
LETTERS TO THE ED I TOR

On the. Calculation of the Thermal Diffusion Constant
from Viscosity Data

TABLE I. Values of C(s) and f(s) for various values of s.

In a recent issue of this journal a letter' appeared in which
the value of the thermal diffusion constant' a for various
gases was computed from the experimentally determined
variation of viscosity with temperature. The method of
computation was to assume that all of the molecules in
question interact with a force which varies as the inverse
sth power of the distance. If the viscosity varies as T", then
s is given by the relation'

s = (2n+3)/(2n —1}.
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This relation is rather questionable, however. It was
apparently obtained by noting that for the limiting case in
which the lighter molecule is rare, and in which the mass of
the lighter molecule is negligiMe in comparison with the
mass of the heavier molecule, the value of 0. is given by
—,'(s —5)/(s —1), and then assuming that the expression
(s—5)/(s —1) should be a suitable correction factor to
apply to the value of a as determined' for the case of
isotopes with s= ~. In the case of isotopes, however, the
masses are in general nearly egual, so that it is preferable to
use an expression valid for an inverse power field in this
limiting case.

Let the lighter isotope be termed species 1, and the
heavier, species 2. We assume that the interactions between
two molecules of species 1, between two of species 2, and
between one molecule of species 1 and one of species 2, are
all identical, and are of the form Kr '. We may now expand
the expression for a given by Enskog' and by Chapman~ '
in ascending powers of (m2 —mi)/(m2+mi). In the notation
of reference 6, we find for the first term of this expansion, '

= (45/2) I(m —m )/(m +m ) I
~

I 2Q(1,2) —5Q{1,1) I I 15Q(1,1)+2Q(2,2) I
{3)

Q(2, 2) I 165Q(1,1)—60Q{1,2)+ 12Q(1,3)+16Q(2,2) I

where the Q(l,n)'s are as defined by (26") and (27") of
reference 6. This expression for a is homogeneous and of
order zero in the Q's, so that if we wish we may multiply
simultaneously all of the Q's by any expression whatever
that does not depend on l or n. One of the simple choices
consistent with this possibility and with (26") is

Q(1,1)
Q(1,2)~3—2/(s —1),
Q(1,3)~ I 3—2/(s —1) I I 4 —2/(s —1) I,
Q(2, 2)~3 I I2(s)/Ii(s) I I3 —2/(s —1) I =3f(s),

(4)

where I&(s) and I~(s) are functions of s defined by certain
definite integrals; they have been evaluated for the
following values of s: 2, 3, 5, 7, 9, 11, 15, and ~.

The substitution of (4) in (3) yields:

The experimental fact that n does vary with the ternpera-
ture indicates that the assumption of an inverse power law
of force is only an approximation to the actual situation.
The number s having been determined from viscosity data
by Eq. (1), the value of a was then computed from the
equation

"' Obtained by graphical interpolation.

105 m2 —mi s—5
~ C(s),

118 m2+mi s—1
(5)

where C(s) is the correction factor to be applied to the
formula (2) used by Brown:

59 (15/f )+6
21 43+16 If—1/(s —1)+1/(s—1)'f (6)
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This function, as well as f(s), is tabulated in Table I. The
values indicated by an asterisk were obtained by graphical
interpolation from the remaining values.

The correction factor C(s) should be applied to the values
of Rp =ex(s)/n( ~ ) tabulated by Brown. ' For the only case
in which comparison with experiment is possible —that of
methane' —the experimental value of Rz is 0.29&0.03; the
value obtained by Brown from (2) is 0.46, and the corrected
value (5) is 0.39. The difference between (5) and (2) is not
sufficient to invalidate any of the qualitative arguments
presented by Brown.

The derivation of (6) of course depends not only on the
assumption of an inverse power field, but also on the use of
classical theory for the collision processes. Dimensional
arguments indicate that, for s considerably larger than two,
the wave-mechanical collision cross sections will be practi-
cally the same as the classical if the de Broglie wave-length
is very small compared with the effective molecular
diameter. For thermal energies the ratio X/d is very
roughly equal to 0.2m &, where m is the molecular weight.

Equation (5) indicates that, within the limitation of the
assumptions used in its derivation, the constant o. is
independent of the temperature.


