
426 J. H. VAN VLECK

orientations are irregularly distributed through-
out the lattice and, furthermore, may change
discontinuously from time to time. This model
yields the correct contribution to c„above the
transition and, in virtue of the cooperative
nature of the phenomenon, accounts qualitatively
for the higher value of c„, vis. 22 cal. /mol-deg. ,

below it.
In conclusion the writer desires to acknowledge

his indebtedness to Professor Krefeld and Mr.
Kenyon, of the Department of Civil Engineering
at Columbia University, for their cooperation
and assistance in preparing the specimens; to
Mr. Richard Scheib, for his constant aid in the
construction and manipulation of the apparatus;
and to Dr. S. L. Quimby, who followed the
progress of the research with helpful counsel and
encouragement.
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The relaxation times for spin-lattice coupling in titanium
and chrome alum are computed on the basis of a specific
model obtained by combining the thermodynamic theory
of Casimir and du Pre with the writer's previous treatment
of the normal modes of a cluster of the form X.6H20,
where X contains an incomplete shell. The calculation
includes both the first-order or direct processes important
at low temperatures, and the second-order or "Raman"
type of term predominant in the liquid-air region. There
is no difficulty in understanding the observed absence of
dispersion in titanium alum at liquid-air temperatures,
but, barring crystal imperfections, it is hard to understand
this absence at helium temperatures unless the nearest
excited states are unreasonably deep. The agreement

between the orders of magnitude of the calculated and
experimental relaxation times is adequate in chromium
both at high and low temperatures. The calculations
predict, in agreement with experiments, that at liquid-air
temperatures the relaxation time should increase when a
constant field IIo is applied and should be independent of
the direction of Ho. The computed increase, however, is
apparently not great enough. At helium temperatures,
7 is theoretically not quite isotropic, and d7'/dHo has the
wrong sign, unless one abandons the usual formula p„~co'
for the density of lattice oscillators. The calculations on
chromium should also apply qualitatively to iron alum,
discussed at the very end.

I. INTRoDUcTIoN
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magnetic absorption and dispersion in

paramagnetic media at radio and lower fre-
quencies have been performed within the last
few years by Gorter and other Dutch physicists. '
In solid bodies the spin and orbit are largely
decoupled, and the magnetism results almost
entirely from spin. At 6rst sight, it may seem
that, owing to this decoupling, the spin moment
is a constant of the motion, and so does not
undergo any of the oscillations prerequisite to
absorption or dispersion. The constancy is, how-

ever, spoiled by "spin-spin coupling, " i.e. , inter-
action between the spins of different paramag-

'See Physica, from 1936 on, or the dissertations of
Hrons and of Teunissen (Groningen, 1939).

netic atoms, and also by a slight potential energy
of alignment of spin relative to the crystal lattice
which arises because the spin is never perfectly
decoupled from the orbit, and so indirectly feels
the inRuence of the crystalline Stark effect acting
on the orbit. The measurements on absorption
and dispersion are particularly instructive be-
cause of the light which they shed on (a) the
relaxation time 7, involved in spin-spin interac-
tion and (b) that r characteristic of the coupling
between spin and lattice. The present paper is
devoted to 7. rather than 7-,. Ordinarily 7, is small
compared to 7- and is unimportant at the frequen-
cies employed experimentally. The most elegant
way of determining 7- is furnished by the thermo-
dynamic treatment of Casimir and du Pre, '

'H. B. G. Casimir and F. K. du Pre, Physica 5, 507;
also especially Casimir, Physica 0, 156 (1939).
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the essence of which is as follows: If the impressed
frequency cu is small compared with 1/r„ the
spins are in thermodynamic equilibrium with
each other so that it makes sense to talk of a
"spin temperature" T,. The latter, however, will

not be the same as the lattice temperature if cv

is comparable with, or larger than 1/r. Obvi-

ously the magnetic susceptibility will be of the
isothermal variety in the region &u(&1/r, where

spin and lattice are in equilibrium, but becomes
adiabatic when a&))1/r. The critical transition
region co 1/r is characterized by dispersion (cf.
our later Eq. (27)) and by determining this
region, 7- can be evaluated experimentally.

The theoretical calculation of 7- was begun by
%aller. 3 He assumed that the lattice vibrations
inHuence the spin only by modulating the spin-
spin interaction, and as a result obtained relaxa-
tion times entirely too large to agree with experi-
ment. Actually the modulations of the crystalline
Stark effect are more important. Even so, how-

ever, the attempts of Heitler, Teller, 4 and Fierz'
to include schematically the latter type of
modulation still lead to estimates too large by
a factor about 10' to 104.

There are two types of relaxation effects which
aAect 1/r, and the results of previous calculations
on both these contributions to 1/r have always
been too small, even when fairly liberal allowance
has been made for possible ambiguities in uncer-
tain factors. One type, the only variety important
at low temperatures, is that in which the spin
system absorbs a quantum of energy from the
lattice vibrations, or else imparts a quantum to
the latter. This we shall call the "direct process, "
as it is the analog of simple absorption or emis-
sion in radiation theory. The second type,
predominant at high temperatures, is that where
the spin absorbs a quantum of one frequency, and
scatters that of another. This we shall allude to
as the Raman process, for it is similar to inco-
herent scattering in optics.

A further puzzle has been the fact that ti-
tanium alum empirically exhibits much shorter
relaxation times than the usual (i.e. , ferric or
chrome) alums. In fact, the relaxation time r for

' I, Wailer, Zeits. f. Physik 79, 370 (1932).
4 W. Heitler and E. Teller, Proc. Roy. Soc. 155, 629

(&936).' M. Fierz, Physica 5, 433 (1938).
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the titanium alum is so short that no dispersion
at a11 can be detected in the frequency range so
far employed experimentally, so that one can
say that ~—10 ' sec. and ~—10 sec. at helium
and liquid-air temperatures, respectively. The
corresponding value for the ordinary alums are
of the order 10 and 10 '. Now the ground level
of titanium alum is only doubly degenerate, and
so, in virtue of a well-known theorem of Kramers,
cannot split in a crystalline field. Hence one
might expect, at.hrst sight, the lattice vibrations
to be unable to modulate the crystalline Stark
effect, and so not to influence the spin system
except via the spin-spin interaction, which is too
small. Thus one would anticipate that titanium
should exhibit a very much longer, rather than
shorter, relaxation time than the other alums.

However, as Kronig' has already pointed out,
and as we have also found independently, the
idea that titanium cannot interact with the
lattice via the Stark effect is based on a miscon-
ception. Matrix elements due to this interaction
do appear. They have the property of being pro-
portional to the frequency cu of the energy

~ R. de L. Kronig, Physica 6, 33 (1939).

~ ~ ~ ~ ~

FIG. i. Solid lines refer to orbital energy levels. States
associated with the same F index coincide in a strictly
cubic field. The dashed lines show the incomplete decom-
position of the spin structure of the basic orbital level
by a trigonal crystalline field, and the dotted lines illus-
trate the complete resolution by an applied magnetic field.
The diagram is obviously not to scale, for the trigonal
splitting 0 is small compared with a cubic interval such
as v», and the spin separations are very small compared
with the orbital ones.
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quantum exchanged between the spin and the
lattice in the direct effect, and to the product of
the incident and scattered frequencies in the
Raman case. These elements are of the nonadia-
batic nature, i.e. , disappear in the limit co=0,
and so there is no contradiction of Kramers'
theorem. On the other hand, our calculations in
Sections VI and VII show that the most important
terms in chromium or iron are of the adiabatic
variety.

In the present paper we shall give explicit
calculations of the paramagnetic relaxation times
of titanium and chrome alum as typical of ions
in which the important effects are, respectively,
nonadiabatic and adiabatic. Generally speaking,
the nonadiabatic terms are insignificant, but
they are abnormally strong in Ti+++ because
small frequency denominators are encountered
in the perturbation calculation, because of the
existence of low-lying excited levels. The latter
are separated from the ground state in Ti+++

only in virtue of the small, noncubic portion of
the crystalline field, rather than by a large cubic
splitting as in Cr+++ (cf. Fig. 1).

The model which we use can be described as a
combination of the thermodynamic theory of
Casimir, ' and the analysis which we made in a
previous paper, ' henceforth called l.c., of the
Jahn-Teller effect in clusters of the form X 6H20.
In the alums, the most important part of the
crystalline potential exerted on the paramagnetic
ion is doubtless that arising from the surrounding
water molecules of coordination. So we are led
to study the interaction between the magnetic
moment of the paramagnetic ion and the
normal vibrational coordinates (Fig. 2) of a
complex X 6H20, as was done in the calculations
of l.c. The latter were ostensibly in connection
with the static paramagnetic susceptibility, but
can be extended in a natural way to paramag-
netic relaxation by expanding the normal coor-
dinates in terms of the Debye elastic waves, as
we shall do in Section II. As explained in l.c., the

' J. H. Van Vleck, J. Chem. Phys. '7, 72 (1939);referred
to henceforth as l.c. The following typographical errata in
this paper may be noted: Eq. (24) read —CI(d'4F) and—C2(d''F) in place of —C1(d' F) and —C2(d''F), re-
spectively; Table II, read Q4' in place of Q3, Eq. (8), p. 64
of the article immediately preceding l.c., read cos 3(p; —p0)
for cos (p; —p0).

theory of the normal modes of vibration is quite
different from the usual, standard classical
variety when the complex contains a degenerate
atom, as is the case with our paramagnetic ions
with an odd number of electrons. Namely, a
fundamental theorem of Jahn and Teller informs
us tha, t unless the degeneracy is lifted, the normal
coordinates appear linearly rather than quad-
ratically. It is only because of this linearity that
the relaxation times are short enough to be
important.

The calculations with a detailed model are of
necessity somewhat long and involved, and
cannot claim a high degree of accuracy, but still
they do appear rather essential because purely
schematic estimates, such as those of Heitler,
Teller, Fierz, and Kronig are not at all reliable.
Thus it proves that when the computations are
made for chromium with an explicit model (Sec-
tions VI and VII) the calculated relaxation
times are no longer larger than the observed
values, On the other hand, the relaxation times
yielded by our calculation for titanium at low
temperatures (direct process, Section III) are
larger by a factor 10', for a given separation 0
in Fig. 1, than the provisional estimate of
Kronig. At liquid-air temperatures (Raman
process, Section IV) our computed relaxation
times are a great deal smaller than Kronig's for
the same 6, because his Raman matrix elements
vanish in the limit H=O, whereas ours do not.
This difference arises because his model was too
simplified to exhibit the most general type of
term. We find that there is no difficulty in under-
standing the absence of observed disperion in
titanium alum at liquid-air temperatures, even
if 6 is as large as 10' cm '. Quite irrespective of
the question of orders of magnitude, the calcu-
lations are of interest because they lead to certain
general. conclusions (Section VIII) regarding the
dependence on the magnitude and direction of
the applied magnetic field Ho which do not
depend on numerical values of the constants, and
which furnish a rather interesting test of the
thermodynamic model and the usual theory of
lattice vibrations. Previous schematic estimates
of the transition probability did not use the
properties of the thermodynamic model explicitly
enough to reveal the necessary relationships.



PARAMAGNETI C RELAXATION TI MES

(Q, ) (Q, . Q} CQi o Qe&

FrG. 2. Even modes of vibration of the complex Ti 6H~O or Cr 6H20.

II. THE HAMILTQNIAN FUNcTIQN FGR TITANIUM

Apart from modulations due to thermal vibrations, the crystalline field acting on a paramagnetic
ion in the alums is of trigonal, but nearly cubic symmetry. ' In titanium, unlike chromium, the cal-
culation may be made by considering only those states which belong to the same orbital cubic
representation F5 as the ground level. Namely, nonvanishing elements of spin-orbit coupling are
obtained by considering transitions merely internal to F&, and so in comparison the effect of matrix
elements nondiagonal in the cubic representation, which involve much higher frequencies, is unim-

portant. Thus only three orbital levels need to be considered, vis. , the nondegenerate ground state
I'Q, and the two components a,b of the, doubly degenerate excited state f'&, as shown in Fig. 1.
We henceforth omit the index I'5, since it is common to all states under consideration. Superposed
there are two possibilities for spin orientation denoted by subscripts + and —when they need to
be distinguished. The Hamiltonian function may be written

K =Kg+XI.+Xz+Keo+XoI.+Kze.

Here X0 is the "Stark" energy of the orbit, regarded as completely decoupled from the spin. It arises
from the crystalline potential exerted by the surrounding atoms at their equilibrium positions. Xz,
is the "lattice" energy, due to thermal motions of the atoms, or in other words the Debye waves.
These oscillations may, to a suAicient approximation for our purposes, be regarded as simple har-
monic. In our system of representation, both X0 and Ãl. are diagonal. Their characteristic values
are, with the most convenient choice of origin (zero energy for A), respectively,

Geo(&)=0, SCo(E.) =Xo(E~) =hh, XI.=P;her, (n;+-', ),

where n; is the number of quanta associated with the ith mode of vibration, of frequency or;.

The Zeeman energy Xz plays a role in our calculations primarily in lifting the Kramers degeneracy.
Without removal of the latter, there would be no energy to be exchanged with the lattice when the
spin "turns over. "We shall use a system of representation in which the spin is space quantized rela-
tive to the axis of the field JI, which does not in general coincide with the trigonal axis. Then the
part of BC' due to spin is diagonal, and has the characteristic values

~z(&y) =Xz(Ey) =PA Kz(& —) =Xz(E ) = —PH. (P =he/4zmc).

If there is no appreciable applied magnetic field, the Kramers degeneracy is lifted primarily by
the spin-spin interaction

3'88=21i"J with l"1=44'EICOS' St —3rv '(S' r't)(S~" '1) jr*~ ' (4)

We shall neglect the modulation of the spin-spin energy by lattice vibrations. Although this modula-
tion represents the type of spin-lattice coupling originally considered by Wailer, it is now well

recognized to be too small to be significant, and is much weaker than the spin-lattice interaction
which we will obtain via the Stark effect. However, 3'.q8 can still be of importance in lifting the
Kramers degeneracy. For our purposes, as we will show more fully in Section VIII in connection with

' See x-ray data by H. C. Lipson and C. A. Beevers, Proc. Roy. Soc. 148, 664 (1935).
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the Temperley effect, it is adequate to use Kronig and Bouwkamp's' approximation of regarding the
spin-spin interaction as equivalent to a random magnetic 6eld whose intensity is distributed according
to the Gaussian law. We therefore henceforth drop 3Cqq from the Hamiltonian function, and interpret
II in the Zeeman energy, not as merely the external magnetic field, but rather as the vector resultant
of the applied field IIp, and the internal field due to spin-spin interaction. The applied static 6eld IIp

.is not to be confused with the much weaker, radiofrequency field which is used to measure the
alternating susceptibility or dispersion.

The term X~0 in the Hamiltonian function is the spin-orbit energy t-I S. Its matrix elements are

~S (O~ &ai~b&) ~3'llaa'y ~SO(A&~~a+) +3&llya y'~SO(A&y~b&) ~23llaa't

3cso(Z,~,Eb~) =-,'it(l, ail, „'), Bcso(A~@,~) = ,'ii(-l„, +i.l„„), .

%so(A~,Eb+) = ,'if(-l. ;ail „)
(5)

Here the l's are the direction cosines connecting two sets of axes x,y, s and x',y', s' such that the
trigonal axis is along s' and II is along the s axis. Only nonvanishing elements are written out.
Elements in which all the initial and 6nal indices are interchanged can be obtained from the Her-
mitian property. The result (5) can be obtained by noting that matrix elements of spin angular
momentum are of the usual Pauli type referred to the x',y', s' axes, while those of the orbital angular
momentum I. can be obtained by using wave functions as given in Eqs. (20) and (21) of l.c. With
proper orientation of the x,y axes one has L.(E,;Eb) =I„(A;Z,) =L,(A;Eb) =i Cor. responding to
these matrix elements, there are also off-diagonal elements of the Zeeman energy which arise entirely
from the orbital moment, and which have the values

Kg(E,",Zb~) =iPHl. .'. X,(A~,B,~) =iPHl3. ', X.(A~,Zb~) =MPH/„'. (6)

The portion KoL of (1) is that which gives the orbit-lattice coupling, and arises from modulation
of the crystalline Stark effect by the elastic waves. The great bulk of the Stark splitting comes from
the 6elds due to the nearby water molecules of coordination. The thermal vibrations cause these
molecules to be instantaneously nearer or more remote from the paramagnetic cation than at their
equilibrium positions, and so cause oscillations in the Stark pattern. Now the vibrations of a complex
of the form X 6H30 are conveniently specified by a set of normal coordinates Qi, Q3, Q3, Q4, Qb, Q3

or Qi, Q3, Q3, Q4', Qb', Qb' described in detail in l.c. so that their definitions need not be repeated here.
The quantities Q4', Qb', Qb' are linear combinations of the vibrations Q4, Qb, Q3 shown in Fig. 2. There
are also other coordinates Qi, , Q» but they appear only quadratically and so do not concern us.
Because of the Jahn-Teller eRect there are matrix elements of the crystalline potential linear in

Q3, , Q3. These elements are found in Eq. (25) of l.c. to be

~OL(A&Pa&) =Q«Q3+3+3&Q3', ~OL(A~;~b~) = +6OQ3+—33+3bQb', -

~OL(~a&gb~) +3OQ2++3bQb ~OL(~ & R &) =+3OQ3 —g'3bQ3' —g'3bQ4,

(RObL+ Ab&) +3OQ3++3'Q6 "/3'Q4 & HOL(A&iA&) 2+PQ4

with a=3pi /7 —25p3'/63, b= —6pi/7+10p3/21, pi —— 4eprb R ', p3
———6e—orb'R

Here the bars over r' and r4 denote, respectively, the mean square and mean fourth power radius of
the electron orbit, and 8 denotes the equilibrium distance from the cation to any one of the six
water molecules. The latter, in our model, each have a dipole moment p, which we suppose radially
directed and which we regard as responsible for the crystalline field. The results of our calculation
would not be signi6cantly modified if a point charge instead of dipole 6eld were used.

The Q's will continually oscillate due to the thermal motions of the lattice. They are thus in turn

' R. de L. Kronig and C. J. Bouwkamp, Physica 5, 521 (1938).
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to be regarded as linear functions of the normal coordinates g, associated with the lattice heat waves

so that
(9)

It is clearly to be understood that there are 3X coordinates g;, where N is the number of atoms in

the entire crystal, whereas there are only a small number of Q's, since the Q's are coordinates merely

for the cluster Ti 6H20.
If the xj„yr„sl, be the Cartesian coordinates of a water molecule, with equilibrium values xA, ,

yI, ', sI,' then xI„ for instance, depends on any given thermal mode i of vibration in the form

~k —~k' =g4zi cos (yk, —&;), 7k' =2s~(&z,~k'+&y|yk'+&Icosi')/si. (10)

Here g; and 4;, 4„;, 4 „are the direction cosines of the amplitude of the wave q; while v; and ) „.,
X„;,X„are its velocity, and the cosines specifying its direction of polarization. We shall suppose that
the wave-length of the lattice vibration is large compared with the cluster's cross section 2R so that
we can take

cos (yi, —6;) =cos b, +pi; sin 8;.

This approximation is amply warranted in the calculations at helium temperatures, where the
"direct process" is important. On the other hand, it must be kept in mind that at higher (i.e. , liquid

air) temperatures, where the Raman mechanism comes in, the most important frequencies are those
near the high frequency "cut-oA, " of the Debye spectrum. These have wave-lengths of the order
10 ' cm, so that y~; is of the order unity (2mR is about 1.2 &(10 ' cm). Using (10) (11), and the for-
mulas of l.c. expressing the normal coordinates Qi in terms of the x,y, s, we find that the coefficients

ai, „ in (9) have the following values

with

a2;= U(X„C„—'A„;C „;), a3;= U(X„4„+li„,4„;—2) .;C „)/+3,
a4 = U(X„Cy,+Ay, 4„+li„4„+li„C„+l~„,4„+l~„4„;)/Q3,
a„'= U(li„C „+X.;4„—X„;O'„—X„4„;)/Q2,

ag = U(X,4„;+X.„4„-;+li„,C'„+X„4y,—2'A„;4„—2l~„4„;)/Q6,

U= (2~Ra, /s~) sin 8„. (13)

The matrix elements of the lattice coordinates g; are given by the harmonic oscillator expression

g;(n;;n;+ 1) =q;(n, +1;n~) = Lh(n;+ 1)/4ir 3IIo);j'*,

where 3II is the total mass of the crystal, due, of course, largely to atoms other than titanium. This
formula contains a factor 4 rather than the customary 8 in the denominator, because not all the
atoms of the crystal are located at antinodes, and so do not share in the full amplitude of vibration.

It must be cautioned that (14) is not a particularly good approximation, perhaps the weakest
link in our whole calculation. It assumes that the amplitude of vibration is the same for all varieties
of atoms in the crystal, regardless of their mass, whereas actually the heavy atoms have smaller,
the lighter larger, motions than average.

III. CALCULATION OF DIRECT PROCESSES FOR TITANIUM

We now make a perturbation calculation, regarding the crystalline Stark potential, the lattice
vibrations, and the spin part of the Zeeman energy as incorporated in the original Hamiltonian
function, and the spin-orbit and orbit-lattice couplings as together constituting the perturbation.
When the calculation is carried out to the second order, it turns out that the new or transformed
Hamiltonian function will contain elements of the desired type X(A~n;;A~n, +1) in which the spin
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"turns over" and the lattice vibration simultaneously changes by one quantum unit. The appropriate
perturbation formula" is

X„, (ii')'=Qv[X(ik)X(ki')/hv(ik)j (15)

The frequency denominators in (15), represent, as usual, the change in the diagonal part of the
energy, which is the sum of (1), (2); and (3).The conservation of energy, requires that W(i) = W(i ).
One of the X factors in the right side of (15) is to be taken as coming from Xor„and the other from
Kqo, since clearly it is only by superposition of spin-orbit and orbit-lattice coupling that we will
obtain the desired final spin-lattice coupling. There are two types of terms, in which BC0& and BC«
are, respectively, the first and second K factors, and vice versa. These two types of terms very nearly
cancel because by (5) and the Hermitian property any element of Xso changes sign when one makes
the interchange of initial and final indices involved in reversing the order of ago and XOJ.. A cor-
responding sign change does not occur in Xo~. The compensation of'terms due to the two possible
orderings would be complete were it not that the Zeeman energy makes the energy of the appropriate
intermediate state slightly different in the two cases. Obviously Kramers' theorem requires complete
compensation unless IINO. Thus

X„,„(A+n„;A n;+1) =Q =., g

Xso( A+, E )Xol(E n;;An;+1) Xol(An;;E n;+1)Xso(E +,'A )—
—h(a —2HP)

= —4PHh '& 'P.-, s Xso(A+ ,E )Xor'(E,n;;An;+1)
(16)

Here we have made use of the fact that 2PH can be regarded as very small compared with the Stark
splitting 6, and that the conservation of energy demands that the change hen in lattice energy just
counterbalance that 2PH in Zeeman energy.

Equations (15) and (16), as we have used them, do not allow for the effect of the orbital Zeeman
energy (6). Actually, the latter leads to terms coordinate in importance with (16).These terms are
to be computed by adding to (15) the expression

X„,„(ii ) =g;, L[X(ij)X(jk) X(k~ )/hv(i j)hv(ik) ],
where one X factor is to be taken from the spin-orbit energy (5), another from the orbit-lattice
coupling (7), and the remaining factor from the interaction energy (6) of the orbital moment with
the magnetic field H. Formula (17) can give results coordinate in order of magnitude with (15)
because in (17) nonvanishing contributions can be obtained without considering the modulation of
the frequency denominators by the magnetic field or the lattice vibrations.

By standard perturbation theory, the probability that an atom in the state A+ reverse its spin
and pass to A, exciting a quantum of vibration to the lattice is

A+ ——(4~'/h')(p„~ .X. (A+n;;A ri;+1) ~')A, .

Here the average is over all directions of propagation and polarization of the oscillators, as well as
over all values of the quantum number n;. The expression p„ is the oscillator density relative to
frequency, and is to be evaluated at u=2PH. By a well-known formula, the values of p„ for longi-
tudinal and transverse waves are, respectively,

p r 4~a)'U/——pi', p (=8nco'U/eP, (19)

where v& and v& are, respectively, the velocities for longitudinal and transverse waves, while V is
the volume of the crystal. We have now to compute the explicit value of (16) by means of (5—14),

' Cf. , for instance, W. Heitler, The Quantum Theory of Radiation, p. 90, Eq. (43b).
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and perform the averaging in (18). In connection with the latter, we utilize the fact that

(~.)„ l /(] e Ace—JkT) (20)

(&os @'o' )av= 1/5, (&o; C'„; )Av —(Xo'C'ohyPoi)Ay= 1/15 (longitudinal waves)
(21)

(Xoj C oi )Ay
——1/15, (Xo,C,(X»C o, )Ay

———1/30, (X„'4'» )A, =2/15 (transverse) (P,g= x,y, s; P Wg).

Averages of products analogous to the above, but involving three diferent subscripts, are zero. The
work of averaging is considerably shortened by noting that the average of cross product terms in
the normal coordinates, such as Q&Qo, is zero; this follows from the orthogonality of our normal
coordinates, as well as from explicit computation by (12). Hence the relaxations due to the different
normal modes of vibration of the surrounding water cluster can be regarded as taking place inde-
pendently. For every given wave there is also another wave which stands in a reciprocal relation as
regards the position of nodes and antinodes. Thus, the effective mean value of sin' 8~ is —,. In con-
sequence of this fact and of (21), one finds that the average squares of the coefficients (12) are

(ao )A„—— . ——(ao;")o„——(8~'R'o&,'/15vi')(longitudinal), =(6~'R'coP/15sP)(transverse). (22)

It is also necessary to average over the four possible directions for the trigonal axis, related to
each other as are the four body-diagonals of a cube, for in the alums there are these four diA'erent

types of surroundings for a paramagnetic ion, so that all told there is cubic macroscopic symmetry. '
Because of the latter, we may equate to —', the square of any direction cosine, while cross-products
such as X„X„,etc. drop out. Were only the spin portion (3) of the Zeeman energy retained, only
these easily averaged quadratic forms would be encountered, but when the orbital part (6) is
included, the expression for the transition probability involves biquadratic expressions in the direc-
tion cosines, for which the averaging is somewhat more complicated. We finally find

= (1+oi+5 o&w)PH'Be""d'or/(e""i" 1), (o& =2—PIZ) (23)

with
2 t 167f'Vy R'f' 8 4 1 3

-~2+—bo 2ob-oP' —+
3& hM ) b'6' 5 45 vio 2sP

(24)

w=m 'm '+mi'mo'+mo'mo oi ——(144m'+56b')/(864a'+48b')

5 oo = (252a-' —10b') /(864a'+ 48b') . (25)

Here m~, m2, m3 denote the direction cosines of the magnetic field relative to the principal cubic axes
of the alum, and consequently the e2 term gives a dependence of the relaxation on the direction of
the applied field. If the orbital Zeeman energy (6) were omitted, the' expressions oi, oo would be zero.

It is customary to say that A+ is of the order of the relaxation time due to transfer of energy
between spin and lattice. However, the very beautiful thermodynamic treatment of Casimir and
du Pre2 gives us a more exact view of things. They assume that the spin system has a temperature
'18 which is not the same as that T of the lattice. The specific heat C~ of the spin portion at constant
applied field IIO, is of the form'

Cs = hb'+ C'Ho' j/Ts' with C' =4''- S(So+1). (26)

It is supposed that the spin specific heat is very small compared with that of the container, an assump-
tion warranted at helium temperatures only if the specimen is in contact with a constant tem-
perature bath, for the specific heat of the lattice proper is very small at low temperatures because of
the Debye T' law. Fortunately such contact appears to be present in the usual experiments. The
heat flow from spin to lattice is taken to be n(Ts T), in other words propo—rtional to the difference
between the spin and lattice temperatures. Casimir and du PrP show that the relation between the
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static susceptibility xo and that p„appropriate to a frequency v is

X,= X//(1 —F)+[X//F/(1+42r r P )] with r = CH/o/, F= C'H// /(b'+C'H/j ). (27)

The relaxation time v is thus the ratio of the spin specific heat CII to the conductivity constant o.

governing the heat Row between spin and lattice.
The rate of transfer of heat from the spin to the lattice is

dQ/dt = 213H[N,A+ N—;A +],

where X~~ is the number of atoms with spatial spin quantum number 3EIq. The relation connecting
X~z with the spin temperature Tq is

—Ns 28HMS—/kTS/[s2//Hs/krs+. . . +s 2//Hs/kT—S]~Ns 2//HMS—/kTS/(25+ 1) (29)

where for present purposes we can put 5= —',, but we give (29) in a general form so that it can later
be used in chromium.

The expression for A + is identical with that (23) for A+, except that the factor ek" /kT is missing
from the numerator, to allow for the fact that the Boltzmann factor is different for an upper than
for a lower state of a lattice oscillator. Since pH/kT= 2kk&/kT is sm—all, we may replace the denomi-
nator of (20) by 2PH/kT, and we see that

n=limrs-T[(TS T) 'dQ—/dt]=(1+2, +&222//)&NH'p /T (3o)

The final expression must be averaged with respect to the field H, which is the resultant of the
applied field Ho and the apparent field due to spin-spin interaction. The latter we suppose distributed
according to the Gaussian law, so that the probability for instance, that the x component of H falls
in the interval H, H+dH is (6/2rX2) l exp [—3 (H, —H//, )2/2Z2]dH. Here X denotes the mean square
resultant spin-spin field, inclusive of x,y, and s components. By appropriate adaptation of the
formulas of Kronig and Bouwkamp, ' one finds that"

E2 = 2g2P25(5+1) Q;r;; ' = [4P25(5+1)][28.8/r//'], (31)

where r0=2'"E '" is the distance between titanium atoms which are nearest neighbors. The
same expression can also be obtained in somewhat more quantum-mechanical fashion by using
matrix algebra, along lines given by Wailer. The numerical value of Z given by (31) for titanium
alum is 130 gauss.

The term f/ in the specific heat (26) is in the case of titanium due entirely to the spin-spin inter-
action, and can be computed accurately. " Its value is b'= 22NZ2p2 As -we mig.ht conjecture, the
resulting formula for CII is the same as that which would be obtained by setting b =0, and replacing
H22 by H//2+ 2X2 in (26), i.e. , by taking the effective square of the field as the sum of the true square
of the applied field IIO and half the mean square spin-spin field. The factor —, arises in connection
with the latter because spin-spin interaction represents mutual energy.

When one utilizes (26) and (30), and performs the Gaussian averaging explained above, one finds
that the formula for the relaxation time r = CH/a becomes"

Hp'+-'X'
T= (32)

ATBt (1+c1+56g8p)Hp +~(21+21&1+10e2+55e2mp) Hp'X'+(35/3) (1+e1+e2)Hp X'+ (35/9) (1+c1+t2)EPJ

"Our value of E' is, however, larger by a factor 3(S+1)/S than the corresponding mean square field of Kronig and
Bouwkamp, reference 9, since one should use the quantal rather than classical square of the moment, and since we are
dealing with the sum of the squares of the x, y, and 2' components."I. Wailer, Zeits. f. Physik 104, 132 (1936);J. H. Van Vleck, J. Chem. Physics 5, 320 (1937);M. H. Hebb and E. M.
Purcell, ibid. 5, 338 (1937)."If X=O, one can show that the expression r given by (32), (or later by Eq. (43) for the Raman process) satisfies
the relation 1/& ——2(A+ )A„proposed by Gorter and Kronig (Physica 3, 1009 (1936)). With X&0, however, the
proportionality factor ceases to be 2. This fact is not surprising, as with %&0, the spins interact with each other, and
their postulate that equilibrium is secured solely by contact with a thermostat (lattice) no longer applies.
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where wo!a similar to the expression w defined in (25) except that the direction cosines now relate
to &"'~ applied field Ho rather than to the total effective field IX. Usually measuremepts are made on

a powder, and then mo can obviously be replaced by its mean value -', . The values of 6I, 62 are, re-

spectively, 0.66 and 0.01, so that the correction for the orbital Zeeman effect, represented by the
~i, e2 terms makes v- about three-fifths as large as it would be otherwise. Since c2 is so small, the
anisotropy coming from the m 0 terms is negligible even for a single crystal, amounting to only about
one percent and with existing experimental accuracy ~ should be independent of direction.

To evaluate (8), (24), and (32) numerically we use the following values of the constants

R=2X10 ' cm ' pI R=14,400 cm pg R=10,800 cm

M/U=2. 0, 6=1000cm ', $=154cm ", v&
——vi ——2.3X10'cm/sec.

(33)

The values of R and 3f/U (the density) are furnished directly by the crystalline dimensions, while l

is known from spectroscopy. The above determinations of pi, p2 and 6, based partly on empirical
Stark splittings and partly on an explicit model treating the field from the water molecules as of
dipole character, are fully explained in l.c.~ or elsewhere. '4 Our calculations are not so refined that
it is worth while to try and distinguish between the longitudinal and transverse velocities of sound.
Instead we shall use an affective common velocity v=2.3X10' cm/sec. , which is that given by
specific heat data" when the effect of the two types of waves is not resolved. Actually the longitudinal
velocity may be almost double the transverse one, but the error is not as serious as it would seem,
since both in specific heats and in our relaxation calculations by far the greater weight is attached
to the transverse waves, so that the effective common velocity is nearly the same as v&. This is true
not merely because the transverse vibrations are twice as numerous as the longitudinal, but also
because the transverse velocity is lower and weighted according to a fairly high inverse power.
Namely the specific heat formulas involve the inverse cube of v, while our expression (23—4) for the
transition probability contains the inverse fifth power. (The inverse tenth occurs in our corresponding
later formula (38) for Raman processes. ) The lumping together of the two varieties of sound velocities
would not be an adequate approximation if the longitudinal vibrations were appreciably more
effective in modulating the Stark effect than are transverse disturbances of the same velocity and
amplitude. Our explicit calculations indicate that fortunately this is not the case; contrary to Heitler
and Teller's conjecture4 that only the longitudinal waves would be important.

The values of 7 computed from (32) with the aid of (33) are, 5 X 10', 1.7 X10', and 1.8X10 ' sec. ,

respectively, for applied fields Ho of intensity 0, 10', and 104 gauss at a temperature T of 1.2 degrees.
The agreement with experiment is miserable. The absence of any observed dispersion in the Leiden
experiments" on titanium alum at helium temperatures shows that ~ cannot possibly exceed 10
sec. for a range of field strengths about 100 to 2000 gauss. Our estimate of the relaxation time in

fields of 1000 gauss is greater than Kronig's by a factor 104. Out of the 10', about 10' is due to his
use of an interval 6 one-third of ours, while the remaining 10' is due to his estimating the matrix
elements of x', by rough considerations of orders of magnitude rather than with a model.

It appears impossible to eliminate the tremendous discrepancy between our results and the
experimental data unless (a) the frequency distribution law (19) for the lattice waves is grossly in

The value of 6 was calculated, in a paper immediately preceding l.c. (J. Chem. Phys. 7, 61 (1939)) and was found
to be 1450 cm . This preceding article was unfortunately marred by an error, because its Eq. (14) did not include the
contribution of the off-diagonal elements (47) of the present article to the splitting Av of the basic state of chromium.
Further modification results from the fact that according to the recent measurements of Bleaney, reference 18, the
splitting bs has the value 0.17 cm in place of the primitive estimate 0.12 of Hebb and Purcell previously employed.
When both corrections are taken into account, it is found that the amount of distortion of the water octohedron necessary
to explain the observed hv is about a quarter as great as previously calculated and the calculated splittings for vanadium
and titanium become, respectively, 545 and 1075 cm . At best only qualitative significance should be attached to this
calculation, so we use the round value 6=1000 cm . The revised estimate for vanadium raises difficulties, as it is ques-
tionable whether the trigonal symmetry of the deepest state of the cluster V.6H20 is suAiciently stabilized.

'5 Casimir, de Haas and de Klerk, Physica 6, 241 (1939).
'6 W. J. de Haas and F. K. du Pre, Physica 5, 969 {1938).
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error or, (b) the Stark splitting is considerably smaller than the value 10' cm ' assumed in (33).
The possibility of (a) will be discussed in Section VIII. As regards (b), since 6 enters in the inverse
fourth power in (24), our estimates of r would be lowered by a factor 10 ' if the assumed value oi
4 were reduced by a factor 10 to 100 cm '. Such a drastic change in 6 presents difhculties. Some cal-
culations by the writer" indicate that it is very dificult to find a reasonable crystalline potential
which will reconcile ad of only 100or 200 em ' in titanium with the splitting of 700 cm ' in vanadium
alum demanded by Siegert's theory of the magnetic behavior of V+++, or with the behavior of the
energy levels of Cr+++ indicated by adiabatic demagnetization data.

It should be mentioned that the reliability of the existing Leiden data, for titanium alum, is
perhaps not beyond question, since, I am told, the crystals may have lost some of their water of
hydration. The dehydration is doubtless insufhcient to lower the density anything like enough
to make exchange forces important, but, as mentioned to the writer by Dr. van den Handel, might
warp the crystal so that it no longer has the ideal structure assumed in our calculation. The dis-
tortion could scarcely materially lower the interval 6 for all atoms, but fluctuations in the field due
to the imperfection might cause an appreciable number of atoms to have values of 6 nearly zero,
and so a large coupling to the lattice, as well as deviations from Curie's law could be obtained. This
explanation seems rather fantastic, but further experimental work will be awaited with interest,
especially since at present different specimens yield somewhat divergent results.

If the interval 6 is reduced to 100 cm ', or so, as appears necessary if the existing relaxation
measurements are correct and the discrepancy is to be blamed on 6, then the Raman terms become
more important than the direct processes even at helium temperatures. We therefore proceed to
examine the Raman mechanism. Ke shall see that it accounts nicely for the experimental results
at liquid-air temperatures even if 6 is not reduced below 10' cm '.

IV. CALCULATION OF RAMAN PROCESSES FOR TITANIUM

In order to obtain transitions in which one lattice quantum is absorbed, and another emitted, we

must compute the new Hamiltonian function by means of (17), taking two of the K factors in (17)
to represent orbit-lattice coupling (7), and the other of the spin-orbit type (5). The frequency
denominators v are to be considered as representing the combined change in the orbital Stark energy
levels and in the lattice vibrational energy. In the present comp'utation, unlike that for the direct
processes, the spin-spin and Zeeman contributions to the frequency v may be disregarded. Conse-

quently the absorbed and emitted vibrational quanta, which are in general very much larger than
these contributions, may be taken to have a common value &co. In this respect our calculations differ

materially from Kronig's. The appropriate elements of his transformed Hamiltonian function X,„
vanish in the limit II=0. As a result, his calculated Raman transition probabilities turn out several
orders smaller than ours, instead of larger as for the the direct processes. Written out explicitly, (17)
becomes, in the present case,

f" f' -f f" 2g"--2g-
X„,„(A+n;n;;A n, 1n, +1)= — + +-(-~)(-~+~) (-~)(-~-~)

with

-a"+a ' -a ' +a'+
+ + + +, (34)

-(—~+~)(+~) (—~—~)(—~) (—~+~)' (—~ —~)'-

fi& =& 'P, -, t ~so(A~;E )~or(E n, ;E n;%—1)XoI(E n;;An;a1),

g'' ~ Q, b+ s(oA+ E —)+OL(E nA n~ )1~ LO( AnAn'~1)

&;;+= —&;; =& 'g, =, r KoI(An, ;E,n;%1)3Cso(E y',E —)3Cor(E, n;;An;+1).

(35)

The various terms on the right side of (34) represent the different possible orders of the three K
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factors on the right side of (17). The first bracket of (34) represents the contribution of terms in

which X~0 is the first or last factor, while the second bracket comes from the terms in which X80
is the middle factor. In writing (35), we have made use of the fact that by (6) or (13) the matrix
elements of %01, are invariant under interchange of the initial and final orbital indices, or of the
initial and final vibrational indices (i.e. , Xoi,(An;;En, ') =X(En;;An ) =X(An;En;)), while by (5)
and the Hermetian property, the elements of %80 alter their sign when the initial and final orbital
indices are permuted. The various terms of (34) do not quite destroy each other when co/0. We may
suppose co small compared with 6, and so (34) becomes

X„, (A+n;n;;A n; 1n;+—1) =cud '[2f,;+ 2f;;—+2g,;+ 2g;;—+472,;+]. (36)

The transition probability A+ that an atom reverse the sign of its spin is

~8kjh

A+ ——(42r'/I2') (I ~
X„, (A+n;n;;A n; 1n—,+1) ['p;p, )24ra;.

p

(37)

Here 0 is the usual Debye characteristic temperature, and ~;= co;, but we cannot set p~, = p~; because
i may be a transverse wave, and j a transverse one, or vice versa, so that different oscillator densities
(19) may be relevant. As compared with (18) there is the difference that we must integrate over all
oscillator frequencies, since the conservation of energy is secured by the equality of the absorbed
and emitted quanta, and so the available oscillators are no longer restricted to those of very low

frequency in the Zeeman range.
The average in (37) is, of course, over all amounts of excitation and of directions of propagation

and of polarization for the two oscillators now involved. The spatial averaging for them may be done
independently. The requisite formulas are the same as those given in (20) and (22) ancl discussed
thereafter. On computing the explicit value of (37) by means of (5—11), and on performing the
requisite averaging, it is finally found, after considerable straight forward calculation, that

where

A+ =64(256 V'I'R'2r'72'/756'3P) (si '+ 222li 2)'[ii'+ (11/18)a'b'+ (11/648)b']I2,

8kjh

[~ns+hglkT/(sh~l2T 1)2]d~

(38)

(39)

with n=8 for present purposes. The integral I8 represents the appropriate statistical factor for the
two oscillators participating in our Raman process, one of which is excited and the other de-excited.
The expression (19) for the oscillator density would suggest that co should occur to only the fourth
power; however, the eighth power enters when one allows for the appearance of co in (13), (14),
(36), etc. At low temperatures, where T/0(&1, as in the helium range, one can legitimately make
the approximation

(4o)

At higher temperatures, where T 8, as in the liquid-air region, the great bulk of the integral (39)
comes from the vicinity of the cut-off frequency co&

——he/k, so that without great error, we can expand
the exponential factors in (39) as a Taylor's series about co2, and keep only the constant, and perhaps
also the linear term. Then (39) becomes

pk8q
"+'- 8 (sH IT y 1)s2/T

+
0 I'2) (n+1)(e2 —1) (n+1)(n+2)T (e2lT 1)'— (41)

When n=8, the limiting value of (39) appropriate to the case 8/T&(1 is clearly 0212 28'T2/7. A cor-
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responding limiting formula is also yielded by (41), except that the denominator becomes 9 instead
of 7 if only the first term of (41) is utilized, and 72 if both members of (41) are included. The expres-
sion (41) is an adequate approximation for our purposes unless 0/T is large, but the experiments
are never conducted at such high temperatures that it is allowable to use the limiting values pro-
portional to T' characteristic of 0/T«1. Formula (41) tends to underestimate the value of I„but
this is proably a good thing, as it tends to counterbalance the error latent at higher temperatures in
the approximation (11), wherein the wave-length was taken to be large compared with the inter-
atomic distance.

To compute the relaxation time by the thermodynamic method, we note that the expression for
the rate of transfer of energy to the lattice is still given by (28) with Ni, N i, as in (29).The transition
probability A + differs from A+ by a factor e '&II~~~, nearly, but not quite equal to unity. Up till
now we regarded the absorbed and emitted quanta as equal, but this is not strictly true —otherwise
no energy exchange would be possible. Instead the two quanta will differ by an amount 2PH, where
H is the resultant of the applied and spin-spin fields. In place of (30) and (32) we now have

and

cx=2P'N(A~ /kT')(H')A, 2P'N(A——~ /kT')(HP+K')

r =Ca/a= [(Ho+—2K )/A~ (Ho'+K—)]~

(42)

(43)

To evaluate v at liquid-air temperatures, we need to know P. Ke shall take 0=90', as this is
the magnitude yielded by the conventional formula 0= (vk/k)(3N/4~U)'*, with @=2.3&& 10' cm/sec.
With the values (33) of the other constants, one finds from (38), (41) and (43) that r =0.13&&10 ~

sec. at 77'K if IIp»X, and v =0.07 X10 if II()((X.Thus even if the interval 6 is kept as high as
10' cm ', the theory is adequate to explain the unusually short relaxation times characteristic of
titanium alum at liquid-air temperatures. Namely, all that is known experimentally" is that from
the absence of any observed dispersion over the frequency interval employed, v. must be less than
4&(10 ' sec. at 77'K.

At helium temperatures, -on the other hand, a relaxation time sufficiently small to agree with
experiment can be obtained only if 6 is of the order 100 cm ', or if drastic changes be made instead
in some of the other constants. Namely, if we use the constants (33) as they stand, and if Ho&)K,
then by (38), (40), and (43), the value of r at low temperatures is1.0&(10'/T', at least 100,000 times
too large. It is, however, possible to bring 7- down to within the necessary limit 7 (10 sec. , if we
take 6=10' cm ', as then v becomes 0.2&10 ' at 1.2'K and 0.5X10 ' at 1.4'K.

If 6 is reduced sufficiently to bring agreement with experiment in the helium region, then the
Raman mechanism is likely to be more important than the direct process even here. Namely, in

fields of 1000 gauss, the value of ~ for the direct process was found to be 1.7 g 10 ' sec. at 1.2'K with
6= 10' cm. This is about ten times as large a value of 7 as our Raman estimate given above. At fields
of the order 104 gauss or so, the direct process does, however, yield much the greater transition
probability or smaller v, because the direct interaction varies as the fourth power of II.

In the preceding paragraph we compared the Raman and direct processes on the assumption that
agreement with experiment is to be obtained by altering A. If, on the other hand, the discrepancy is
to be removed by altering other constants, i.e., increasing aR or bB, or assuming that the effective
mass to be used in (14) is less than that of an average molecule, then it can be shown that the margin
of superiority in favor of the Raman terms becomes even greater. However, if the distribution law

(19) for the lattice oscillators is badly in error at low frequencies, a possibility which we discuss near
the end of the paper, the direct process might be adequate to explain the absence of observed dis-
persion at helium temperatures. Another possibility is that some other mechanism than the lattice
vibrations serves as the thermostat.

It would obviously be of interest if critical experiments could be performed which would decide
between the direct and Raman mechanisms for temperatures in the helium range. Further evidence

"Gorter, Teunissen and Dijkstra, Physica 5, 1013 (1938).
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could be secured by studying the effect of diluting titanium with nonmagnetic ingredients in weak
applied fields. (Some field is necessary, as J" in Eq. (27) vanishes if Ho ——0.) Dilution decreases the
effective spin-spin field Z, which enters quite differently in (43) and (32). With the Raman process,
the relaxation time is slightly increased by dilution, but with the direct type it is materially lengthened
so that ultimately a measurable dispersion should set in even without extending the measured
frequencies to higher values than those employed in the existing Leiden experiments. It appears
probable that in any case the beginning of the dispersion is not very far on the high frequency side
of the present limit. Once the dispersion can be detected, an enormous difference between the two
types of mechanisms will appear, for with Raman transitions, r is tremendously temperature sen-
sitive ( T ' if T((8) and increases slightly when a field is applied, whereas with the direct transfers
1 varies but slightly with temperature, and is greatly diminished by introducing a field EIO.

Owing to the T' factor in the Raman mechanism, the equilibrium at the very low temperatures
( 0.01 to 0.1 K) obtained by adiabatic demagnetization is undoubtedly achieved by the direct
type of process. Despite the rather large values of the direct 7 which we compute, Casimir' shows
that the equilibrium takes place practically instantaneously in demagnetization experiments because
of the fact that the lattice is no longer in a constant temperature bath, as in relaxation measurements
such as we are discussing. Instead it is isolated from external contacts and hence has a very low heat
capacity, proportional to T'.

V. THE HAMILTQNIAN FUNcTIQN FQR CHRQMIUM

We now proceed to the corresponding calculations of the direct and Raman processes for chromium.
As compared with titanium, there is the big difference (cf. Fig. 1) that the excited states belong to
a different cubic representation than the ground level, so that it is necessary to consider matrix
elements of the spin-orbit and orbit-lattice interaction which are nondiagonal in the cubic index F,
and to specify the orbital states by their cubic representation. By extending somewhat the calcu-
lations of l.c., one finds the matrix elements of the spin-orbit interaction are

Rsp(r, (ri, r;og) = fQ,=, „,,L,(r;;r;)S,(oi,au),
with

L.(r, ;r,.) =L,(r„r„)=L„(r„r„)=+2z;
—L y(r4', r4b) =J,(r4, ,r4,) = —L,(r4$', r4,) = —32i;

L„(r,.;r„)= -L,(r,.;r„)=+L,(r„;r„)= --,~;

-L„(r,.;r„)= -L,(r,.;r„)= -L.(r„;r,„)=L„(r,.;r„)=L,(r,.;r„)=L.(r„;r„)= —-', gfsi,
s*(~ ~)=~ (s*yzs.)(~ ~ —1)=L~(~+I)—~(~—1)j'* (~=2) (46)

The matrix elements of L are Hermitian, i.e. , change sign on permutation of initial and final indices.
The 5 matrices are also Hermitian and are, of course, the usual angular momentum matrices.
Elements not written down (or obtained by mere interchange of initial and final indices) are all zero.
The index o- gives the component of spin parallel to the s axis, which we choose as the axis of spin
quantization. The x,y,s axes are taken as the principal cubic axes. We thus use a different choice
of axes and of spin quantization than in the preceding section. It is not necessary to use a trigonal
index (A or E) in connection with designating the orbital states, as the trigonal splitting of the upper
state has no appreciable repercussion on the relaxation behavior of the ground state, since the latter
is separated from excited states by a large interval due to the cubic part of the field. The three
sub-states a,b, c of I'4 or I'5 are the same as the system of representation used in Eq. (21) of l.c. and are
not eigenstates of the trigonal field.

The nonvanishing matrix elements of orbit-lattice coupling connecting the ground state F2 with
excited levels are

~oL( 2'r;,ririi;~ 1)= +Q, .".(&*'& ~ 1)L44pi 3p2]ll 1413 (+ ~ ~ ~) (47)
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where the subscripts 4,6,5 apply, respectively, to the cases a, b, c and where p& = —3p|'/7,
P2=+11p20/7, with pP, p20 defined as in (8). The only other matrix elements of Nor. needed in

connection with the calculation of the direct process are those internal to Fs i.e., of the form

Kor, (I'q, n~, I'»n~&1) T.hese are given in Eqs. (21) and (22d) of l.c.P with u, b,s referring to the rows

or columns of (21), and need not be repeated here. There are no matrix elements of Xor. connecting

F2 and I'z, or of the type Q2, Qz joining I'z and I'4. (This statement is easily proved from group

theory, since the representations corresponding to Q2, Q3 and to Q4, Q5, Q& are, respectively, I'3 and

I'5, and the appropriate direct products are I'2XI'r, =I'4, I'uXI'3=1'i+I'~+I'3. ) On the other hand,

the orbital angular momentum involved in the spin-orbit coupling has.the transformation properties
of F4, and so this interaction. does not join F2 and 1 4. Such vanishing of the matrix elements materially

simplifies the calculations.

VI. CALCULATION OF DIRECT PROCESSES FOR CHROMIUM

To compute the elements of the new or transformed Hamiltonian function to be used in (18),
we employ the third-order expression (17), taking two of the K factors as due to the spin-orbit

interaction, and one as due to orbit-lattice. The frequency denominators in (17) can be taken as

the Stark splitting due to the cubic field alone, without the necessity of including the modulations

due to either the lattice oscillations or the magnetic field. In this respect the present calculations

differ materially from those on titanium. The reason is that we are now dealing with an atom whose

basic state is a quartet. Its initial degeneracy is fourfold rather than twofold and so can be partially

lifted without introducing magnetic fields even when the lattice vibrations are treated in an' adiabatic

fashion. 'Hence it is not necessary to allow for the modulation of the frequency denominators, which

is a nonadiabatic effect. It is, however, essential to include two powers of the spin-orbit interaction

rather than one as in the case of titanium, since the second-order expression (15) vanishes if we take

one K factor as the spin-orbit, and the other as the orbit-lattice interaction. This vanishing of (15)
is caused by the compensation of terms representing different orders of the factors, and would be

spoiled if we allowed for modulation of the frequency denominators. In fact, such modulation was

the cause of the direct relaxation effect in titanium. However, the corresponding effect in the present

case of chromium is negligible. Namely, it is reduced in the ratio 6'/r &q' as compared with titanium,

inasmuch as the normal states is separated from excited levels by a large cubic splitting v» rather

than by a comparatively small trigonal separation A.

Proceeding as above, we find that the matrix internal to F2 in the new Hamiltonian function is

K„„=c,[Qg(2S.' S~ S„—)++—3Q2(S„Sg )]+a—2[Q,(S,S„+SySg)+Q,(SgSg+S,S~)

+Q6(SuS.+S*S.)]=Za=~, ",6~ . '"'Q~ (48)

with e& ——4f'[175pg/396][began]
—'Q3,

=4k'[~ +(5~ /33)]L& ] '+8l'[u (5 p /44)][~— ~ ]-'.
(49)

Here and elsewhere we use the abbreviation hv» ——W(I'q) —W(I'g), etc. In (48), the S's are to be

construed as matrices, whose elements are given by (46).
We can assume that the cubic potential is of fourth-order character D'[x4+y'+s']. This sup-

position involves no loss of generality since we are dealing with d electrons (cf. reference 14). Then

the frequency denominators involved in (49) are

&~52 = 10Dq, hv4g = 18Dg with Dg = 2D'r'/1 05 (50)

Here Dg is the constant of Schlapp and Penney, which we shall take as having the value 1500 cm '
(cf. p. 81 of l.c.').
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Let us imagine the matrix elements of the spin in (49) computed not in the system of representa-
tion (46), but rather in one which diagonalizes the combined energy, apart from fluctuations caused
by lattice oscillations, of the spin in the magnetic field H, and in the electric field due to surrounding
ions, which indirectly affects the spin via the spin-orbit coupling. Let the eigenstates of the energy,
shown by dotted lines in Fig. 1, be denoted by 8"„,8'„", ~ . Then by obvious generalization of
(25), (26) to systems with more than two spin components, the rate of transfer from spin to lattice, is

dQ/dt = Q„,„N„A„„(W„—W„"). (51)

The transition probabilities A, , ~ are connected with the matrix elements in the g system of
representation by relations analogous to (18), and the matrix elements of the Q's are, of course,
still given by (9), (12), (14). One now has, however, k~= W„—W, instead of kM=2PH, and
N„=-,'Xe ~«" s in place of (29). Since A„„"=e""'"rA„~„, and since we still have ku&/kT((1,
T8 —T«T we can write

E„A„„"(Wg W„")+—X„"A„"„(W„—Wg ) = 8Ã[A„„"+Ag" „.3(W„—Wg")'(Ts —T)/kT'.
(52)

When average values are computed by means of (20) and (22), which reduces to (n;)A„——kT/kg, it
is found that dQ/dt= n(Ts —T) with

n=XC+y 2...gp„, „"~H~"'(rt', rt")
~

'
~

W„—W„"
~

', C=R'(4v) '+6sg ')s'U/1STMk'. (53)

Eq. (53) can also be written as

n =NCP q g, ..., 6 spur L Uz W—WUk]', UI, = WH'~& —H& "&W, (54)

where W is the matrix (internal to I'~) associated with the Hamiltonian function whose proper
values are the W„. The great advantage of writing (54) as a spur is that (54) is valid in any system
of representation, and so it is not necessary to actually find the system which diagonalizes S; In
chrome alum the matrix TV has the structure

W =2P [H,S,+HvSv+H, S,j+ i~kh v[S,+S„+S,]~. (55)

The first member of (55) is clearly the Zeeman energy in the field H. The second is the energy of
the crystalline electric field. The latter has trigonal rather than perfect cubic symmetry and so splits
the quartet 4j. 2 into two doublets, whose separation is denoted by khan, and which correspond,
respectively, to S, = &~, and 5,.= ~ ~, where the s direction is parallel to the. trigonal axis. The
Hamiltonian function associated with the crystalline Stark effect may thus, apart from an additive
constant, trivial for our purposes, be written as S, 'b'av/L($)' —(—',)'$. The form employed in (55)
follows from the fact that the trigonal axis is a body diagonal x=y=s of our x,y,s system, so that
S.' = [S,+Sv+S,]/ g 3. The explicit value of the expression (54) for a can now be computed with
the aid of (48) and (55), and the conventional commutation relations for angular momentum
matrices. After some calculation, one finds that

u=. 72C(2P) 4[(8~ '+3& ') (H 4+H 4+H,4)+(10e '+8& ') (H 'H '+H 'II '+II 'H ')]
+CP'k'd v'(H, '+H '+ H')(3 072&&'+1 28 Oe 2) +1 2Ckhv'(6e '+262') (56)

As in the calculations on titanium, we consider the magnetic field H to arise in part from an
applied field Ho, and in part from an effective field H, representing spin-spin interaction. As previ-
ously, we regard H, to be oriented at random, and distributed in Gaussian fashion, with a root mean
square value X.With these assumptions, and the corresponding averaging over H„Eq. (56) becomes

a =n'+72C(2P) 4L(8e 2+3e22)(2H02E2+X4)+(10eP+8eg )(~H E +~K')]
+CP'k'6 v'L3072e 2+1280& 'jK', (57)
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where n' denotes the expression (56) with H everywhere replaced by Ho. On calculating the explicit
value of the specific heat (26), for the present case of chromium, it is found that the relaxation time

r appearing in (27) becomes

r= Cir/n= [-'(Ii'6v')+5(H '+-'Z')P']/(AT' (58)

To compute numerical values, we recall that by definition pi ———3pio/7, pm ——11pio/7 and take pio,

pP, v as in (33), but Z and |' are now, respectively, 290 gauss and 88 cm '. The density M/ V is now

1.7 instead of 2.0, as we are dealing with KCr(SO4)2 12H20 rather than CsTi(SO4)2 12H20. The
appropriate values of v, ; are cited in connection with (50). The splitting Ai we consider to be 0.17

cm ', as this is the value indicated by recent experiments on adiabatic demagnetization. "The
computed values of ~ at 1.4'K are then 0.011, 0.0090, 0.0067 and 0.0030 second, respectively, for
HO=0, 500, 1000, and 3000 gauss. Most of the energy transfer when IIp= 0 results in virtue of the
Stark splitting hv rather than the spin-spin coupling E, for if we take X=O, the value of 7 at II0=0
is raised merely to 0.014 second.

The agreement with experiment as to order of magnitude is adequate. The only available experi-

mental measurements are those made at Leiden, not yet in final form. A preliminary analysis of

them, kindly communicated to the writer by Professor Casimir, yields relaxation times v- equal to
0.018 and 0.007 second at temperatures of 2' and 3.5'K, respectively, both at a field strength of

1350 gauss. The corresponding values yielded for these conditions by our calculations are 0.0035
and 0.0020 second. The experimental accuracy is estimated as only 20 percent, but the error in

our calculations is doubtless even greater. It is gratifying that the calculated relaxation times

actually turn out smaller than the observed values, inasmuch as in previous work there has been a
pronounced discrepancy in the opposite direction.

However, the predicted dependence on field strength is entirely wrong, for theoretically the

relaxation time should decrease when the field is increased, whereas experimentally the reverse is

true. (The empirical increase of r with Ho is rather small, and conceivably the data might be con-

sistent with a r independent of i, but even so the theoretical prediction dr/dHO (0 is contradicted. )
Possible explanations of this discrepancy will be sought for in Section VIII. The dependence on

temperature is also incorrect. Theoretically r should be proportional to 1/7', whereas comparison

of the data at 2' and 3.5'K indicates that more nearly 7 T l or T '.

VII. CALcULATIQN oF RAMAN PRocEssEs FoR CHRoMIUM

We now proceed to the calculation of second-order processes for chromium. The mechanism for

these is diferent than in the case of titanium. There are contributions from two main types of terms,

I and II which prove to be approximately coordinate in importance and which are as follows:

I. Those which are obtained by using a fourth-order perturbation formula, analogous, except for
order, to (15) or (17). Two of the 3'. factors in the numerator are to be taken as due to spin-orbit

interaction (44), and two due to orbit-lattice coupling.
II. Terms which are obtained by employing the third-order perturbation formula (17), but ex-

panding the crystalline potential to the second rather than first order in the normal coordinates

Qi, Q2, . The orbit-lattice coupling energy such as (47), or Eq. (21) of l.c., is then replaced by an

expression of the second order in the Q's. In (17), one of the X factors is due to this extension of the
orbit-lattice interaction, while the two others are contributed by the spin-orbit energy (44).

Besides I and II, there are two other types of contribution III, IV, as follows, which require examination, but which

prove to be'of minor importance.
III. Terms which result from the third-order formula (17), taking two of the 3C factors as due to the orbit-lattice

energy (47), linear in the Q's, and one factor only as due to the spin-orbit energy, but allowing for the modulation of

the frequency denominators by the energy changes in the lattice oscillators. In I and II, these denominators can be

'8 B. Bleaney, in press.
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regarded as arising from the cubic crystalline potential alone, but without the modulation, the structure III would

make no contribution to the relaxation.
IV. Terms obtained by using the second-order formula (15), but expanding the orbit-lattice energy to the second

order in the Q s as in II, and simultaneously allowing for the modulation of the frequency denominators as in III. One

of the K factors is due to the second-order extension of the orbit-lattice interaction, and the other to the spin-orbit energy.
Effects I and II may be characterized as obtained by an adiabatic, and III—IV by a nonadiabatic perturbation calcu-

lation, since the modulation of the frequency denominators is essentially an allowance for the fact that the oscillations
in the crystalline potential do not take place infinitely slowly. In making the calculation, one must be careful to notice
that I and II contribute additively only to the transformed Hamiltonian function +„,~ and not to the transition proba-

bility, or to the heat transfer constant n, as either of the latter is proportional to 3C„,~. Similar remarks apply to
III, IV. On the other hand, the contributions of I+II to n can be proved to be additive with respect to those of III+IV.
Detailed calculation, of which we omit the details, shows that the transition probabilities due to III and IV are only

of the order of magnitude 10 ' compared with those due to I and II. Hence we can safely disregard III and IV, as we

do henceforth. In titanium, on the other hand, III was the main effect, and I and II were nonexistent, while IV was

negligible in comparison with III, and so was neglected entirely. The reason that this was permissible is that in Ti,
the important excited levels were separated from the ground state only in virtue of the splitting 6 due to the noncubic

portion of the crystalline potential. Consequently the extra frequency denominator contained in III as compared with

IV was 6 rather than the cubic splitting v62(or v42). So in Ti, the effect of III, instead of being comparable with IV as
in Cr, was enhanced relative to IV by a factor 7»/6 in 3C„,~ or (v»jA}' in a.

We shall compute only the parts of I and II due to vibrations of the type Q2, Qa. This restriction
suNces to fix approximately the order of magnitude of the relaxation time, and very materially
simplifies the calculation because Q2, Q& do not give rise to any matrix elements joining I'2 with
I'4 or I'&. A more complete calculation, where all types of vibration are fully considered, would be
quite laborious, and does not seem warranted at the present time.

In order to compute the result of the mechanism I, with the above simplifications, it is necessary
to have besides the matrix elements of the orbit-lattice energy internal to I'~ given in (21) and (22d)
of l.c., also those of type Qz, Q3 joining I'4 and I'5. The latter can be shown to be

~0 (I'.'I'.) = 2PQ xo—r(p t'I' b) =P(Q. 2
—v'3Q) ~o~(1'.' I''. ) =P(Q +v'3Q )

with P =
I
—3pg+ (25/44) p2]/V'15.

To calculate the influence of II, one makes use of the fact that expansion of the crystalline poten-
tial given in (9) of I.c. to the second order has the effect of replacing pmQ2, p&Q3, respectively, by

~~Q2 —7»~ 'Q~Q3/2v'3: »Q3 —7~2~ '(Q~' —Q3')/4v'3

in (21) of l. c., providing we neglect all terms involving other coordinates than Q2, Q~.

In essentially the same way that we obtained (48), except that the perturbation theory is carried
one order higher, we find for the transformed Hamiltonian function involving the effect of I and II

with
=&ILQ ' —Q 'jl 25' ' —~ ' —~.'j+2v'3Q~Q~I:~*' —~.'3l

4i' )175 q
' 7 h~„.& )175' 1 hv„. 2 ) 25

I

—3~~+—» I
.

h' p.-~' &396 j 4 8 &396) 15 hp4~ 0 44 )

(59)

The calculation now proceeds in more or less the same fashion as in connection with the Raman terms
for Ti, but with the difference that there is a sp1itting of the basic multiplet due to the crystalline
potential as well as the applied field. However, solution of the secular problem can be avoided, as in

the case of the direct processes for Cr, by expressing the results in the form of an invariant diagonal
sum. Eqs. (51) and (52) are still applicable and it is finally found that the formula for the energy
transfer constant is

a=GXIsh 'T 'R4(16m'EV/15M)'(v& '+-', v~ ')', (60)
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TABLE I. Relaxation mme for chrome alum due to Raman process.

Tea]eX 106 (90 K)
T,b, X 106 (90'K)
T,g, X10' (64.4'K)
Togs X 106 (64.4 K)

Ho =0

0.14

0.43

800

0.18
0.06
0.56
0.53

1600

0.22
0.12
0.70
0.76

2400

0.24
0.16
0.77
0.92

3200

0.26
0.19
0.80
1.02

oO GAUSS

0.28

0.86

where I6 is defined as in (39), and

G=SPur [(25I' 5—z' 5—„')W—W(25g' —5~' —5v')]'+ 3 SPur [(5z' —5v') W—W(5g' —5v')]'. (61)

Here, W is the matrix (55) of the Hamiltonian function representing the combined energy due to the
Zeeman eRect and the crystalline potential. Explicit computation of 6 gives

G = 72&'Av'[1+8(HP/b'av)']. (62)

We can now calculate the relaxation times with the aid of (58), (60), (62) and numerical values of
the constants as stated after (58). We shall multiply all estimates of r thus obtained by a factor 1/10,
as we have considered only the vibrations of the type Q&, Q&, and a rough calculation'9 shows that the
transition probability will be increased by a factor of the order 10 when allowance is made for
vibrations of the form Q4, QS, Q8, arid for the interplay between Q&, Q&, and Q4, Q&, Q6, etc. With this
modification, the relaxation times which we calculate from our formulas at 90' and 64.4' are shown
in Table I for various applied fields, along with recent experimental determinations made by Gorter
and collaborators. "The agreement between the calculated and observed orders of magnitude of the
relaxation time must be regarded as adequate in view of the approximate character of the theoretical
model. The predicted dependence on temperature is obviously not rapid enough. The calculated
ratios of the relaxation times at two diferent temperatures has theoretically a particularly simple
origin, as it arises solely in virtue of the factor I6 in (60), defined by (39).The diagreement is doubtless
due main1y to the fact that the actual frequency spectrum for the lattice does not conform to the
co' Iaw at high frequencies, and need not cause concern, since it is well known that the law fails badly
in the vicinity of the cut-off frequency k8/h. Also in this region the assumption (11) that the wave-
length is long compared with the radius R of the cluster Cr 6820 is not warranted and the resulting
error wi11 change the temperature dependence somewhat. The discrepancies in the dependence of 7

on the magnetic field appear to be more fundamental, as we shall see in Section VIII.

VIII. DEPENDENcE oF 7- QN THE APPLIED

MAGNETIC FIELD Ho

The calculated orders of magnitude of the
relaxation time naturally depend on the numer-
ical values selected for the various constants,
such as (33). On the other hand, the predictions
regarding. the variation of ~ with the applied
field Ho are of a very general character not con-
tingent on how these constants are selected, or
upon the approximation (11).

At liquid-air temperatures, where only the
Raman processes are important, the relaxation
time r should theoretically depend on Ho in the
fashion

(1+0'HP) ro/(1+c'HP) (63)

as can be seen from Eqs. (58), (60), and (62).
In (63), ro is the relaxation time for zero field

strength and d and c are constants. With our
choice (33) of constants, d and c have, respec-
tively, the values j..2 X10 ' and 0.85 g i0 '

"In this connection it should be mentioned that uneven vibrations of the type Q&, ~ ~, Q», defined in l.c., can con-
tribute to th'e transition probability through the terms of the structure II described at the beginning of Section VII.
This is true because the Taylor s expansion of the potential does not involve solely the even modes of vibration when
quadratic terms are included. Also Q1 can be involved in II, since proper choice of origin only eliminates the linear term

'

in Q1.
0 I am much indebted to Professor Gorter for communIcating these results in ad~ance of publication.
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gauss. As d is larger than c, the relaxation time
should increase with field strength. The critical
frequency region in which ~ is most sensitive to
Ho is predicted correctly, but the calculated
variation is not rapid enough (cf. Table I,
Section VII). The latter discrepancy is not to be
dismissed lightly, as theoretically the ratio
d'/c'=r„/ro has a value 2 quite irrespective"
of the choice of values assigned the cubic split-
tings, the decomposition AI of the basic quartet,
the vibrational amplitude, etc. , whereas at 90'
experimentally 7. varies by a factor 3 when Ifo
is increased from 800 to 3200 gauss. Possibly
there may be some uncertainty in the empirical
relaxation times, since the experimental points
are fitted so as to make x, in (27) extrapolate
to the theoretical value xo(1 —F) when i = ~.
Small departures of y„ from the ideal value
x'o(1 —F) are to be expected if the assumption of
a spin temperature fails at the highest field
strength at liquid-air temperatures, and this
fact might alter slightly the variation with Ho to
be assigned to 7.

'Strictly speaking, the statement that v~/7. 0 can only
have the value 2.0 is not true. Were we to consider Raman
terms arising from Q4, Q6, Q6 as well as merely from Q2, Q3,
we would find that the transformed Hamiltonian function
contained spin matrices of the type S,S„,S„S„S,S, like
those associated with ~~ in (48), whereas the function
(59) which we use involves only those of the type con-.
nected with ~1 in (48). (In the language of group theory,
the ei, ~2 structures appear according as the symmetrical
direct product of the Q's corresponding to our Raman
process has the transformation properties of the repre-
sentation F3 or F&.) With the e& type, a is proportional to
1+12(Hp/tv)' instead of (62). The I'3 and F~ forms thus
give upper and lower limits 2.5 and 1.7 for d'/c' in (63).
In constructing Table I and giving a, numerical value
for d in (63) we have assumed that the two structures
contribute equally to n, so that n is proportional to
1+10(HP/b'av)'. It may be that the lattice vibrations
important for the ei and e2 forms have a different fre-
quency spectrum, and so a different temperature depend-
ence. If so, d'/c' can be a function of temperature, rather
than a constant independent of T, as we have treated it
to be. Actually d~/c2 does vary with T, but it is doubtful
whether sufficient variation is given by our theory, for
even under the most extreme assumptions the calculated
variation would be only between 1.7 and 2.5. (In iron, the
corresponding values are 1.7 and 4.5, so that there is more
leeway. )

If the nonadiabatic terms were effective, „, ~ would
be linear in the spin matrices, rather than quadratic, as
in (48) or (59), and one can show that then in the Raman
case in chromium we have d'/c'=3. 0 in somewhat better
agreement with experiment. However, as a.lready men-
tioned, the nonadiabatic terms appear to be considerably
smaller than the adiabatic ones. Kronig's study of the
relation between transition probability and relaxation
time (Physica 5, 65 (1938)), which is a generalization to
S& & of the Kronig and Gor'ter article mentioned in note 13,
assumed essentially a linear „, ~, so that his discussion
applies to the nonadiabatic terms only.

At helium temperatures, where the direct
rather than Raman processes are important, the
predicted dependence on field strength is entirely
wrong. The values of d and c in (63) become,
respectively, 1.2X10 ' and 1.6X10 ' gauss ', as
one finds from (57) and (58) if one disregards the
part of n' of the fourth order in Ho. As d is now
considerably less than c, the relaxation time
should decrease with held strength, in marked
contradiction with the experimental data. To
make matters worse, if the field strength is large
( 10' gauss) we must, by (56), add to the
denominator of (63) a term of the structure

e i'[Ho, '+Ho„'+ Ho, ' j
+eo'[Ho, 'Ho„'+Ho„'Ho, '+Ho, 'Ho, '] (64)

with ei ——0.78)&10 ', e2 ——0.88)&10 ' gauss '.
These extra terms accentuate still further the
theoretical decrease of relaxation time with in-
creasing field strength.

The effect of Temperley

In an interesting paper, Temperley" has suggested that
the difficulties regarding dependence on field strength, and
of the incorrect orders of magnitude of the relaxation
times calculated in previoiis investigation and still present
for titanium at helium temperatures can be avoided by
taking account of the fact that several atoms may reverse
their spins simultaneously. Supposedly the heat transfer
between the spin and lattice is thus enhanced, and if the
applied field inhibits concerted action, an explanation is
obtained of why the relaxation time increases with field

strength. Unfortunately, we do not believe that the e8'ect
of Temperley exists to an appreciable extent if the sPins
are really in thermal equilibrium zenith each other. In our
opinion his estimates of numerical orders of magnitudes
are misleading because they do not take cognizance of the
possibility of writing the answers as invariant diagonal
sums not materially influenced by cluster formation. If his

effect were important it would imply that the assumption
that spin-spin interaction can be represented by a Gaussian
distribution of internal magnetic fields, is grossly incorrect.
It is possible to extend our calculations so as to incorporate
the spin-spin interaction exactly, rather than by means of
the hypothesis of an internal field, and hence to examine
whether Temperley's mechanism really gives an essential
modification of the results. We may for simplicity suppose
that the phase of the Debye waves is the same for all the
atoms of the crystal, for this assumption is the most
favorable to the existence of the constrictive interference
betweeii atoms presupposed by Temperley. We can regard
the whole crystal as a structural unit. Then the new

Hamiltonian function involves summation over all the

"C. N. V. Temperley, Proc. Camb. Phil, Soc. 35, 256
(1939).



J. H. VAN VLECK

paramagnetic atoms of the crystal instead of applying to a
single atom. Thus the transfer constant is given by (53)
or (60), but with the factor N deleted, and with the
matrices S 2, S,S„etc. in the definitions (48) and (61) of
H(~) and G replaced, respectively, by 2;S„~, Z;S;S„;
where the subscript i means that the spin in question
relates to atom i. Also the quantity W is no longer defined
as in (55), and is instead

W=Z;2pH0 S;+&V;+Z;&;V;;, (65)

where V;; is the spin-spin coupling (4) and V; is the
crystalline potential

U; =-,'Ila. (S.;+S„,+S„).
Because of the fact that V;; commutes with Sl„. unless
i=k or j=k and because of the fact that

Spur [S„V;;—U;,S»' j[S,l, UI, l
—Vl, lS,h'), etc.

vanishes unless i =k,j = l or i = l, j=k, one sees that inter-
ference between only two atoms at a time can be involved
in (61), where 8" occurs quadratically. Since (x+y)'
~2x'+2y', this means that the interference effects can
only double the calculated transition probability. Similarly,
in (53), where W occurs biquadrically, one can show that
only four atoms at a time will interfere, so that at most the
amplification due to the Temperley effect is by a factor 4.
Temperley, on the other hand, needed a cooperative effect
inside a cluster containing about 300 atoms. Our estimates
of the amount of interference in the spin-spin terms are
only upper limits, and furthermore the main part of (65),
results not from the dipolar coupling V;;, but from the
crystalline potential V; whose contribution to the relaxa-
tion is purely additive from the various atoms. In conse-
quence of the partial interference, the value of C in (63) is
slightly changed, but we find that even on taking the
extreme limits derived above, the alteration is nothing like
sufficient to make d/c&i for the direct process for chro-
mium, as is required if the relaxation time is to increase
with field strength at helium temperatures.

In the preceding discussion we have tacitly given the
impression that our use of a Gaussian distribution of
internal magnetic fields to represent the dipole-dipole
coupling would be rigorous if we neglected the possibility
of two or more spins reversing simultaneously. This is not
really so in the calculation of the direct processes. Here
the fourth power of the internal field or dipole-dipole
interaction is involved, and the Gaussian law does not
necessarily give the correct dispersion, i.e., it may not
give the proper mean fourth power although it is adjusted
to work on the square. Examination of an explicit calcu-
lation which the writer" has made of the mean fourth
power in the somewhat related case of exchange coupling
indicates that the resulting error is not serious. There is
also a correction because of the fact that in computing
the direct process for atom i the dipole interaction joining
atoms i and j does not commute with the crystalline
potentials V; of atom j. Consequently atom i feels the
crystalline potential of other atoms via the dipole-dipole

2' J. H. Van Vleck, Phys. Rev. 55, 927 (1939).

coupling. The resulting modifications can be computed,
but prove to be of minor importance, as well as in the
wrong direction.

Possible exP/anations of the difJ'iculty S.i—nce,
in our opinion, the Temperley effect does not enter
appreciably with the thermodynamic model,
one looks for other reasons why our calculated
dependence of v on field strength is wrong at
low temperatures. The most obvious suggestion
is that the assumption of a spin temperature is
not warranted, but any explanation of this
character seems to be pretty well refuted by the
usual conformity of the dispersion curves to
formula (27), and especially by the fact that the
empirical and theoretical values of the constant
F in (27) agree so well. The incorrect dependence
on field strength is due to the factor ~' in the
frequency spectrum (19) of the lattice oscil-
lators. This factor makes the energy transfer
constant o, for the direct processes proportional
to the fourth power of the energy quantum At/t/'

exchanged between spin and lattice, whereas
only the square occurs in the case of the Raman
mechanism (cf. Eqs. (53) and (61)).The applied
field modulates (hW)' to a greater extent than
it does (AW)2, (e.g. the coefficient of IP is six
times as large in an expression of the form
(1+xIIo)4 as for (1+xHp)'). So in the direct
process the increase of o. (=o.o[1+O'HQ j) with
Ho is so great as to more than offset the cor-
responding increase of the specific heat C~

(= CO1L+ 'cH')), whereas with the Raman
mechanism this is not true. Since r =Co/cx, the
sign of dr/dHD is thus different in the two cases.
The troublesome ~' factor would be removed if
at low temperatures the spins owed their heat
contacts to conduction electrons rather than
lattice oscillators, but apparently the apparatus
actually does not have important metallic con-
nections.

Another interesting but highly conjectural
possibility is that the use of the conventional
distribution law p„co for lattice oscillators is
not warranted at exceedingly low frequencies.
Undoubtedly this law would be accurate for
infinitely small vibrations of small co, but the
zero-point energy requires finite amplitudes,
which are particularly large for the vibrations
of lowest frequency (cf. Eq. (14)). Hence the
anharmonic corrections may make t'he distribu-
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tion materially different from the usual idealized
form. Similar remarks apply to the effect of dis-
turbances caused by contact of the oscillators
with the "walls" (e.g. helium bath). If the inter-
ruptions are sufficiently rapid, co loses meaning
and the frequency distribution is blurred out,
diminishing the apparent dependence of p„on cu.

Conceivably the oscillation s most active in

modulating the cluster Cr 6H20 are not typical
of the crystal as a whole and have a different
distribution law. If p„could for our purposes be
treated as independent of cu for low values of co,

then the dependence of r on IIO would be the same
for the direct as for the Raman processes and we
would have in either case dr/dHO) 0, as desired.

Dependence on direction of applied field
Experiments on the dependence of ~ on the direc-
tion of the applied field at helium temperatures
are not yet available but would be particularly
desirable because of the light which they would
throw on the preceding considerations. Accord-
ing to our calculations of the relaxation due to
the direct processes with the usual frequency
distribution law (19), r should exhibit some
anisotropy at helium temperatures at high field

strengths, because of the addition of (64) to the
denominator of (63). The resulting anisotropy is

small, amounting to about 10 percent in fields

of 3000 gauss or greater, but is not beyond
detection in refined experiments (unlike the
negligible anisotropy calculated in Section III
for the direct processes in titanium). On the
other hand, if the co' factor due to the frequency
distribution law (19) is removed, as we suggested
in the preceding paragraph, then r becomes
isotropic even for the direct processes.

The calculation of Section VII (or of Section
III for titanium) show that the relaxation times
due to the Raman mechanism do not depend on
the direction of the applied field. This prediction
is in accord with experiments made by Teunissen
and Gorter at liquid-air temperatures. '4

IX. IRON ALUM

There are more extensive experimental data
on paramagnetic dispersion for iron than for
chrome alum, but the theory of the Stark decom-

"Teunissen and Gorter, Physica 5, 855 (1938); (meas-
urements on iron alum, but our prediction of isotropy still
applies).

position for the basic state of the Fe+++ ion is
somewhat ambiguous. For this reason we have
made our detailed calculations on Cr+++. Still
there is a certain parallelism between the two
ions. The temperature dependence is governed
by similar factors, and in particular our con-
clusions in Section VII I regarding the dependence
on field strength should also apply to Fe+++.
There is still the difhculty that dr/dHO has the
wrong sign at helium temperatures. In the
Raman processes characteristic of the liquid-air
region, the calculated values of the ratio d'/c'
connected with (63) range from 1.7 to 4.5,
depending on the assumption one makes con-
cerning the nature of the crystalline field and
the type of vibration effective. "The most likely
value is in the neighborhood of 2.5. The com-
puted ratios are thus somewhat larger than for
chromium and so give somewhat better agree-
rnent with the experimental dependence on field

strength than that shown in Table I for
chromium.

As regards orders of magnitude, one should
expect the Raman v- to be roughly of the same
size in iron as for chromium. This prediction
agrees with observation. On the other hand, the
direct processes occur in iron only if one includes
matrix elements nondiagonal in the principal
quantum number, or else retains higher powers
of the spin-orbit interaction than in chromium. "
So it is hard to understand why 7 at heliL'm tem-
peratures is not experimentally markedly larger
for iron than for chromium.

"It is uncertain whether the splitting of the spin com-
ponents of the basic state of the iron ion is due primarily
to the cubic or axial (trigonal) members of the crystalline
potential. There is no similar ambiguity in chromium,
since a cubic field cannot decompose the basic state of
Cr+++. For a cubic field in iron alum the value of d~/c~
=T / j'0 characteristic of the e1 and ~2 structures cited
in note 21 are, respectively, 1.7 and 4.5, For a second-order
axial Field of type x +y' —2s' the corresponding values are
2.7 and 2.2. If, as in Section VIII, it is assumed that the
&&and ~2 forms contribute equally to a0, then the appropri-
ate mean values for the cubic and axial cases are, respec-
tively, 2.5 and 2.4. These estimates are inclusive of the
effect of the contributions of the spin-spin field X to n0
and CH, which are very much more important than in
chromium. (If we could set E'=0, the maximum value of
7-„/7p would be 6.25 rather than 4.5). Teunissen's data,
reference 1, give some evidence that 7 /r0 is lower ex-
perimentally for iron nitrate than for the alums, as is
perhaps reasonable since the nitrates have rhombic rather
than cubic symmetry.

'6 See C. J. Kynch, Trans. Faraday Soc. 33, 1402 (1937),
also J. H. Van Vleck and %'. G. Penney, Phil. Mag. 1'7,
961 (1934) concerning vanishing of matrix elements in
half-completed shells.


