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behavior but indicates that the electron com-
ponent extends to appreciably higher values than
that given by Wilson.

It must be emphasized' that this experiment,
using a high field, was not primarily intended for
work in this transition energy region. More'
accurate information, not involving the necessity
of so stringent a correction, could be obtained by
using an experimental set-up with a lower field
such that the magnetic correction would set in at
ari energy lower than the one of primary interest.

It is not only a pleasure but a privilege for me
to acknowledge at this point the ever-present
help and inspiring guidance of Professor A. H.
Compton which have made this work possible.
Dr. Haydn Jones has been directly responsible
for the construction of most of the apparatus
used, and I wish to express my great indebtedness
to him. In all the work of taking the photographs
and measuring the tracks Mr. F. Leslie Code has
been of very great assistance. The help of Mr.
Ralph Meagher is. also gratefully acknowledged.
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A new derivation is made of the intensity expression for
the coherent scattering of x-rays by a small crystal. The
accepted intensity formula for the diffuse scattering —the
well-known Debye formula —is shown to be incorrect and
is replaced by a more complicated expression. According to
the revised theory the intensity of the diffuse scattering
varies much more rapidly with the scattering direction and

exhibits a series of diffraction maxima. These maxima are
found in the directions k satisfying equations of the type
(1+)r; )k =k0+BII, where k0 is the direction of incidence
(with k =00=1/X, the reciprocal wave-length) and B~ a
reciprocal lattice vector. The consequences of the theory
are discussed in detail.

INTRODUCTION

HEN a beam of parallel and monochro-.
matic x-rays falls on a crystal scattering

processes take place. Disregarding the thermal
agitation of the atoms in the crystal lattice the
intensity of the coherent part of the scattered
radiation is given by the well-known Laue
expression

sin' [N4(k —ko) a,]
Jp sf'll-—

sin' [m(k —ko) a,]
The equation holds for a small crystal (linear
dimensions of the order 10 ' cm, for instance)
containing X atoms with one atom per unit cell.
S is the familiar J. J. Thomson formula for the
intensity of scattering from a single free electron,

f is the atomic scattering power and a; (f = 1,2,3)
are the edges of the unit cell. The vectors kp

~ The results given in this article were presented in a
paper before the American Physical Society at the Chicago
meeting December 1, 1939.

and k, where ko ——k = 1/X, represent the directions
of incidence and of scattering. According to Eq.
(1) there are sharp intensity maxima in the
Laue directions which are given by

k —kP ——BII—=IIgb l.+Hgb2+II313) (2)

J=Jg+ Jg, Jg ——Joe '~

J2 ——NSf'(1 —e '~) (3)

where 3f is a function of temperature and
scattering angle. While the first term like the
original Laue expression exhibits sharp maxima

' P. Debye, Ann. d. Physik 43, 49 (1914).

where II; designate three integers, b, the vector
set reciprocal to a;. For other directions the
intensity is zero.

In the famous paper of P. Debye' the eAect
of the thermal vibrations was studied theo-
retically, and it was found that Eq. (1) had to
be replaced by
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in the Laue directions and is zero elsewhere, the
part J2 changes slowly with the scattering angle
and represents diffusely scattered x-rays.

From theoretical side objections were raised to
Debye's treatment' and on the basis of later
investigations' it was claimed that the diffuse
radiation was concentrated under the maxima
due to the term J& of Eq. (3).

Extensive experimental studies of the diffuse
scattering from crystals have been made by
G. E. M. Ja.uncey' and collaborators and their
results were found to be in general agreement
with Debye's formula. It seems that the theo-
retical conclusions reached by Brillouin, Faxen
and KValler never have been seriously considered
while the Debye formula on the other hand has
been confirmed by more recent theoretical deriva-
tions due to Jauncey and Harvey" and to Woo. '

The writer has made a simplified derivation of
the intensity formula for the scattering of x-rays
by a small crystal. It is found that the Debye
expression for the diffuse scattering is not cor-
rect. The new form for J2 leads to intensity
maxima in certain specific directions. These
diffraction maxima may coincide with the Laue
maxima (as claimed by Brillouin, by Faxen and
by Wailer). However, under proper conditions
the maxima will not coincide with the Laue
directions, thus giving rise to new diffraction
spots in x-ray photographs. In the following
sections the theory of this new effect will be
developed and discussed while a preliminary
experimental study will be reported upon in a
following article.

1. DERIVATION OF THE INTENSITY EXPRESSION
FQR THE CQHERENT ScATTERING oF

X-RAYS BY A SMALL CRYSTAL

For the sake of convenience let it be supposed
that the small crystal is a parallellepiped with
edges (N~ 1)a; (where —Nl 1 is assumed to—be
an even number) and that there is one atom per

2 E. Schrodinger, Physik Zeits. 15, 79 and 497 (1914);
H. Faxen, Ann. d. Physik 54, 615 (1918).

3 L. Brillouin, Ann. de physique (9) 17, 120 (1922);
H. Faxen, Zeits. f. Physik 17, 266 (1923); I. Wailer, Diss.
Uppsala (1925), Zeits. f. Physik 17, 398 (1923).

4 A great many articles in The I'hysical Review, particu-
larly during the last 10 years.

~ G. E. M. Jauncey and G. G. Harvey, Phys. Rev. 37,
1203 (1931).' Y. H. Woo, Phys. Rev. 38, 1 (1931) and 41, 21 (1932).

unit cell. The equilibrium positions of the atoms
may consequently be described by the vectors

r(= Ql;a;, ——', (N~ —1)=t,» ', (Nl-1),—(4)

where l~l2l3 is a set of integers. If A~ is the dis-
placement of the atom at r~ the intensity of the
coherent scattering is

J=Sf'QP exp [i2n-(k —ko) r)( ]

with
X(exp [i2m(k —ko) (A~ —d, ~ )])«(3)

r« =P(/, —t,')a;.

One finds readily

(exp [i2~(k —ko) ' (4, 4, )])A„

=exp I
—s'[((u A~)')A„—((u A~)(u A~ ))A,], (6)

and with e~«'=1+P«(which is justifiable ex-
cept for very high temperatures) Eq. (5) be-
comes

J=Ji+J2) Ji = Joe '~)
(8)

J2 Sf'e ' P——PI'~t exp [i2m. (k —ko) r~~ ].

The two terms J~ and J2 correspond to Laue
scattering and diffuse scattering; but while J~
agrees with the expression found by Debye
(compare Eq. (3)) a di&erent formula is obtained
for J..

The problem of finding the normal coordinates
for the vibrations of a simple lattice is well
known' and needs but little discussion. By
means of a Fourier series expansion the dis-
placement function 4&, ~& (which is given physical
significance only at the lattice points since an
atom is assumed to be displaced as a whole) is
represented as a superposition of elastic waves

a(„,) =Pg'A, , ;(t) exp [i2m~„r].

In this expansion the index j refers to the three
waves associated with each propagation vector

~ M. Born and Th. v. Karman, Physik. Zeits. 13, 294
(1912); ibid. 14, 15 and 65 (1913). M. Born, Dynamik d.
Kristullgitter (Leipzig, 1915). I. Wailer, reference 3.

where s=2m ~k —ko~ =4m sin 8/X while u is a
unit vector along k —ko. XVith the abbreviations

2M=s'((u 4&)')A„Pll' S ((u'+L)(u'+l'))A (t)
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~p. The vectors ~p are given by

p'
b;,

s N' —I

Upon substitution of Eq. (14) in Eq. (8) and
summation over all pairs of atoms in the crystal

(1O) the intensity Js becomes

s'U
where p; denotes an integer. Because of the
periodicity the integers p; may be restricted to
lie within the limits —-,'(Ni —1)—P;~-,'(Nl —1).
Accordingly all propagation vectors ~p lie within
a corresponding region —the Brillouin zone—
which in the present case is the unit cell of the
reciprocal lattice. There are two standing waves
for every set of values (~„,j) and one verifies
readily that the combination ( —ev, j) gives the
same two waves. lt suffices consequently to
consider the ~p-values lying in one-half of the
Brillouin zone. (The summation over half the
Brillouin zone is indicated in Eq. .(9) by the
symbol P„', while Qv will be used for summa-
tion over the entire Brillouin zone. Clearly

p 2 p.

Since Eq. (9) corresponds to the introduction
of normal coordinates it follows that

(A„, ),=
2~'Nm, v '

hv;
Q;= +-', hv;. (12)

hv~'/0 T

The density of points ~p in the Brillouin zone is
NV, where V= (arasas) is the volume of the
unit cell. The summation over the discrete
points in the Hrillouin zone may conveniently
be replaced by an integration over a continuous
distribution having the same density. One finds
then

s2U
y —dv,4m. »

s'V Q;
Pii —— P yfs—cos L21r~ rii ]dv.

4m'm 2 & V

(13)

((n 4&) )&„=sQPp„; (Av, )A„,

((u &1)(tt'&1))A

=-,'Qpyv, i.s(A„, is)A„cos 21r~„r11.
p

yp, ; is cosine of the angle between Ap, ; and u.
The average energy associated with one vibra-
tional mode is —',Nm, oiis(Av, ,s)A„, ris. being the
atomic mass. (The factor of is enters because
there are two standing waves for every term of
Eq. (9).) Accordingly one has

j —gfss 2M — Q ~.2
4m'mg

Sin' [N'ir(k —kp+~) a;]
&& II dv. (15)

sin' [pr(k —kp+e) a;]

The integrand in Eq. (15) is zero unless
k —ko+z =B~ and it is therefore convenient to
introduce a small vector e= Q;e;b; defined by

& =& —
&o& k —ko+&o =~II. (16)

Noting that v;= rv; (where v; is the propagation
velocity) and that Vdv=dsidssdes Eq. (15) may
be given the form

v'Q

S111 [N4 e ]
de;. (17)

Sln Kt;

The velocities v; are in general functions of the
vibration direction; but (unless the anisotropic
character of the crystal is pronounced) the
range of variation is rather small, so that the
velocities to a first approximation may be
treated as constants. As a rule the three velocities
v; are not greatly different from one another,
and as an admittedly rough approximation it
will be assumed therefore that vI = v2 = v3 =v =- a
constant. With these assumptions the integration
of Eq. (17) may be carried out approximately'
and the following result is obtained

e' &
' 1+cos' 29 4 sin' 8

fse 2MN-
Ernc'R) 2 X'nz, v'

21r(N V)*Q(rp)
X (1fl)

1+21r(N V)irp'

The corresponding approximate expression for
23/I is obtained from Eq. (13) when the Brillouin
zone is replaced by a sphere of equal volume.
The radius of this sphere is r„=(3/ 41r)V*'and

8 Each of the three sine functions sin' LN4-e;Jjsin' 7l ~;
of the integrand was replaced by smoothing functions
&' eXP I

—7i-&ag 21.
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the formula for 2M becomes

where
hv7-

S2V~ kT
I~i..i+l -I

mmav 2

1 t* d$
and @(.) =—

~

X~p e& —1

The customary form is obtained when the
characteristic temperature 0+ is introduced by
means of the relation hvar =kO.

2. DrscrJssroN

The intensity of the diffuse scattering changes
according to Eq. (18) rapidly with the scattering
angle and exhibits maxima in the directions for
which vp assumes minimum values. This result
contrasts sharply with the slow variation with
scattering angle predicted on the basis of the
Debye formula, but agrees with the statements
made by Faxen and Wailer' that the main part
of the diffuse scattering is to be found in the
Laue directions. The lack of confirmation of
Debye's equation is not surprising since Debye
at one stage in the derivation incorrectly assumed
neighboring atoms to scatter independently. (The
same mistake was made in the later derivations
of the Debye formula by Jauncey and Harvey
and by Woo. ) In the notation of this article
Faxen's expression for the diffuse scattering

becomes

kT (IlirX~o)' (&rr ~o —ro-')'
+J —gf2s 2M—+

V7p4 CiiC44

where c44 and C~I are elastic constants. It is
readily seen that Faxen's equation agrees rather
well with the first approximation to Eq. (18)
when 27r(X V) Iro'»1 and when kv To/kT«1
Faxen's discussion of the physical significance
of the formula he obtained is unfortunately in-
complete and some of the most interesting
consequences escaped his notice.

Let an incident beam of parallel, mono-
chromatic x-rays fall on a stationary crystal.
The vector kp is then sharply defined relative to
the crystal lattice and Eq. (18) gives the in-
tensity of the diffuse scattering as function of
the scattering direction k. The quantity vp is
defined by the relation k —kp+~p ——BII, where as
stated the vector BII is unique. Consider a
particular scattering direction k. The vector BII
associated with it is readily found from a con-
struction in the reciprocal lattice as shown in
Fig. 1. (Cf. the article by Faxhn. ') It is seen that
the sought vector B~ is the reciprocal lattice
vector having the shortest separation from the
vector k —kp, this separation being the vector 4p.
Consider next the direction of scattering as
variable. The terminus of k describes then a
sphere of radius 1/X about the terminus of —ko,
this is the "sphere of reflection. " The points on
the surface of the sphere of reflection which lie
closer to BII than to any other lattice point define
a sector of the solid angle 4m, such that the same
vector BII is associated with a11 directions k
within the sector. In this manner all scattering
directions are grouped into a finite number of
sectors, each sector being characterized by a
different vector BB. The number of different
sectors is approximately

n =8ir Vr„/X'-=15.6 V:/X'. (20)

FIG. 1. Showing a section of the reciprocal lattice and
illustrating the geometrical interpretation of Eqs. (1'6) and
(22).

As k varies within a given sector, rp varies
with it by virtue of k —ko+~o ——Brr and the
intensity changes accordingly. It is important
to note that v.p can become zero only by proper
adjustment of the incident wave vector kp.
Since kp and B~ are considered fixed vectors
while k has the definite length 1/X, ro assumes a
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For scattering directions k near a maximum,
k, one may set

(Xrp)'=(Xr;„)'+x', (24)

where y is the angle between k and k . According
to Eqs. (18) and (24) the intensity distribution is
symmetrical about a maximum (in the immediate
neighborhood of the maximum). The half-width
at half-maximum is evidently

29 5po

Fig. 2. Showing the intensity distribution of the diffuse
scattering for KC1. The crystal is treated as a simple cubic
structure with lattice constant a=3.14A and one atom
per unit cube. The direction of incidence is assumed to be
along a8, while the intensity distribution in the'plane a2=0
is given in the figure. The wave-length is taken to be
'A=0, 71A. The curve A is calculated from Eq. (18), curve 8
from the Debye formula. The three integers affixed to the
maxima of curve A are the Miller indices of the active
lattice planes. The different behavior of the two intensity
curves as the scattering angle goes to zero is of interest.
As the scattering angle decreases to small values the
intensity according to Eq. (18) approaches first the con-
stant value J2=NSZ'kT/m, v' (Z being the atomic num-
ber) and drops then rapidly to zero in the exact forward
direction.

'A7. ;„= 1+8 sin 0~ cos sin

—1 = —6 sin 2es, (21)

where 0~ is the Bragg angle and 0;—=0~+6 the
glancing angle of incidence relative to the
sequence of lattice planes normal to B~. The
intensity of scattering reaches a maximum value
when 7.0 is a minimum and the direction of the
intensity maximum, k, is therefore given by

L1+Xr;„]k„=BII+kp. (22)

Thus the direction of maximum intensity lies in
the plane of incidence, but the glancing angle
of scattering is in general not equal to the
glancing angle of incidence. When 0;—0~=—6 is
small the scattering angle, 20, corresponding to
the maximum becomes

minimum value when k is parallel to B~+ko. If
7-;„is this minimum value one has consequently

r-- =
I
BH+kp

I

—Ik I

or
Og —0; '

= IAI sin 28s. (25)

The number of different intensity maxima of
J2 corresponding to a fixed incident wave is
given by Eq. (20) since there is one maximum
for every sector BH.

The difference between the Debye formula and
ours is well illustrated in Fig. 2 which shows the
diffuse (coherent) scattering for a concrete ex-
ample as calculated according to the two for-
mulas. It becomes clear from this figure that the
Debye formula cannot even be considered as a
fair ap'proximation. With this fact in mind it is
surprising that the extensive experimental studies
of the diffuse scattering by Jauncey and collabo-
rators not only failed to reveal the presence of
the intensity maxima but even led to con-
firmation of the Debye expression which we now
know to be incorrect. However, reference to the
articles describing these experiments shows that
the observations were made with highly divergent
incident beams and that in all but a few cases
continuous rather than monochromatic radiation
was used: The aperture of the ionization chamber
corresponded furthermore to a large solid angle
and it seems that the precaution to remove the
warped surface layers of the crystals by etching
was not taken. Under these circumstances
neither ko nor k are well defined, and the ob-
servations should accordingly be compared with
the average value of J2 over large variations of
the vector k —ko. Suppose that the variation in
k —ko is so large that the vector ~0 traces out
the entire Brillouin zone. The average value J2 is
then obtained when the quantity

2m(XU)&Q(rp)

1+2 pr(N U)'r p'

29 = 20~+26 sin' 0~. (23) in Eq. (18) is replaced by its average value.
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One finds readily

2m (N V)'Q(rp)

1+2m(NV)pro'

=47rkTVr„[g(,„)+', x„,]-(26)
and hence with reference to Eq. (19)

(J2)„=NSf'e ' 235=NSf'[1 e—'~], (27)

which is the Debye expression. The experimental
results of Jauncey and co-workers are conse-
quently useless as a means of distinguishing
between Eq. (18) and the Debye formula.
Further detailed studies of the diffuse scattering
with well defined x-ray beams are therefore
desirable and have been begun in this laboratory.

According to Eq. (22) the directions of the
intensity maxima of J2 are uniquely fixed only
if the incident wave is monochromatic and if
the crystal is stationary. The directions k vary
with the rotation angle when the crystal is
rotating and wave-length held fixed, so that the
diffuse scattering maxima will be recorded as
streaks on rotating crystal photographs. '

If the crystal is held stationary while the
wave-length is varied continuously (as in the
Laue method of crystal analysis) the directions
k remain in the fixed planes defined by ko and
the active vectors BJI, but the scattering angles,
20, change with the wave-length. The diffrac-
tion maxima J2 accordingly appear as sections
of radial straight lines on a photographic plate
placed normal to the incident beam. Such radial
streaks have been observed in Laue photographs
of various crystals" and different interpretations
have been suggested. The radial streaks should

' These streaks of rotating crystal photographs are not
to be confused with another set of streaks due to Laue
scattering (J1) of a continuous component of the incident
radiation.

"See for instance: W. Friedrich, Physik. Zeits. 14, 1082
(1913); A. P. R. Wadlund, Phys. Rev. 53, 843 (1938);
G. D. Preston, Proc. Roy. Soc. 172, 116 (1939).

according to our theory be a general feature of
all Laue photographs; but whether they are
observed or not is a question of exposure times
since the intensity of the streaks is small, par-
ticularly for crystals with high characteristic
temperatures. The suggestion that the radial
streaks of Laue photographs might be due to
the temperature effect was first made by Faxen
in his paper of 1923.' Quite recently this sugges-
tion was experimentally confirmed by Preston"
who showed that the intensity of the streaks
increased with the temperature. Preston's con-
clusion that the thermal vibrations of the lattice
breaks the crystal up into groups consisting of
an atom and its next neighbors cannot be
accepted, however. "

The exact treatment of the theory as applied
to crystals containing different kinds of atoms
becomes very complicated and will not be
attempted in this article. A first approximation
may, however, be obtained by assuming that
the atoms of a unit cell vibrate as a single
particle, and one finds then

f e'
q

' 1+cos' 2g
J2=IO]

f f
Ff'e 'MN

(mc'R) 2

where

4 sin' 8 2~(NU) lQ(ro)
X (28)

X'v'Pm. 1+27r(NV)ir '

F=pf exp [i2~(k —ko) r]
is the structure factor, Pm, the mass of the unit
cell and N the number of unit cells contained in
the crystal, while the expression for M must be
correspondingly modified.

"In a few instances the observed radial streaks must be
attributed to disorders in the lattice tending to produce
essentially two-dimensional super-lattices. The present
writer suggested (Phys. Rev. 53, 844 (1938)) that Wad-
lund's observations on rocksalt might be explained as
two-dimensional lattice effects. In view of the results of
this article it is quite certain that the streaks observed by
Wadlund are due to diffuse scattering.


