I. In Appendix II
it is shown that the integrals of type (i) are all

zero, while from those of type (ii) there is a
contribution of m, j to the equation of motion
(4.12) (a), and no contribution to (4.12) (b).
It follows that the equations of motion of the
electron, derived from (4.12) (a), are exactly the
same as those derived in f2, and that, as required,
(4.12) (b) is an identity, and places no new

restriction upon the motion.
We have therefore shown that the equations

of motion of an electron in an external field, as
deduced under stated assumptions from the
general theory of relativity, may have the form
either of (2.19) or of (2.20).

The whole problem has concerned the develop-
ment of the equations of a single electron. The
method is easily generalized to deal with the
problem of n electrons in an external field. In
determining the equations of motion of one of
the electrons, one has merely to add to the
external field the fields of the other electrons.

APPF.NDIx I

All the integrals in these Appendices are evaluated over a sphere with center at the singularity.
Only expressions of the order 1(r' in t.he integrands can give contributions to the integrals, since
the integrals of other expressions would necessarily depend on the size of the sphere of integration
and must therefore vanish. All integrations then correspond to the spherical surface of integration
and to the terms of order 1/r2 in the integrands. The final result refers, of course, to an arbitrary
surface.
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We wish (i) to evaluate (1/4zr) fT h"dS and (1/4zr) fT,„k"dS, and (ii) to show that fO', „X"dS
and f4, „X"dS are both zero. For the former, it is necessary to calculate the terms of order 1/r'
in T „and T„... omitting those which contain u" which is zero. For the latter, we have to calculate
the terms of order 1lr in T, and T„, omitting those which contain u" more than once. (This may
be seen from an examination of (2.6) and (2.7).) Now

Fmn pm, n pn, m+extFmn&

I yno pm, o po, m+rxt Fmoz (I.2)

where y, is the electromagnetic scalar potential and y„, the vector potential of the field of the electron
and, „&F,„.is the external field. Since none of F,n, Fmo approach infinity faster than 1~r' as r
approaches zero, and they appear quadratically in the T's, F„,n and Fm, influence the first calculation
only through terms of order —2, —1 and zero in r.

The solutions for the potentials satisfying Maxwell's equations are

d2l —21 d2l —1

p„=e 2 —— (yil i) e P (y11—1)
i.=i (2l —2) i dt« 1—i=i (2l —1)!dt" (I 3)

d2l —2 ~ 1 d2l —1

y„, = —e Q ———--——(y" "u )+e P ——— --(r" 'u '),
i=i (2l —2)!dt" ' -i=i (2l —1)!dt"

(I.4)

where the first sum in each case represents the solution: (—,
' retarded+ 2 advanced) potential, i.e. , the

"standing wave" solution, and the second represents the solution: (~ retarded —
~ advanced) poten-

tial. Therefore the complete expressions represent the retarded potential solutions.
The symbol " " will be used to designate the relevant terms of an expression. Also, when an

expression is divided into two parts by a comma, the part preceding the comma will be understood
to have arisen from the "standing eave" solution alone, while the part following it will represent the
terms added when the retarded potential solution is used.

From the above expressions for the potentials we derive, keeping only terms which can influence
the calculations (i) or (ii):

e e (x' —zt') 3e (x' —zt')(x' —zt') 3e e
u'+ — — -u'u—'+ rii'zi—, ', eu "i—i'-+—, (x' , zt")-u', —

r 2 r 8 r 8 3

e e (x' —zZ') e (x' —zt') e
zj u""+—.— —u'zj'" —yz'i'" +ejj—~ —e(x"—zt') zi'zi:~

r 2 r 2 r 2
(I.6)

Ke deduce the relevant terms of

x e1 exx'n e~s 3exm 3e
I.,„„ , , F&. +e————u ———-u +——u u ———vc u +-'m s yn 's 'e

r3 2 r 2 r3 4 r 8r 8
and

x'xsx'" 2—ic'ic', +—eii"',
r3 3

(I 7)

Xn ym

Fmn ext, Fyrt n+e
r3 r3

(I.8)
XsXn xsxm exn ex"'

—
(zz, 'll"'+u'u )+— (u'zt" +—u—*z-i") —— u+ u-"-, +0.— —

r3 f3 2r 2r
In these latter expressions we have put g"=0 throughout.

Of the expressions occur r. irig in the various integra»ds, the only ones whose integrals are not; zero
are those of the form

x "x"-"x"~!r'+' (S„Sz, Sp ——1, 2, 3),
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where f2 is an odd integer. Hence, so far as the calculation (i) is concerned we may write

Xnz Xn x' 2 x'" 2 x" 2 x'
mn e ext, ~no+ e ext, ~mo ~mne extI sot + e + + e + ~mne (I.9)

x'
~on e ext~sn.

r3
(I.10)

I. onsequently the integrals arising from (1.9);snd (I.10) are e„„,F„,„, +-,e26'"', and

e0ttt n ext, ~tltn
4z

n

since e„t.F is skew-symmetric.
Let us now consider (ii). The equations satisfied by 717.„„s17,are

(2.6)

(2 &)

IJsing the expressions (1.7) and (I.S) to form T„„,and T„,and remembering that we are interested
only in terms of order i,/r', we have

and

x' 1 x" 3 x x'v, '
Ttt2o, o = ( &'ttts&'os), o„,o, =~F„,, j. ,„,~ o 2e'=I u ——e —6 u —-e ——-is i&,2

' s s 2 , ,
' I, ' s

r 4 2 r 4 rs

g~s

T,„, ,= .', (F„F,„+F, , F, „),, ,
—

,
e' 2I,

*—
4

if we omit terms which contain u'. It follows that all the terms of +„,n will contain an even number
of factors x', and hence that their integrals will vanish p.

A Pl'F.NDIX II.

By inspection of the integrals (4.12) we see that only the following types of terms in the y„„could
give nonzero contributions to the integrals: (i) terms of y „of order 1/r and not containing 7)"';

or terms of order 1/r', which may contain 7't' at most twice. (ii) terms of y„, of order 1/r which contain
7)" once only or not at all; or terms of order 1/r' which may contain 7)' at most twice. (iii) terms of
y„. of order 1/r, only if they contain a single 7)' or higher derivative of q'.

Consider first I „„.The following solutions of (4.8) may be verihed, where we include only terms of
the above types, and omit also terms whose divergence vanishes identically:

-e2- (Xs ~s)
(a) I'..= —+e'

r2 r2
+ ~ ~ ~

S2 (Xss ~ss)

(b) I',„=——7)"+e'-
r2 r2

(X
I' 7ts') (Xs ~s) (&~i 7tsi)'

js j'+2e2— —————————j'"js+
r4

e2 (Xm ~m) (&s ~s) (Xsr, 7tsi) (Xs 71 s)
(c) r,„„=—„„"+e' ~r&~s+ e2

r2 r4

3S2 (Xm ~sn)
(II.1)

3e2 (x"-q"))2(x"-q')
I ~ ~

fl ~ ~ ~4 Ottzne

2 r2
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If now we calculate (I' „..—I'„., „.) and (I'.
, ..—I'..„,) omitting from them all terms which

involve j', it will be found that the remaining terms are all of the types whose surface integrals
are zero.

The omission of terms whose divergence vanishes identically is justified, since the surface integrals
of such terms must also vanish identically.

The solutions (II.1) were obtained by the "new approximation method, "'
adopting the same

procedure by which the potentials (I.3) and (I.4) were determined.
Thus we have shown that the I'„„give no contribution to the integrals occurring in the equations

of motion (4.12). I.et us now turn to the y„,.
The retarded potentials which we choose t:o satisfy (4.14) are

d2l —1

p„, = —2m, g (r2 i 3) +2m Q (r21 2)
i=i (2l —2)!dx"' ' i=i (2l —1)!dxo"-'

(b)
d2L —1d2l —2

"r = 2mo P — (r" 'rj—")—2mo P —— (r" ' j"o),
i s(2l —=2)!dxo&' 2 i=-i (2l —1)!dxo&'

(II.2)

d2l —2 1 d2t —1

2m—o P —— (r" '"oj —rj"')+2mo P —— (r"—'oj oj")
i=i (2l —2)!dx"' ' i=.i (2l —1 ) ! dxooi —i

If we inspect (II.2) (a), (b), and (c) for terms of the types specified above, we find that there are
none of type (i) or type (iii). Only one term of type (ii) is to be found, and this is the first term of the
first sum of (II.2) (b). This will not contribute to the integral (4.12) (b), since its contribution to
y.„„will contain oj" which is zero. It will, however, give a contribution to (4.12) (a), for

1 t f'1 q——
~' 2mo] —

)
ot"X"dS=2moot".

Er), .
This is the source of the inertial term in the equation of motion.

The same obviously holds when we take in (II.2) the "standing" rather than the "retarded"
gravitational potentials.

If the solutions given in (II.1) are pushed one step further, so as to involve terms which do not
become infinite near the singularity, and the y„„are formed from these and (II.2), it may be verified
that in the neighborhood of the singularity and in our special coordinate system we have

and
+on, n goo, o=0

2
77n7$ 7$ 77no o

—i Og
—e ex 1

z' o) =0
r

by virtue of the equations of motion.
We would like to t:hank Professor J. L. S~ nge for his helpful disciissions and criticism.


