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We compared the absorption of the hard y-rays with
that of annihilation radiation from the 3.5-hr. Cu®3, under
enough lead to reduce the ionization to less than eight
percent. The Cd vy-ray is more penetrating. An experiment
with coincidence counters also showed it to be for the most
part a nuclear y-ray. We found evidence for the expected
Auger clectrons from a sample of pure radioactive Cd,
distilled in vacuum, from bombarded silver. This distilla-
tion technique should find many uses in the ficld of arti-
ficial radioactivity.

From the ratio of the numbers of K and L conversions, a
theory proposed by one of us® requires a multipole order of
440.1 for the transition between the two silver states.
The measured internal conversion coefficient of 98 percent
demands a similar, but not quite so precise valuc of this
multipole order, from the theory of Dancoff and Morrison.®
If we assume the value 4 to be correct, and calculate the
lifetime of a 93.5 kev level in Ag by means of Weizsicker's
formulae corrected by Hebb and Uhlenbeck? to include
decay by internal conversion, we obtain an expected value
of 30 sec. On this theory, multipole orders of 3 and 5 would
give lifetimes of about 1073 and 106 sec., respectively.
The agreement between these three methods of computing
the order indicates further that the transition is an electric
rather than a magnetic 2¢ pole, so that the spin difference
between the two states in silver is 4 units. In view of the
approximations made in the theory, the agreement with
respect to lifetime is a most encouraging check.
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Elementary Derivation of Thermal Diffusion

Thermal diffusion is usually thought not amenable to
clementary derivation.! It may, then, be of value to point
out a method of showing its existence and sign from ele-
mentary considerations. Thermal diffusion shows itself if a
mixture of two gases is kept at a non-uniform temperature.
It causes a gradient of the partial pressure of either gas
which is observed as a partial separation of the gases.
To support this partial pressure gradient the “‘partial gas”
must experience a constant force due to collisions with
molecules of the other gas. Hence there must be a con-
tinual net transfer of momentum from one gas to the other.
To cvaluate this one can find the momentum change
suffered by a molecule of type ‘1" in a collision with a
2" molecule and sum over all collisions.

The result of this may be most casily understood by the
following very rough treatment. Consider the heavier
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molecules as stationary, the light gas as composed of two
streams of uniform velocities moving toward the cold and
hot sides, respectively. The velocity of the stream coming
from the hot side is somewhat greater than the velocity of
the other stream. Each light molecule with velocity V
loses its momentum to the heavy molecules at a rate Vo
where o is the cross section for complete dissipation of
momentum. Since cach stream must carry the same
momentum per cm?® (to make the net particle flux zero) the
momentum transfer per second of the streams is propor-
tional to V. The dependence of Vo on the velocity can be
found by a dimensional argument. Let the molecules inter-
act by an inverse sth power repulsion, F=—K/r*. Then
o may depend on K, on the mass of the light molecule
(strictly the reduced mass), on V, and on s. From the
dimensions of these quantities it is seen that ¢ must be
proportional to (K/mV?2)?/&D or to V—4/6=D, Thus Ve
varies as V69160, This gives a force supporting an excess
of light component at the hot side for molecules “harder”
than Maxwellian molecules (s=35) or at the cold side for
s <5 and no thermal diffusion for Maxwellian molecules.

A more rigorous treatment would take account of the
motion of the heavy molecules and of the distribution in
velocities of both types. Denote by fi(c)) and fa(cs) the
velocity distributions of the light and heavy gases, re-
spectively, normalized to their respective particle densities.
Define a cross section for momentum transfer as follows:
If a uniform stream of particles of mass g, the reduced mass
of the collisions, impinges on a scattering center F= —K/rs,
then the total momentum transferred to the scattering
center is the product of the cross section, o, and the mo-
mentum per cm? of the stream. Then as before this cross
section must vary with the relative velocity as V-4/t-1,
The momentum gained per second by the light gas is then
given by the expression

S S 3(p2—pi)fi(er)f2(cs)o Vde,de,
=CS S (p2—p1)f1(c1)f(ca) Ve Is=Ddc,dc,,

where py and p; are the momenta of the light and heavy
molecules, respectively. C is positive and does not depend
on the velocities. fi(c:) and fi(cy) while not Maxwellian
still must obey the relationship /f(¢)pdc=0 since this ex-
pression divided by m is the rate of flux of molecules.
Hence for s=35 the term in V drops out and the integral
vanishes. For harder molecules the collisions of high relative
velocity are more effective. The collisions of highest relative
velocity are predominantly those in which the lighter
molecule is coming from the hotter region and the heavier
from the colder region. Thus the resulting force is such as to
support a greater partial pressure of light molecules in the
hot part of the gas, and conversely as before for molecules
softer than s=35. It may also be seen from this argument
that the effect must be proportional to the product of the
two fractional concentrations and to the relative mass
difference.
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