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Magnetic Resonance for Nonrotating Fields
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A treatment of the magnetic resonance is given for a particle with spin & in a constant field

Hp and under the action of an arbitrary alternating field with circular frequency ~ perpendicu-
lar to Hp. A method of finding a solution, valid at any time, is given which converges the better
the smaller the deviations from a rotating field or the larger Hp. It is shown that in the lowest
order correction the shape of the resonance curve is unchanged but that it is shifted by a per-
centage amount Hp/16 Hp where Hl is the effective amplitude of the oscillating field. This
also involves a correction in the values of the magnetic moments thus obtained towards
smaller values which however in all practical cases is negligibly small.

HE principle of the magnetic resonance has
been known since considerable time and it

has already led to several important applications.
In the outstanding work of Rabi and' his col-
laborators' on molecular beams it has not only
been used for the most precise determination of
the magnetic moments of many nuclei but it has
also revealed entirely new features like the
quadrupole moment of the deuteron. Further-
more, by applying it to polarized neutron beams,
it has recently allowed Alvarez and one of us'
a quantitative measurement of the magnetic
moment of the neutron.

The basic idea of the magnetic resonance is
very simple and consists in the remark that in
causing transitions of the orientation of a
moment a weak alternating magnetic field is
particularly effective when its frequency is in
resonance with the frequency with which the
moment precesses in a strong and constant
perpendicular field. While the special case of a
weak field rotating around the strong field can
be easily treated there lies an essentially more
dificult problem in the mathematical theory of
a field, for which the polarization is no more
circular but generally elliptic; this includes the
case, commonly used, in which the alternating
field performs a simple linear oscillation. It is
the purpose of this paper to solve this problem

by a method of successive approximations which
converges the better the smaller the eccentricity
and the greater the ratio of the consta

the magnitude of the varying field; we here
restrict ourselves for convenience to the treat-
ment of a particle with angular momentum ~~.**

Let c~ and c ~ be the probability amplitudes
for the s component of the moment to have the
values m=-', and m= —-'„respectively. They
satisfy the Schroedinger equation

——c = —p P (He„„)c
m'= ——1

2

where H is the vector of the magnetic field with
components H, H„, H„p the magnetic moment
of the particle and e ~ a matrix vector the com-
ponents of which are the spin matrices of Pauli. t
Written out Eq. (1) becomes

(a/i) c, =uDH, +iH„)c,+H,c,), (2a)

(5/i)c ) u/(H, iH——„)c) H—,c )j —(2b).
These two equations can be reduced into one for
the only quantity

u =cy/c

which is physically important, since it deter-
mines directly the probabilities P (m= &2) to
find any one of the two possible values of m in

the form

(4a)

(4b)

~ Now with the Texas Company, Houston.' I. I. Rabi, S. Millman, P. Kusch and J. R.
Phys. Rev. 55, 526 (1939).' L. W. Alvarez and F. Bloch, Phys. Rev. 57,

**As the unit of the angular momentum we shall through-
out use the quantity A =h/2m", h=Planck's constant.

t With this form of Eq. (1) we have decided that positive
Zacharias, or negative values of p, , respectively, mean, that the

orientation of the magnetic moment of the particle is
111 (1940). parallel or opposite to that of its angular momentum.
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H, =Hp. ae'&' —p'&+1/aI=ei("'+& '
1 —e'(' —p')

(14)The general case of an alternating field with
circular frequency co, perpendicular to it is given
by With the above abbreviations it then follows

from (5) that s has to satisfy the equation
H, =H, cos (p)t+z&p)),

H„=II, cos («+ z)pp),

(7a)
dS(7b),

I eiz/e iz(1+—p) apei (1—zp)]+e

izing

iz—(1—p)—

dT

The equation for I, following from (2) is superposition of which the general alternating
field (7) can also be formed. In order to facilitate
the further discussion we shall replace the

We shall now assume, that II, has the constant function u of Eq. (5) by a new function s through

value the relation

(H, e' p +iH,e'")t = If le"
4fi

(8a)

(H)e'p~ iHpe" —z)ti = Ifple*'
45

(8b)

2p)t+P)+Pp r, ——

1 /' 2Hpt(i

4( it&p )

I (lf I'+~')-:+~],
If) I

where the amplitudes II~, H2 and the phases
q&, q» are left quite arbitrary. We will now in-
troduce the following convenient abbreviations

(I/aP)ei ( z)+&]p2[eiz+e iz] I (—15)

The essential difficulty in solving this equa-
tion arises from the right-hand side, the im-

portance of which is measured by the quantitye.
We see from (13) that it reaches its maximum
value p,„=

Ifp I
/2 for l) =0, i.e., when the

frequency ~ equals the Larmor frequency
2Hpti/It; we write for the value of IIp, for which
this resonance condition is fulfilled

H„=Sco/2)J, .

We have then with (8')

Ifp I

&max =
2

1/a= L(lf) I'+~')*—~]
If) I

t = If)l(a+I/a) =2(lf I'+~')'

If)fp I

2(lf I'+~')-:
(13)

2Aco

I lf)l sin («+4) Ifpl »n («—+A)],

From Eqs. (7) and (8) it also follows that

2k')
I If&I cos (p)t+)ti))+ If&I cos («+Pp)],

1 LH)'+Hp' —2H)Hp sin (z&p&
—ppp)]'

(17)
16

This vanishes if and only if I~&=II2 and pj. = p2

+pr/2, i.e. , according to (7) if the alternating
field rotates counterclockwise or clockwise,
respectively, in the x-y plane, according to
whether the frequency co is positive or negative
i.e., whether IX„and p, have the same or the
opposite sign.

For &=0 we have immediately s=const=pTp,

ae'p&' "&+1/a
e s ( &p) 5+~ 1)

] eip(v —rp)

so that (2)))p)/&(() If), pl and P&, p have the sig-
nificance of being the magnitudes and phases,
respectively, of two fields, one rotating clock-
wise, the other rotating counterclockwise, by

a'+ 1/a'+ 2 cos p (r r p)

2[1—cos p(r —rp)]

and we obtain from Eq. (4') the familiar
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expression
pHp H,—'& '

sin' H&)p 1+
~ ~

(/ —fp)/I'1
4 sin' p(r —Tp)/2 sin' [(~fi ~

'+6') l(T —To)] — E IX(

(a+1/a)' 1+&'/)f&
~

' (Ho —H, l ' (18)

using (8'), (10), (11) and (12) and writing
Tp = 2p&fp+ i/i+ lpo so that t = tp is the time for
which the value )&o= 1/2 is found with certainty.

The rigorous solution of (15) for o+0 cannot
be given in terms of elementary functions. We
want to show, however, that a series expansion of
the solution in powers of e can be obtained which-
is valid for any value of the argument v ~ and
the few first terms of which give a good approxi-
ination if o((1. One sees from (17) that to have
e sufficiently small it is not necessary that the
alternating field deviates only little from a field

rotating in the x-y plane in the sense, described
above but that ~ will be always small for arbi-
trary given values of II&, I72 and p&, q» if only
&&H„& is s'ufFiciently large. In the example of a
field, oscillating in the x direction (Ho ——0) it is

only necessary that its amplitude III is suffi-

ciently small compared to the constant field at
resonance II„.*

It would seem at first, that the method of
successive approximations would immediately

yield a good power series expansion of s in terms
of e. If, however, one substitutes in the usual
way the solution of the previous approximation
in the right-hand side in order to find the next
approximation by an integral one sees, that al-
ready. in the second approximation there occur
terms linear in v. which for sufficiently large values
of ~ would seem to make the solution invalid.
One has to admit a linear increase of s with 7.

with a coefficient however, which again in each
approximation will be more accurately deter-
mined. All other terms can be seen to be oscilla-
tory in r with amplitudes that are the smaller,
the smaller ~. We thus write

s=y+) 7., (19)

we can then write (15) as an integral equation
for y in the form

wher'e the coefficient ) has to be determined in
such a way, that y contains only oscillatory
terms. With

(20)

7(T+oJ—l Ieipp[e 1&'+~&r a'e'&' —~&r]+e io[e '&" &' —I/a'e«'+ &'] —2[e"+e ir]}&dr. (2l)

As in (18) we shall determine the one constant of integration for y in such a way that P ) vanishes
for T=rp For this it .is evidently necessary from (4') that ii(rp)= pp ol fi'om (14) that s(rp)=p(rp)
i.e. , with (19) and (20)

We shall now write
X(ro) = pro

y(T) = nrp+P)

(22)

(23)

so that we have the initial condition p)(rp) = 0. If we further introduce

we obtain for p the integral equation
T

l(T+ O t Sip[S—iro i(1+a) T aOSiro+" &1 pp& T]
Jp 1.

+&o
—ip S

—irp—i(1—pp)T piro+i(1+a)T 2[Sirp+iT+S—irp —iT] dT (25)
6

*This is incidentally the same condition as the one which guarantees high resolving power of the magnetic resonance
method.
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in which the limits of integration are evidently chosen so as to satisfy the required initial condition
for z&(T) that z&(0) =0. Using (4'), (14), (19), (23), and (24) one can readily express P

& in terms of z&

and its conjugate complex g* by the formula

with

I' )
——

2 cosh k

cosh [i(z& —1&"') /2] —cos [&)&T (z&—+z&~)/2]

cosh [0+i(z& —z&*)/2]

a= e'.

(26)

(27)

In order to obtain for q a power. series expansion in e we write

'g = 6/1+ 6 go+

X= e) 1+a'Xg+ ~ . .

(28a)

(28b)

Substituting in (25) and equating terms with the same power of e on both sides of the equation we
find for the terms linear in e

T 1
T+. ) e ,[e &&1+—'&r+—e &1 &r —2e

'—or] eo—r, a ei&1—&r+ co&1+a&r+2eir
J

(29)
e—i(1+&)T —1 e

—i(1—ez') T 1 ei(1—et) T 1 1 ei(1+&)T

=ie '"—— +— ——2(e 'T —1) +ie"o a' + — +.2(e' —1) .
1+n 1 n 1 —n 6 1+n

We have here taken X1——0 since indeed with this choice q1 has only terms which are oscillatory in T
(or constant) but no terms that increase arbitrarily as T increases.

For terms quadratic in e we have

Z&o = —gZT+i, Z&1 e oro[e—i&1+a) Z' e—i&1—a) T] eiro azei&&—a) T ei &I+a) T d7'
0 6

p T e—i(1+a) T 1 e—i(1—a) T

= —x,z+ ~

1+n 1 —n

1.
2(e—iT 1) azei&1 —a)T ei&1+a)T

0

T — ei(1—e~) T 1 1 ei (1+u) T 1
a'- — —+ — +2—(e—'r —1) [e—'&1+a)z e '&' a) ] d7

0 . 1 —n c 1+n
(30)

2' e—i (1+n) 2'
1 e

—i (1—t&') Tr

—+
~o 1+n 1 —n

2 (e—ii' 1) [e—i&1+a) T e
—i&1—.a) Tg d 7

ei(' ~' —1 1 ei('+ )2
+ez"o ~,l az + +2(e r1) azei&1—a)r 'ei&1+a)r d7

1 —
oz. a' 1+n C

Vte first note, that the terms of q2, linear in T are
of the form

which, in order to vanish require

a 1 1

&1 —
&&. a' 1+u)

(31)

The remaining terms of q& are again oscillatory
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(or constant). We shall explicitly write down
those which are dominant for n((1 since they are
of particular interest for our later purposes.
They are

2
rtg' ——---L(a'+1) (e

—' r —1)

+ (1/a'+ 1)(e'~r —1)]. (32)

Proceeding in the same manner one can evi-

dently obtain all further terms in the expansions
(28). We shall, however, break off the expansion
with the terms quadratic in e which we have
obtained so far and proceed to calculate those
corrections in the expression for P I„which
arise in this approximation, introducing all those
further simplifications which are justified from
the physical angle of the problem.

Inserting (28') in (26) and keeping the linear
and quadratic terms in e we get

P ~= — —1 —cos nT ——
I (q, +q&*) sin nT+t'(g, g&~)(1 ——cos nT) tanh k]

2 cosh' k 2
2-

+—g~gi* cos nT (rt2+rt~—)sin 'nT i(qq —g—~ ') (1 —cos nT) tanh k
2

——(g~ —qq*)'(1 —cos nT) tanh' k+—(q~' —g~"') sin nT tanh k . (33)
2 2

This formula can now be considerably simpli-
fied for all practical purposes. We notice first
that through the expressions (29) and (30) for
q~ and q2 P; contains terms periodic in 7p which
quantity by Eq. (9) sets the time to at which the
particle according to our initial conditions is
sure to be found in a state with en=-;'. Since in
the magnetic resonance method one generally
deals with a continuous stream of particles one
will not observe P, but rather its average over
7 p, so that one is justified in replacing the ex-
pression P; by its average P ~ which one
obtains by omitting in (33) all terms which
oscillate with ~p. Since qI and qI~ are of this
character this means that the terms of (33)
which are linear in ~ can be omitted.

Of the remaining terms quadratic in ~ we shall
now for further simplification keep only those
which become dominant in the limit of high
frequencies cu or, according to (16) for large
values of the quantity II„. In order to separate
these terms we have to consider the order of
magnitude of the quantity n, entering in (29)
and (30). According to (12), (20), (28'), (31) and
considering that X&

——0 we see that in our approxi-
mation n is to be determined from the equation

f a, ' 1 1
n= (If~I'+~')' —e'I ——

I (34)
L1 —n a' 1+n)

Near resonance, where 8 is of the order of
magnitude of IfrI we see from (11) that a is of
the order of magnitude of unity. The first term
of (34) is then of the order of magnitude of If~I
which, from (8 ) is seen to be inversely pro-
portional to or or to IT„. Since near resonance e is
of the order of magnitude of

I f2 I
which again is

inversely proportional to II„we can approxi-
mately write

n= 2(If, I2/P)' '—2g'(a —1/a ) (35)

or with (11) and (13)

(36)

Thus for large values of IX„a approaches zero
like 1/FI„. While according to (29) qr approaches
a finite limit for n—+ 0 g~ approaches the value g~',
given by Eq. (32) which for small values of n
(but nT arbitrary!) is proportional to II,. Since
e' is itself proportional to 1/II„' we obtain P
correctly to within terms of the order 1/II, if.
we write instead of (33)

Q2

P ~= 1 —cos nT ——
I

(qg'+g~' ) sin nT+i(q~' —q~'*)(1 —cos nT) tanh k)
2 cosh' k 2

(34&
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Since this formula is claimed to be correct only
including correction terms of the order 1/IE, . we

can in o'/n replace n by its first term 2( If l I

'+ 8')'
of formula (35). Or with (11) and (13)

sin'nT/2 28If, I-'—
P ., = —' —1+

1+&'/ Ifl I

'
Ifl "+~' (38)

This formula can be written in a form, very
similar to (18) by introducing the "effective" 8,

defined as
(39)

We have indeed, except for higher order correc-
tions in 1/Ii, which we have neglected anyway

or with (32) and (27)

4 sin' nT/2 4o'
P l

= — —1+ (a' —1/a') (37)
(n, +1/a) ' n

and writing T=2co(t —to) in the form

(IIO —H„'y' "

»n'Hl*~ 1+I, I (t to)—/&
H, * i

(Ho —H
'+Ii H iI

(44)

which has the same form as the corresponding
expression in (18) for a rotating field with the
only difference, that the magnitude H& of the
rotating field and the resonance value If„of the
constant field Ho have to be replaced by their
"effective values, " given by (42) and (43).

In the usual case of an oscillating field in the
x direction with an amplitude H~ one has
H2 ——0,

Hl* ——Hl/2 and H„*=IS (1 IS '/16IS *')—

-=2(lf I'+f*')'

and

=2(If, I'+~')-: 1——
I fl I'+t"

1 1 26I foI'
1+—

1+f*'/Ifll' 1+t"/Ifl I' Ifl '+&'

(40a)

(40b)

The magnetic moment of the particle is then,
according to (16) and except for higher order
corrections in 1/H, *related w. ith the resonance
value H„*of the constant field by the equation

(45)

In this approximation we have thus

(41)

which differs from (18) only by the replacement
of 8 by 8*. This can be written still more con-
veniently using (8), (10), and (16), introducing
the "eAective" quantities

Hl* ——o[Hl'+Ho +2ISlHo sin (pl —ohio)gl, (42)

FIl'+Ho 2HlHo sin (pl —oo2)II„*=H„1— —,(43)
16H-*'

Although in the determinations of the magnetic
moments by the magnetic resonance method the
second term in the bracket of (45) has always
been neglected we see that the correction, which

it involves is in all practical cases extremely
slight. Even in the case, where the ratio of the
oscillating field amplitude to the constant field

at resonance is as much as —,'0 it amounts to less

than 1 percent and in the cases of high precision
determinations of magnetic moments, where
that ratio has been chosen about 1/100 it is

perfectly negligible. It seemed to us worth while

to ascertain this fact in view of the importance
of these determinations.


