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where D' is defined as in Eq. (19) and A4 and 84
are arbitrary constants.

This solution represents a state of the rotating
space charge in which "spokes" of increased
density maintain a fixed position relative to a
coordinate system rotating with angular velocity
Qp. Fig. 2 is intended to represent this state of
affairs. The a.c. at any point is then due only to
changes in charge density and not at all to changes
in electron velocity.

6. DIscUssIoN

We have assumed throughout that the bound-
aries are perfectly conducting and that electrons
travel in circles around the axis so that no current

Rows from the inner to the outer conductor.
Thus no d.c. power is being fed into the system,
and we cannot expect to make any estimates of
a.c. power output. This is also evident from the
fact that currents and voltages calculated from
our solutions are always ~/2 out of phase. For the
same reason it is impossible to estimate the
resistance which a tube will present to an a.c.
signal. This situation could be remedied by
introducing a small d.c. radial velocity, but this
increases the complexity of the a.c. equations so
that they are quite unmanageable by our present
technique.

It is a pleasure to acknowledge our indebted-
ness to Mr. W. C. Hahn for many stimulating
discussions and suggestions.
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The problem of degeneracy in quantum mechanics is
related to the existence of groups of contact transforma-
tions under which the Hamiltonian is invariant. The cor-
respondence between transformations in classical and
quantum theories is developed. The Fock-Bargmann
treatment of the symmetry group of the hydrogenic atom
comes under this theory. The symmetry group of the

2-dimensional Kepler problem is found to be the 3-dimen-
sional rotation group; that of the n-dimensional isotropic
oscillator is isomorphic to the unimodular unitary group in
n dimensions. The 2-dimensional anisotropic oscillator has
the same symmetry as the isotropic oscillator in classical
mechanics, but the quantum-mechanical problem presents
complications which leave its symmetry group in doubt.

INTRQDUcTIQN

' 'N the study of quantum-mechanical problems
~ - the question of the degeneracy of the energy
levels plays an important role. It is often the case
that this degeneracy is associated with simple
symmetry properties of the Schrodinger equa-
tion, and considerable attention has been paid
to the symmetry conditions associated with the
rotation-reflection group and the group of
permutations of identical particles. '

On the other hand, certain problems possess
symmetry properties of more subtle types.
It was shown by Fock' some years ago that the

'E. g. , E. Wigner, Gruppentheorie und ihre Anmendung
auf di e Quantenmechanik der A tomspektren (Vieweg &:
Sohn, 1931).' V. Fock, Zeits. f. Physik 98, 145 (1935).

Schrodinger equation for the hydrogen atom
actually has the symmetry of the 4-dimensional
rotation group for the bound states, and the
symmetry of the Lorentz group for the positive
energy states. The degeneracy of the system with
respect to the quantum number I is due to the
invariance under these wider groups, of which
the 3-dimensional rotations form a sub-group.
This interpretation was verified and extended by
Bargmann, ' who showed the formal relationship
of the Lenz-Pauli integrals with these groups.
In spite of the satisfactory way in which these
considerations clarified the hydrogen atom prob-
lem, they seem peculiar to this case, and it is
not clear at once whether they can be extended to
other examples.

' V. Bargmann, Zeits. f. Physik 99, 578 (1936).
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In this paper we wish to develop further the
relation between general contact-transforma-
tion theory and the problem of degeneracy.
We shall show that in certain cases at least,
including the hydrogen atom, the degeneracy
arises from the invariance of the Hamiltonian
under a group of contact-transformations. These
more general dynamical groups, involving simul-
taneous transformations on the coordinates and
momenta, contain as sub-groups the usual

geometrical groups based on point transforma-
tions of the coordinates. It remains unclear
whether all cases of degeneracy can be explained
in this way, and we shall discuss one case (2-di-
mensional anisotropic oscillator) which presents
complications, and is unsolved as yet from this
point of view.

It should be remarked that degeneracies can
arise from finite groups of discrete transforma-
tions as well as from continuous groups. Such
is the case, for example, with the permutations on
identical particles, the Kramers spin-doubling, '
the doubling of. the energy levels in the Dirac
theory of the hydrogen atom, etc. These are
characterized by the constant number of de-
generate components for the various levels. We
shall restrict ourselves here to continuous groups
possessing infinitesimal elements.

CoNTINUoUs GRoUPs oF CoNTAcT-TRANSFOR-

MATIONS IN CLASSICAL M ECHANICS

We shall base our discussion of the quantum-
mechanical theory on the corresponding classical
problem. As a preliminary we give a brief
statement of the classical theory. '

In the transformation theory of classical
dynamics attention is focused on the existence
of integrals of the equations of motion of the
form

F(qii ~ ~ ~, q~1 pit ~ ~, p~) =const. , (1)

where the g's and p's are the coordinates and
conjugate momenta of the system. We restrict
ourselves to problems in which the integrals are
not explicit functions of the time t.

4 H. A. Kramers, Proc. Amsterdam Acad. 33, 959 (1930).
E. Kigner, Gottingen Eachri chten, Mathemati sch-I'hysi k-
alische IQasse (1932},p. 546.' Cf., E. T. Whittaker, Analytica/ Dynamics (Cambridge
Press, third edition), Chapters 10, 11, 12.

Having such an integral we define an in-
finitesimal contact-transformation

Qa =qa+ &qa',

where
~qa= &(F, qa);

&a=pI+~pl,

~pa=- ~(F, pa) (3)

The symbol (A, 8) designates the Poisson-
bracket

/BA BB BA 823)

L. clqa Bpa Bpa Bqa)

where the coefficients CI, g are constants, or are
at most functions of the total energy. The prob-
lem of finding the continuous groups of sym-
metry transformations of a given dynamical
problem is thus reduced to the search for
integrals by means of which one can specify-the
infinitesimal elements of the group. For our
purpose it is not necessary to find the finite
transformations of the group.

CONTINUOUS GROUPS OF CONTACT- TRANSFOR-

MATIONS IN QUANTUM MECHANICS

The general procedure for adapting these con-
siderations to quantum-mechanical theory is
known, but certain necessary alterations must
be made. ' The integrals must be represented by

6 Reference 5, Section 144.
~ S. Lie and F. Engel, Theoric der Transformationsgrup-

pen (Teubner}. G. Vivanti, Lemons elementaires sur la Theoric
des Groupes de Transformations (Gauthier-Villars, Paris,
1904). L. P. Eisenhart, Continuous Groups of Transforma-
tions (Princeton University Press, 1933).' For the quantum-mechanical transformation theory see
P. A. M. Dirac, Quantum Mechanics (Oxford Press, second
edition, 1935), or E. C. Kemble, Fundamenta/ Principles of
Quantum Mechanics (McGraw-Hill, New York, 1937).

and e is the parameter of the transformation.
Such a transformation takes one orbit in phase
space (coordinates q, p) into an infinitely near
orbit lying on the same energy surface. '

Suppose now that we have found a set of
independent integrals Fj, F2, , F„. Each of
these integrals can be used to generate a one-
parameter group of contact-transformations by
the above procedure. It follows from the Lie
theory of continuous transformation groups that
these transformations will form a group if the
set of integrals satisfy conditions of the form'

(Fa, F ) = +Ca 'F„
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Hermitian operators, so that it may be necessary
to symmetrize them in the p's and q's. In our
actual examples we use the Cartesian coordinates
and momenta as usual, but we suppose here
merely that they obey the ordinary commu-
tation rules. The integral property of the
E's is expressed by their commutation with the
Hamiltonian.

The transition to quantum mechanics is based
on the correspondence

Poisson-bracket~(1/N) commutator.

For our purposes we require this correspond-
ence to be an algebraic equivalence such that the
commutators of the Ii operators satisfy . the
operator relations

[F(„Fg=i7i,+Cp 'Fg.

Here the C's must be constants, or at most
operators depending on the Hamiltonian alone,
Although in principle they need not be the
coeScients appearing in Eq. (4), it is to be
anticipated that they will be the same.

The formal proof that the operators satisfying
Eq. (5) define a group of transformations (in
Hilbert space) is easily supplied, and will not be
given here. From a formal point of view the
finite transformations of the group can be con-
sidered to be generated by the unitary operators

f/(g& . . . g ) —s~(Are&+ +xr&~) (6)

the X's being the finite parameters of the group.
The further statement of our problem is now

identicaI with that employed in the study of the
geometrical groups. The matrices for the opera-
tors of Eq. (6) form a unitary representation of
the group with the eigenfunctions of each energy
level as basis. We shall suppose each of these
representations irreducible. In our examples the
irreducibility has been proved by direct com-
putation of the matrices. The degree of each
representation is the degree of degeneracy of the
energy level in question. Naturally all possible
unitary representations of the group in question
may not occur in a given problem, due pri-
marily to secondary restrictions which are placed
on the allowable eigenfunctions; i.e. , single-
valuedness, quadratic integrability, etc.

Before passing to the discussion of the examples, a few
further remarks on the preceding theory seem called for.

As we have developed it, the procedure is frankly explora-

tory, and arises directly out of the well-known similarities
between classical and quantum dynamics. The essential
point is to find suitable integral operators satisfying Eq.
(5), and it is here that the classical theory furnishes valu-
able guidance. When the classical integrals fail to go over
properly into quantum operators the method fails (e.g. ,

2-dimensional anisotropic oscillator).
In the search for classical integrals we are guided by

the knowledge that for our type of problem there exist
(2n —1) time-independent integrals. However, these
integrals exist in principle only im kleinen; i.e., over small

and suitably restricted ranges of the variables, For our
purposes it is apparently necessary that they exist over a
whole energy surface. ' On the other hand, the classical
problems. which lend themselves to the quantization pro-
cedure are very limited in number. It appears quite possible
that the problem of quantization in quantum mechanics
and the existence of transformation groups on the orbit&
in the corresponding classical problem are intimately
related.

Another point concerns the number of parameters in the
group. When we have found (2n —1) suitable classical
integrals, their Poisson-brackets may still not satisfy Eq.
(4). In this case we can continue to form new integrals using
Poisson's theorem. '0 In this manner we proceed until we
have completed a set satisfying Eq. (5), if possible. We are
confronted with two questions: (1) Under what conditions
will the process terminate so that we obtain a group, and

(2) if it does terminate shall we stop there, or shall we

seek further integrals to generate a still larger group of
transformationsP Possibly questions of this sort can be
answered in terms of the general theory of transformation
groups. Our present view is that we have found everything
requisite if r~(2n —1) so that the classical group is transi-
tive with respect to transformations on an energy surface
in phase space. The analogous criterion in quantum
mechanics seems to be the irredlcibih'ty of the repre-
sentations.

ExAMPLES

A. The hydrogenic atom (3-dimensional)

As this problem has been discussed in detail
by Fock' and Bargmann, ' we shall confine our-
selves to a statement of the results. The sym-
-metry group is built up on the integrals

L =r Xp; A = (1/2mZe') (L Xp —p XL)+r/r.

L is the ordinary angular momentum operator,
and A is the Lenz-Pauli vector integral. The
commutation rules of these six integrals and their
explicit reduction to the 4-dimensional rotation
group are given in detail by Bargmann. The

' We are indebted to Dr. W. Kaplan for discussion and
correspondence on this point.

'0 Reference 5, Section j.45.
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results can be readily verified by considering the
solutions in the momentum space where corre-
sponding operators can be found. " This second
procedure is equivalent to that of Fock.

B. The Kepler problem in two dimensions

The Hamiltonian is

EI—(1/2m) (pl~+ p22) Ze2/(q&2+q&2) ~

We find the three integrals

L3 qlp2 q2p1y

A ~
———(1/2mZe') (L,p2+ p~L, ) +q~/r,

A 2
——+ (1/2mZe') (L3p &+p &La) +qr/r,

having the commutation relations

[L3, Ag]=ifiAp, I~I.3, Ag]= —i&Ad,

LAg, Am] = (ik/mZ'e4) ( 2II)Lg. —

If we define

A g ——(i7i/m~Ze') (2
~
F-

~ )
' Fg,

A, = (N/m:Ze') (2 )
F-

~ ) **Fr.,

Lr 3 ZfZF3

where B is the total energy eigenvalue, we find for
B(0;

} Fg, Fg]=F3, [Fg, F)]=F2, } Fg, F3]=Fg,

which are the commutation rules for the 3-di-
mensional rotation group. For E)0:

[F&, F2]= Fs, [Fg, Fg]—=Fr, , ~IF~, F3]=Fg,

which are the commutation rules for the group
of linear transformations on three real variables
with the invariant form (xP+x&' —xP), which
we may call the 3-dimensional Lorentz group.

For the bound energy states the energy values
are

8), „———(mZ'e4/25') /(X+ v+ ', )'-
P, v=0, 1, 2,

Using plane polar coordinates the wave func-
tions have the form

f~), „=fy„(r)e+'xv
"E. Hylleraas, Zeits. f. Physik /4, 216 (1932). B.

Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).
In line 6 of page 115 of this reference one should put
g =n&/~PO.

For X)0 there exists a doubling due to the sub-
group of rotations associated with F3, while all
states for which )+v=N=const. form a de-
gen, crate set. The matrix of F3 is diagonal, and
the direct computation of the matrices for F~
and F2 leads to the customary representations
D~, the degree of degeneracy being g(N) =2%+1,
N integral.

C. The 2-dimensional isotropic harmonic oscil-
lator

The Hamiltonian is

Ei'= (pg'+p, ')/2m+k(qg'+q2')/2,

for which the following are integrals

Fg ——(1/i25) (qgp, qgp—,),

F2 (1/x45) I
——(1/m~0') (pg' —p2') +m~k'(qg' q2') —}

F,= (1/i25) I (1/m'*kl) P&P2+mlklq&qg}.

The first arises from the angular momentum,
and the second from the energy difference of the
two separate oscillators, while the third has no
obvious physical significance. The commutation
rules are

LF, F~]—Fi

the indices forming a cyclic permutation on
(1, 2, 3). If we build the representation on the
usual oscillator functions obtained by separation
of the variables, the matrix of F2 will be diagonal,
with the matrix elements

(&&, Ng
~

Fp
~
X&, E2) =i(-', X—&i),

where N& and
¹

are the quantum numbers of
the two oscillators, and %=X~+¹=const.

The abstract group is therefore the same as
that of the 2-dimensional Kepler problem, with
the degree of degeneracy g(Ã) =%+1. How-
ever, since N can assume all positive integral
values, the representations include the half-
integral as well as the integral cases. To our
knowledge this is the first instance in which the
half-integral representations of the rotation
group have been known to appear in physical
problems other than those connected with
relativistic or spin theory.

However, for the purposes of generalization
to higher dimensions we prefer to interpret the
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group which appears here as the unitary uni-
modular group on two complex variables, which
is doubly-isomorphic to the 3-dimensional rota-
tion group.

D. The n-dimensional isotroyic oscillator

The treatment of the preceding example can
be generalized readily to any number of di-
mensions. We give only the result of the cal-
culation.

Considering the problem as a collection of n
one-dimensional oscillators it is always possible
to find (n' —1) linearly independent integrals,

namely, the
I 2 I

angular momenta, the (m —1)E2
diff'erences of the energy of the separate oscilla-

t'e )tors, and the
I I

combinations of the form

g&g2+piP2. It has been verified that the group
generated by these infinitesimal transformations
is isomorphic to the unimodular unitary group in
n dimensions, which has (n' —1) parameters.

Under the transformations of this group the
eigenspaces of the Hamiltonian transform ac-
cording to the representations by symmetric
tensors. The dimensions of the representations
are

~N+ri 1y-
g(+) =I

where ¹=ZN;, the N s being the quantum
numbers of the individual oscillators. This is
then the degree of degeneracy of the energy
levels, as can be checked directly.

It may be noted that there exist further repre-
sentations of this group built on .tensors which
are not wholly symmetric, " but they do not
occur in this physical application.

E. The 2-dimensional anisotroyic oscillator

As remarked in the introduction, this problem
presents certain peculiarities. The Hamiltonian
can be written as

H= (pi'/2Mi+Micvi'gi'/2)

+ (pa'/2cV2+ 3fgaum'g2'/2) .
"H. Weyl, The Classical Groups (Princeton University

Press, 2939), p. 202.

where e and m are positive integers, and intro-
duce the new variables

b = (p —zng) /(2n) ' ' b" = (p+.iaq)/(2n) '.

It is easily verified that in both classical and
quantum mechanics the following expressions
are integrals

p 1(b nb 4m+b 4mb m)

P — (j/2)(b nb m b *nb m)

For the classical mechanics we can define the
integrals

M]M2
. p . (b b 8)—~g(n —I) . (b b 8)—g!(m—1)

Cvy(V2 '
. p2. (bibi ') —-:(»—ii. (b bz. )

—k(m —i)

J33 ——(1/2 r) (b2b2* —bib, *),

which have the Poisson-bracket relations

(+li +2) +3

with cyclic permutations of the indices. We can
thus conclude that there exists a group of con-
tact-transformations in phase space which leaves
the system of orbits of given energy invariant.
This group is isomorphic to the 3-dimensional
rotation group.

We have tried various expedients for carrying
these results over to the quantum-mechanical
problem, but so far have not found it possible to
do so. In view of the negative results, it would
scarcely be profitable to elaborate on them here.
We feel, however, that the difhculties encoun-
tered in this relatively simple problem throw
question on the true interpretation of classical
multiply-periodic motions in quantum mechanics.

We are very much indebted to Professors
Fock and Podolsky for correspondence relative
to their work on the hydrogen atom.

If the ratio of the two frequencies cubi/co2 is
rational, the energy levels are degenerate. Let us
write

Sa)I =PECO2=7,'


