
MA RC H 1, 1940 P I-I Y S I C A L REVIEW VOLUM E 57

The Meson Theory of Nuclear Forces

Part II. Theory of the Deuteron)

H. A. BETHE
Cornell University, Ithaca, ¹mYork

(Received November 20, 1939)

With the nuclear forces as derived in the first part of
this paper the deuteron problem is integrated. In $7,
natural units are introduced, vis. , the range of the nuclear
forces 1/K=A/pc as the unit of length and the quantity
Eo=p~c2/M as the unit of energy. With the adopted value
of the meson mass, p=177 electron masses, we have

1/K =2.18&)(10 cm and Z0= 8.68 Mev. The quantum
states to be expected are discussed ($8); each state is
characterized by the total angular momentum J, the total
spin S=O or 1, and the parity. For some states, the orbital
momentum L is defined uniquely by these quantum
numbers (in this case, L= J); for others, we have a linear
combination of wave functions with two different values
of L, vis. , J+1 and J—1. The angular coordinates are
eliminated from the Schrodinger equation ($9) and the
radial wave equations obtained. The order of the states is
discussed qualitatively ($10) and it is made plausible that
the ground state is a combination of a 'S and a 'D1 state,
both in the neutral and in the symmetrical theory. The
next higher triplet state is probably 'PI. Then the wave

equation is solved numerically for the 'S state ($11), the
position of this state being taken from experiments on the
scattering of slow neutrons by protons. The method of the
numerical solution is described, and a table constructed
giving the interaction constant u = (23II/p) f'/Ac as a
function of the cut-off distance xp=Kr0, a is found to
depend only slightly on x0. The next section ()12) deals
with the numerical integration for the triplet (ground)
state.

The following sections contain the results, In $13, the
results for the neutral theory are given. A cut-off distance
of 0.32 to 0.40 of the range of the forces will fit the positions
of singlet and triplet state; these figures are very'reasonable
from general considerations. The calculations are carried
out with two alternative ways of cutting off, assuming the
potential inside r0 either to be zero, or to retain the value

.it had at ro. It is found that all physically sigriificant
quantities are practically independent of the method of
cutting off. The value of f'/Ac is 0.077 or 0.080, according
to the method used. The wave function contains about
6.7 percent 'D1 state, the rest being 'S. This means that
the sum of the magnetic moments of proton and neutron
'should be about 0.04 nuclear magneton greater than the
deuteron moment which is just reconcilable with the
present experimental data ($14). In $15, the quadrupole
moment of the deuteron is calculated. The values found

are 2.70 and 2.61X10 " cm' using the two methods of
cutting off; the sign is positive (cigar-shape). Both sign

and magnitude are in good agreement with the experiments
of Kellogg, Rabi, Ramsey and Zacharias as evaluated by
Nordsieck (Q=2.7X10 '7). In $16, the 'PI state is calcu-

lated; it is shown to be unstable and to have no appreciable
inHuence on the scattering of neutrons. of moderate energy.

The symmetrical theory is discussed in $17. The calcu-
lations for this theory give unacceptable results, particu-
larly for the cut-off distance which must be chosen con-

siderably larger than the range of the nuclear forces
(x0=1.3 to 1.7). The quadrupole moment comes out about
ten times too large and of the wrong sign. These results
are very regrettable since only the symmetrical theory
gives a natural explanation of the P-decay and of the
extra magnetic moments of neutron and proton. Therefore
an alternative way of cutting off is tried in $18, with even

more unfavorable results. The theory of Mgller and
Rosenfeld is discussed ()19) but it is not considered

satisfactory because of its intrinsic complication. The
question remains open whether the neutral theory is
correct because it gives quantitative agreement for the
deuteron, or the symmetrical theory which is qualitatively
preferable but in violent quantitative disagreement both
with the theory of the deuteron and with the P-decay.

II7. THE WAVE EQUATION. ABBREVIATIONS

HE wave equation of a system consisting of
two nuclear particles is

V'P+ (3/I/O') (E—U) P =0, (36)

as given by (34). (If both particles are protons,
the electrostatic repulsion should be added. ) In
V, the distance between the two particles occurs
in the form ar; therefore it will be convenient to
introduce the abbreviation

where M is the mass of the nuclear particle, Z the
energy of the system and V the potential energy

(36a)x=mr, x= z1,

t Part I in Phys. Rev. 57, 260 (1940). The sections,
equations and references are consecutively numbered in
Parts I and II.

i.e. , to measure all distances in units of 1/z, which

is the range of the nuclear forces. According to
(Sb), 1/~=2. 18gX10 "cm.
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If we now denote by V" the Laplacian in the new coordinates x, insert (34) in (36) and
remember that a =pc/5, we obtain for the neutral theory

ME M f' e ( 3o~ xo2 x & (1 1 1)
'7 9+ 0 2 ao~'o2 +

I
+lo~ o2 I& *( —+—+—,

I
0=0.

p'g' p, Sg x E 2 x' 4 Ex' x' 3xj
(37)

Eo p'c'/3II. —— (38)

Obviously, it will be convenient to measure the convenient to put
energy. in units of

(39)

This quantity appears to be the natural unit of
energy" in nuclear physics, just as 1/~ is the
natural unit of length. Eo is the rest energy of the
meson, multiplied by the ratio of the masses of
meson and nuclear particle. With a meson mass of
177 m as assumed here (Eq. (8)), we obtain

Zo ——8.7 Mev. (38a)

This is just of the order of nuclear binding
energies per particle. It is exactly four times the
binding energy +=2.17 Mev of the deuteron;
actually, the value (8) of 'the meson mass has
been chosen (within the limits allowed by the
experimental data) to make E0=4w. We shall be
most concerned with the ground state of the
deuteron for which E is negative; it is then

a = 2(M/p) (f'/Ac) (40)

This constant is a convenient expression for the
strength of the forces. With our value for p, we
have

a = 20.8f'/Ac. (40a)

Dropping again the prime at the Laplacian,
(37) becomes now

According to the foregoing, we have for the
ground state of the deuteron

(39a)

This simple value makes the numerical work
much easier.

Another abbreviation which is called for by the
form of (37) is

s * ( 3og xo'g x ) (1 1 1)
E P o 'goy'o2 +

~
+~o~o2 I' I + + ~

/=0
x ( 2 x' ) Ex' x' 3x)

At large distances, this equation may be sepa-
rated in polar coordinates. The spherically sym-
metrical solution is

P =e-'*/x =. e-'*'/x, (41a)

)8. THE QUANTUM STATES OF THE TWO-BODY

SYSTEM

The tensor interaction V2 depends on the
direction of x as well as its magnitude and

~. It has always seemed arti6cial to me to use the
so-called "nuclear units" which are based on mc as unit
of energy. As far as we know at present, electrons do not
play an important part in nuclear forces, and even if they
did, their mass would probably be irrelevant. This is
already shown by the fact that all mass defects are large
numbers in units of mc', rather than of the order unity.

which means that the probability of ending the
particles at a distance between x and x+dx,
Px'Cx falls off as e *dx.

J=L+S,
where L is the orbital momentum and

S= —.(oi+o2)

(42)

(42a)

therefore does not commute with the orbital
momentum L of. the system. The orbital mo-
mentum L, will therefore in general not be a
quantum number, i.e., we cannot classify the
levels of the two-body system as 5, I', D, etc.
states. The eigenfunctions will in general be
linear combinations of several terms involving
spherical harmonics of diR'erent orders I..

On the other hand, the tensor interaction is, of
course, invariant against simultaneous rotation
of spin e and spatial coordinates r because it
depends only on the relative orientation of these
two vectors. Therefore the Hamiltonian com-
mutes with the total angular momentum
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the total spin. J, giving the amount of the total
angular momentum, and M, giving its component
in a given (s) direction, are therefore both good
quantum numbers.

The Hamiltonian is also invariant against
inversion, i.e. , against changing the sign of all
coordinates. Therefore the eigenfunctions will
have a definite parity, even or odd, i.e. , they will

either remain unchanged or change sign when r is
replaced by —r.

Finally, the Hamiltonian commutes with the
amount S' of the total spin although it does not
commute with the Cartesian components of S.
This fact is not so obvious as the two preceding
ones and depends essentially upon the fact that
the spin of each nuclear particle is —,'. lt can be
proved by direct evaluation of the commutator
S'V2 —V2S', using relations of the type 0-&,fT»
= —a-»tT&, . However, the simplest proof is by
showing that V2, applied on the wave function of
any singlet state, will vanish identically. This
means that the tensor interaction can have no
matrix elements between a singlet and a triplet
state. Therefore the tensor interaction applied to
a triplet wave function must again give a triplet
function. Consequently the tensor interaction
does not mix singlets and triplets, in other words
it commutes with the total spin S. The rest of the
Hamiltonian obviously commutes with S, and
therefore S is a good quantum number. It can
have the values zero (sing1et state) or one
(triplet).

Thus the quantum numbers of our system are:
the total angular momentum J, its s component
M, the total spin S, and the parity. Let us now
consider the states of given J and M. There are
four such states, one singlet and three com-
ponents of the triplet. The singlet state must
have 1.=J because 5=0 (cf. (42)) so that in this
case the orbital momentum is (more or less
accidenta11y) quantized. We have a. '5, 'P, "D

state, etc.
The triplet states can have L=J, L =J+1 and

L=J—1. The parity of a state is determined by
L, being even for even L and odd for odd I
(Part I, reference 27, p. 108). Therefore the
states L=J+1 and J—1 have the same parity
while L=J has the opposite parity. Since the
parity is quantized, the state L=J will be by
itself, i.e., it will not be mixed with any state of a

different L. Therefore here again I will be
"accidentally quantized, " we can speak of 'P~,
'D2, 'F3 states, etc.

The two states L=J+1 and L =J—1 will be
mixed, the eigenfunction being a linear combi-
nation of two functions involving spherical
harmonics of order J—1 and J+1, respectively.
The corresponding radial wave functions satisfy
two simultaneous differential equations of the
second order (cf. f9). There will, of course, be
two such'mixed states for a given J, the lower in
general containing more of L=J—1, the higher
more of L =J+1. For J= 1, we get thus a
mixture of a 'S and a 'D~ state: such a mixture
will represent the ground state of the deuteron.
For J=2, we have a mixture of 'P2 and 'F2, etc.
Only J=O is an exception, because J=O 'in

conjunction with S= 1 implies necessarily L = 1 so
that we get a pure 'Po state.

Our analysis shows that at most two different
values of L, and sometimes only one, occur in a
given eigenfunction. "This makes the two-body
problem manageable since it is reduced to the
numerical solution of at most two simultaneous
differential equations for the radial wave func-
tions. These equations will be derived in the
following section.

It need hardly be emphasized that the struc-
ture of our spectrum has no relation to that
found in Russell-Saunders coupling. In particular,
the spectroscopic notation is used only for con-
venience and does by no means imply that states
in the same triplet, e.g. , 'Po, 'P&, 'P2, have any
relation to each other. They will be as widely
separated as states of different L or S, and states
of the same Jwill not lie close together either.

(9. ELIMINATION OF THE ANGULAR COORDINATES

The eigenfunction of a triplet state of given J
and 2', and given parity, may be written:

P(x, a, p, ~s)
=(1./x)guI, (x)FgI,jI(8, P, Ms). (43)

L

Here the sum contains at most two terms (cf. )8),
the ur, are the radial wave functions (x= ar) and
the F will be called angular functions in the
following. They can be expressed in terms of

' This was pointed out to me by R. Peierls to whom
I am greatly indebted for a stimulating discussion.
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ordinary spherical harmonics and of spin The uz, obey the differential equations (neutral
functions: theory):

where

M+1
FILM g CJ I3EmC LMm&

m=M —1

d Ql,

dx

L(L+1) 1 e *
e+ +—0

x2 3 Y

M+1

~

&J r.jr
m=M —1

(45)

There are several other relations between the c's
of different Jand ns expressing orthogonality and
normalization of the Ii's.

Since the F as well as P are normalized, the
normalization condition on the radial functions is

Q ~t ul. 'dx=1.
I. 8

(46)

TABLE I. Coegcients tin the tensor interaction (cf. Eg. (50))

J=L—1

TERM

J=L
TERM

J=L+1
TERM fJL

3P P1
'D2

3S
3P
'D3

0
1/5
2/7

tg, Lz, . J= 1 (coupling 'S and 'D1)
J=2 (coupling 'P2 and 'F2)

tg, zL~ ———Q2
tg, J.J. = —(3/5) g 6.

'7 For the definition of the PL and relations between
them see Bethe, IIandbuch der Physik, Vol. 24, No. 1

(1933), p. 551. The defi.nition is YL
2L+1

4m.

(L—m)! dL+m
sin yX

( ) ~ (cos'8 —1) e' "for

any (positive or negative) m.
38 E. U. Condon and G. H. Shortley, Theory of Atomic

SPectra (Cambridge University Press, 1935).

C'z„v =&r. (&q)xmas . . (44a)

Here the Yl. are normalized spherical har-
monics, '~ m is the orbital momentum about the s
axis (we write m instead of Mr, for convenience).
The x are the usual triplet spin functions, vis.

yg
——n(1)n(2),

go = 2 '[e(1)P(2)+P(1)n(2)], (44b)

x—i=P(1)P(2).
The subscript of the spin function gives the spin
in the s direction, Sf' ——3II —nz. Since Sf' goes
from —1 to +1, m will take the values M —1, 3EI

and 3II+1.The c's are constant coefficients which
are given by considerations about angular
momenta; they are independent of the potential;

. a general discussion will be found in Condon and
Shortley. "We assume the I"s normalized, then

t
1 1 1

+f„as (-+ + ( n,
Ex' x' 3x &

(1 1 1q
=tel I ae '~ + + ~ul. .. (47)

4x' x' 3x/

The definition of the t's is

TRIM $ZLFJI M+f J I r'FJI'M (48a)

Since T commutes with J, no terms with different
J and M can appear on the right-hand side, and
the cock.cients t can only depend on J and L but
not on 2' They can easily be calculated using the
relations between the spherical harmonics" and
the method of sums (cf. reference 37, p. 555).
The result is

L J—1
ted=I+1, L

2L+3 21+1

L+1 /+2
tJ=L—1, L

2L —1 2J+1

(49a)

(49b)

kg I r i = —3J''(J+1)'/(2 I+1). (49c)

Table I gives the numerical values for the
smallest J.

Here —e' represents the eigenvalue in our units
(cf. ea7), L(L+1)/x' the centrifugal force, and
—',oe /x the central force V~ in which we have
inserted for e& 02 its value (unity) for triplet
states. The remaining terms arise from the tensor
interaction. If L=J, the term on the right-
hand side will be absent (eb8); if L= J&1, there
will be just one term on the right-hand side, with
L'= J&1.

The coefficients t are constants (not depending
on x) and represent the matrix elements of the
characteristic term in the tensor interaction,
vis. , of

3g1 X+2 X
T——— +~(F1'0'2.1

2 x2
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Ug&gg& = ae g/x (50)

This attraction is independent of L,.
For the triplet states with L=J, the central

force U~ is repulsive, and the tensor interaction
V2 is attractive and independent of L since
t JI.———1. The total interaction is

e *-t 1 1 1y
UL=J= Ul+ Ug= ga ae

I + +
x Ex' x' 3x)

t1 1y= —ae-*f —+—I,
Ex' x'j (51)

i.e. , attractive at all distances.
The other two triplet states, L = J&1, are mixed

together. This mixing will be unimportant if the
coupling interaction

J'(J+1)' t' 1 1 1 )
U...= —3 ae *I —+—+—

I (52a)
2J+1 Exg x' 3x)

is small compared with the difference between
the centrifugal potentials,

(J+1)(J+2)—(J—1)J 2(2J+1)
C= (52b)

X2 X2

This will be the case when J is large because then
the particles will stay at large distances x. Then
the two states with different I can be considered
separately, and in each of them we shall have
two repulsive interactions (central force and
tensor interaction). The repulsion is larger for
L= J+1 than for L =J1(cf. (49), (49' b—)). For
very high J the two repulsions become equal, we
have t Jl, —2 for both values of L and

lim Vi Jpg=lim VI.=J )
L moo

t1 1 1q= —,'ae-*( —+—+—
~. (52c)

&xg xg xi
On the other hand, for the 'S state the tensor
interaction does not contribute to the repulsion

$10. THE SIGN OF THE INTERACTION . AND THE

ORDER OF THE QUANTUM STATES

Before we proceed to the actual numerical
integration of the radial wave equations (47), we
shall discuss the sign and relative magnitude of
the interactions in the various quantum states.

A. The neutral theory

In the singlet states there is an attraction

at all (tgc 0——) and for 'Pg its contribution is
rather small (tqc = —',).

Actually, the coupling between the states
L =J+1 and L=J—1 will tend to lower the
lower of the two, and to raise the upper. The
centrifugal force is greater for L=J+1; and,
according to the preceding paragraph, the same is
true for the repulsive force arising from the
"diagonal term" in the tensor interaction. There-
fore the lower state will be mainly L=J—1, and
the higher state I =J+1. In particular, the
lower state with J=1 will be mainly 'S with
some gD& mixed in (ground state of the deuteron).
For J=0, there is only a strongly repulsive
state, 'Po.

Since the tensor interaction is attractive (cf.
(34b)) when the vector r from one particle to the
other is parallel to the spin S, the "lower" state
will tend to have r and S parallel while in the
"upper" state r and S will tend to be at right
angles. In particular, in the ground state of the
deuteron r will more often be parallel to S than.
this would be the case in a pure 'S state. In such a
pure state, there is no preferential direction for r
at all; therefore the actual ground state of the

deuteron will have an oblong shape, with the major
axi sin the direction of the spin S.This is equivalent
to a positive quadrupole moment of the deuteron
which agrees in sign with the experimental result of
Kellogg, Rabi, Ramsey and Zacharias. "

A similar reasoning leads to an understanding
of the sign of the diagonal term of the tensor
interaction. At least for high orbital momenta, we
can apply classical concepts, Then the orbital
momentum L will be perpendicular to the posi-
tion vector r. Therefore attraction is to be
expected when L is perpendicular to S, and this is
the case for J=L. When L is parallel or anti-
parallel to S (J=L&1) repulsion will result.

It is of great interest to decide which of the
terms of given Jwill actually lie lowest, the one
with L=J or the lower of the two other terms.
The following (nonrigorous) argument decides in

favor of the latter. We write the radial equations
for L=J~1 in abbreviated form:

d ug y/dr —g us y=Auz —y
—Dusgz,

d us+1/df g us+1 — Dus 1+Cus+1. —

39 J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey and J. R.
Zacharias, Phys. Rev. 56, 728 (1939).
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Here

A = -', ae /x+(J —1)J/x'+(J —1)B/(2J+1),
(1 1

J3=ue
Ex' x' 3x)

C=-',ae-~/x+(J+1)(J+2)/x' (53a)

+(J+2)B/(2 J+1),
D = 3J&(J+1)'8/(2 J+1).

Then by an argument similar to that used in the
derivation of the &KB method it can be shown
that the two simultaneous equations (53) are
almost equivalent to a single Schrodinger equa-
tion with the potential

W= -', (A+ C) a L' (A —C)'+D'j. (53b)

The negative sign corresponds to the lower state;
inserting (53a), we obtain

x2

e * J(J+1)+1
W =-,'e + +-8—

x

2 /+1 38 ' ( 3B
+ +I I J(J+1)

x' 2(2J+1) E2J+1)
This expression must be compared with the potential for the state L =Jwhich is

e-* J(J+1)
&~r.=J = g +—

x2

The difference is

4J(J+1)
V—W= ———;a+

~

—+-,'a )+x' I x2 x4

(54a)

which is always positive. Therefore the mixed state is loner than the state L =J. It may be of interest
to give the value of W in the limiting cases: For weak coupling ((2J+1)/x))38/2) we have

e
—* (J—1)J J—1 9J(J+1)8'= -', c + + 8— — 8'x'+
x x' 2J+1 2(2J+1)'

for strong coupling

e ' J(J+1) 4J(J+1)
W = —',a —8+ + ~ ~ ~

x x2 38x4
(55b)

Therefore the lowest of the triplet states with
a given J is that which contains mostly the
lowest possible L, vis. , L=J—1, mixed with
some L=J+1. The next state, which is not
much higher if the interaction is large, is the
pure state L=J, while the highest state, with a
strong repulsive potential, is the mixed state
which contains mostly L=J+1 and a smaller
amount of L=J—i.

For a given class of states, the potential is
higher for higher J. Now for J=0, there is
only one triplet state, vis. , 'Pp, which has a
strongly repulsive potential (cf. Table I). There-
fore the lowest triplet state must be found
among the states with J=1, and according to
the preceding paragraph, it must be the state

which is composed of 'S and 'D~ with the former
predominating. The next state will be 'P~, and
after this the lowest state with J= 2 will follow,
vis. 'P2+'F2. That the order of the states is
actually as indicated here, in particular that '8&
lies higher than 'S+'D j, will be shown by
numerical calculation in $13 and 16.

Although L is not a true quantum number, it
is interesting te investigate the states which
have as their predominant part a given L. Of
these, the state with J=L will in general be the
lowest, the state J=I +1 somewhat higher and
J=L—1 by far the highest.

While the sequence of the triplet states and
that of the singlet states separately can be thus
established, the relative position of triplets and
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singlets cannot be derived on qualitative grounds.
In particular, it depends. on the cut-off distance
xp whether the 'S or the 'S+'D~ state is the
lowest (CI11—13).

B. Symmetrical theory

As has been mentioned repeatedly, the po-
tential in this theory differs from that in the
neutral theory by the factor ~~ ~2 which is 1 for
states symmetrical in the charge coordinate, —3
for antisymmetrical states. With the discussion
of )6 on the symmetry of various states, we
find then:

In the singlet states the potential is at&active
for even L, and has then the same value as in
the neutral theory, vis. ,

V= —ae */x (S=O, I. even). (56)

For odd L, the potential is repulsive and three
times as large:

U=3ae-*/x (S=O, I odd). (56a)

For the triplet states, the potential is the same
as in the neutral theory if L is odd, but has the
opposite sign and three times the magnitude if
L is even. Remembering the sign of the inter-
action for the various triplet states in the neutral
theory, we find: The "diagonal part" of the
interaction is attractive for all triplet states of odd

J, repulsive for ctll triplet states of even J.
Since the centrifugal potential increases with

J, it is thus immediately clear that the lowest
triplet states are those with J=1.The competi-
tion is therefore again between the 'P~ state and
the mixed state 'S+'D~. However, the latter
state is much more favored than in the neutral
theory, because the potential in the 'P& state is
the same as in the neutral theory (54a), while
for the other state all terms involving the inter-
action constant a are multiplied by —3. Denoting
by J3 the same expression as in (53a), we have
then instead of (55)

In the symmetrical theory, we can also say
definitely that 'S+'D& must be lower than 'S,
a statement which was not possible in the
neutral theory. The reason is that the central
force has the same value for 'S and 'S, viz. ,

(50a), and that the diagonal term of the tensor
interaction vanishes for 'S; the nondiagonal
term which couples 'S to 'D~ will then lower 'S
below 'S. Thus the 'S+'Dj state is the lowest of
all states.

A considerably different situation obtains with
respect to the relative orientation of r and S,
and especially to the quadrupole moment of the
ground state. For odd L, as we know, the
symmetrical theory agr'ees with the neutral
theory; for even L, on the other hand, the sign
of the whole interaction, and particularly the
tensor interaction, is reversed; therefore in the
low states of even L, r and S will tend to be
perpendicular. The ground state, 'S+'D~, falls
in this class. Therefore, according to the sym-
metrical theory, the deuteron will have a Hat
shape, with the short axis in the direction of the
spin. It will therefore have a negative quadrupole
moment, in contradiction to the experimental
result.

d'u/dx' —Uu =0.

Outside the cutting-off distance xp, we have

V= —ae—
/x (x)xp).

(57)

(58)

For x(xp, we consider the two alternative ways
of cutting off discussed in f6, vis

(a) The "zero cut-off"

V= 0 for x (xp.

(b) The "straight cut-off"

(58a)

)11. THE 'S STATE

We calculate the radial wave function u of
the 'S state for zero energy. u obeys the
Schrodinger equation

4 e 1
V—8"=—a +—8——3x2x2

t'9 1 ) ' 4J(J+1)
+ (-~—/+x)

V= Vp= —ae *'/xp for x(xp. (58b)

The inner boundary condition on u is

u(x=0) =0, (59)(56b)

u(x~ ~) =c(1+yx),

since u=xtp. The outer boundary condition may
which is always positive and in general much be written
larger than (55). (60)
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where c is an arbitrary normalization constant
and 7 &s determined by the scattering of slow

neutrons by protons.
The scattering cross section for slow neutrons

is, neglecting the unimportant effect of the
finite range of the forces (Part I, reference 27,
p. 117)

~p1 3l
~=—

I

—+-
I

Kz 4yz gz j (61)

fTexp=16.8X10 "cm'.

With (61) (61a) (61b) and e= —'„we obtain

(61b)

7 =0.1000. (61c)

Thus the wave function (60) has .almost hori-
zontal tangent outside the range of the force
(58). The positive sign of y indicates that the
'S state is virtual rather than real. 4'

"H, Carroll and J. R. Dunning, Phys. Rev. 54, 541
(1938).

4' N. Arley, Kgl. Dansk. Akad. 10, 1 (1938).
4'-L. Simon, Phys. Rev. 55, 792 (1939).
4'F. G. Brickwedde, J. R. Dunning, H. J. Hoge and

J. H. Manley, Phys. Rev. 54, 266 (1938); J. Halpern,
I. Estermann, O. C. Simpson and O. Stern, Phys. Rev. 52,
142 (1938); L. W. Alvarez and K. S. Pitzer, Phys. Rev.
55, 596 (1939),

where e' is the binding energy of the deuteron in

our units (cf. $7) and y the characteristic con-
stant of the singlet state as introduced in (60).
With the value of 1/~ as given in (8b), we have

zr/gz = 1.50)(10 zz cmz (61a)

Further, according to (39a), e=-', . The experi-
mental value of the cross section is not very
accurately known because experiments with
thermal neutrons involve the effect of chemical
binding which has not been calculated accu-
rately, while experiments at higher energies are
diAicult and involve large experimental errors.
The most recent experimental value at thermal
energies is that of Carroll and Dunning, "vis. ,

50.7X10 '4 cm'. The reduction factor for chem-
ical binding was calculated by Arley4' who found
2.77. This gives o- = 18.3 X10 " cm'. Direct
experiments with Ag and I resonance neutrons
above thermal energies) give a lower value, 4' vzs. ,

14.8X10 ".Our calculations are not very sensi-
tive to the exact value of the cross section but
mainly to the fact that it is large. We have
used an average of the two experimental values,
VM. )

Since 7 is given experimentally, the solution of
the wave equation will give the interaction
constant a as a .function of the cutting-off
distance xo and of. the method of cutting off
("zero" or "straight"). The integration for x(xo
is elementary, we have for zero cut-off

u = nx (zero)

(cx arbitrary) and for straight cut-off

(62a)

u = zz sin [(ae "/xo) lx] (straight). (62b)

For x)xo, we integrate from the outside in. For
large x (greater than 2 or 3), an analytical
solution is used, for smaller x, numerical inte-
gration for each value of a. The point xo itself is
determined from the condition that the outside
and the inside solutions must join smoothly.

In the outside solution, we expand in powers
of the potential. Obviously, such an expansion
will converge rapidly for large x. We shall use
it for x)2 when a ~2, and only for x)3 when
a)2. We write:

Q =Qy+7Q2) (63)

where both I& and N2 satisfy the wave equation

d'u/dx'= —a(e-'/x) zz, (63a)

(63c)

The integration gives up to terms of order c':

ui ——1 —a(xEi( —x) +e—*)

+a'(e ' +e *Xi(—x)

+ (2x —1)Zz( —2x) )+, (64a)

uz ——x —ae-'+zz'(-', e-"+xiii( —2x) )+, (64b)

where Ei(—x) is the exponential integral (cf.
Jahnke-Emde, Table of Functions). The terms
in a' can be estimated; they are only noticeable
in the derivatives du/dx to which they contribute
about one-thousandth of the terms linear in a.

For x between x0 and x1=2 or 3, the integration of the
wave equation (63a) must be done numerically. To start
the numerical integration, u a,nd du/dx are calculated from
((63), (64)) for the joining point x1 (see below), and then
the integration carried on to smaller x. As shown by

while their asymptotic behavior is given by

(63b)
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Hartree, 4' the numerical integration is most convenient if

y=log x

is used as the independent variable, and

F=ux &=x&P

(65)

(65a)

t1dF) xdF xdu 1 1

I Fdy). , F dx udx 2 2

as the dependent variable.
The numerical integration itself was carried out using

Hartree's method, i.e., calculating the wave fundtion F
at regular intervals y, y —h, y —2h, etc. , and the derivative
F'=dF/dy at the midpoints y ——,'h, y ——,'h, etc. The interval
h was chosen equal to 0.2 units of the natural logarithm;
four significant figures were carried in F' and F". As a
rule, the numerical integration for a given a took about
half an hour.

The starting point for the numerical integration was in
general y=0.7, corresponding to x=2.01.4, while the first

point for F' was y =0;6 (x= 1.822). The values a = 1.6,
1.7, 1.8, 2.0 were used. For larger values of a, the analytical
formulae would not be accurate enough at y=0.7 and 0.6;
therefore, the numerical integration was in this case
started at y=1.1, x=3.0042 for F and y=1.0, x=2.7183
for F'. This was done for a=2.5, 3, 4 and 5.

The boundary condition at xp is a smooth
join of wave function and derivative to the
interior solution (62a) or (62b), respectively
This means

for zero cut-off:

J1 and J2 are Bessel functions. The value of a was found
by trial and error: For a given a, u was calculated by
numerical integration outwards; then the solution joined
to one of the type {63}and y determined. We found
p=0.1496 for a=1.4 and p=0.0940 for a=1.5. By inter-
polation we obtained a = 1.489 for the "experi mental
value" y =0.1000.

In Table II, the resulting relation between a
and xp is given. It is seen that for moderate xp,
a changes very slowly with xp. From the general
arguments of the field theory given in )6, we
expect a cutting-off distance xp of about 3.
According to Table II, this would mean a value
of a of about i.6 to 1.7. Thus we may say that
a is almost exactly determined by the position
of the singlet level of the deuteron, provided
only a reasonable assumption is made about xp.
The position of the triplet state can then only
be adjusted by varying xp.

Table II has been extended to larger values of
xp because these are needed for the symmetrical
theory ($17). Also included in the table are the
values of xo/(a —ao)*' where ao ——1.489 is the
value of a for xp=0. This quantity is seen to
vary slowly with a and is therefore most con-
venient for (graphical) interpolation.

That xp will, at least as long as it is small, be proportional
to (a—ap)& can be seen from a simple calculation. For
small x, (67) reduces to

for straight cut-off: u=z —2z +' ' '.2+ (68)

(axoe-*') '*/1 dF't 1

0 F dy) s, tan (axoe *')*' 2
(66b)

u is the "regular" solution of the differential equation
(63a). Now suppose the potential is zero for z&zp. Then
in this region,

z (z &zp). (68a)
In addition to these calculations with a cut-off potential,

we calculated a for the case of no cutting off (xp=0).
In this case it was obviously not convenient to continue
the numerical integration down to x=0. An analytical
solution of (63a) was therefore obtained, viz. ,

u = z&J1(2z&)+ -', ax' J2(2z&) —0.0417a'x'
+{0.0083a'+0.0229a') x'+ (67) We write

v=1 —z log z+ (69)

(We write p for the wave function for arbitrary zp and
reserve u for the case zp =0.) When this "inside function"
is joined to a solution of (63a), the latter will be a linear
combination of the regular solution (69) and the irregular
one, eiz. ,

where P =u+nv. (69a)
(67a)

44 D. R. Hartree, Phys. Rev. 40, 738 (1934); Proc.
Camb. Phil. Soc. 24, 89, 111 (1928). (69b)n = —2Zp2

1

Using the boundary condition of smooth join at z=zp,
we find (cf. 68a)

TABLE II. Relation between cutting-og distance xp and interaction constant a for the singlet state.

xp Zero Cut-off
xp Straight Cut-off
xp/(a —ap) &(Zero)
xp/(a —ap) &(Straight)

1.489

0
0
0.689
1.194

1,6

0.2447
0.4056
0.735
1.217

1,7

0.3554
0.5687
0.773
1.238

1.8

0.4458
0.7012
0.799
1.257

0.5959
0.9196
0.834
1.287

2.5

0.8933
1.3295
0.888
1.322

1.121
1.635
0.912
1.330

1.486 1.732
2.101 2.428
0.926 0.924
1.326 1.296
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The regular function (68) satisfies the boundary condition
(60) at large x for a=ap. . The new function (69a) will

satisfy the same boundary condition if a is changed by an
amount proportional to a, so that

a —ap=c zp =exp . (70)

The constants c' and c could only be determined by actually
calculating v. It is simpler to obtain c from an extrapolation
of the data in Table II.

For straight cut-off, we have instead of (68a)

sin (z/zp&)

and therefore for the condition of smooth join

(
z dy zp&

+ e ~ ~

P dz „ tan zp&

Solving for n, we obtain

cx = —6zp21

Therefore for straight cut-off (cf. {70))

a —ap= 3.exp,1

(71)

{71a)

(71b)

(71c)

which shows that the limit, for xp~0, of xp/(a —ap)& is 3&

times greater for straight cut-off than for zero cut-off. —
The same results could also be obtained by treating the
cutting off as a perturbation of the potential (63a) and
applying the Schrodinger-Born theory.

f12. THE TRIPLET STATE (GROUND STATE),
CALCULATION

As has been shown in )8—1P, the ground state
of the deuteron is a mixture of a 'S and a 'Di
state. For convenience, we shall denote the
respective radial wave functions of the S and D
component by x and &p. Then the complete
wave function is

(b) Straight cut-off

A =A 0
——e-*'/3xo+ c',

f1 1 1qe-*
I

—+—+
Ex,' x,' 3x,i'

(x (xp). (74b)

Because of the strong divergence of B (73b), the
result will be very sensitive to the value of xo.
The "experimental" value of e is —', (cf. (39a)).

The conditions on the wave functions xy are
that they vanish for x—&~ and for x=0. Disre-
garding these conditions, there would be four
linearly independent solutions of the two simul-
taneous equations (73). Two of these solutions
may be chosen so as to be hnite at ~; they will

then behave as e ' as can easily be seen from
(73) (73a). The two others will become infinite
as e+' . Alternatively, the four solutions may be
combined in such a way that two of them vanish
at x=0, the two others will then not vanish.
But for a given value of xo and e, there will in

general not be any solution4' which vanishes
both at x=0 and x= ~. For a given xo, there
will only be certain eigenvalues of e for which
such a solution exists. Actually, our procedure
is the reverse: Since e is known from experiment,
we seek the value of xo which permits a regular
solution for the given e (and a).

The integration is similar to that of the
preceding section but complicated by the fact
that we have now two pairs of solutions where
we had only a single solution before.

LX(x) F10M+ e'(x) +12M]~ 72
Inside solution

where the I"ql,~ are the angular functions de6ned
in (44). The radial wave functions satisfy the
two simultaneous differential equations

The inside solution is trivial in the case of
zero cut-off; we have then the two independent
regular solutions

where

d'x/dx' =A x Bv2 p, —

d'y/dx'= (A+B+6/x') e BV2X, —(73)
X3=&3x

y4
——0

(p3 ——0

+4= C4X3

(75a)

(75b)
A =« */3x+e',

(1 1 1yB=«
I

+ +
Ex' x' 3x)

(73b)

A =8=0 for x &xi). (74a)

The potential will be cut off at small distances,
and we consider again the two alternatives

(a) Zero cut-off

with arbitrary constants ca, c4.

For the straight cut-off, the solutions are

"'From the two regular solutions at small x, we can
always form a linear combination such that its continua-
tion to large x does not contain one of the functions which
become infinite for x= ~. However, the selected linear
combination zv2ll in general contain the other of these
functions. The condition for an eigenvalue is then that
the coefficient of this other irregular function also van-
ishes. This is clearly one condition and can be satisfied by
the variation of one parameter, e.g. , e.
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much more complicated. For practical purposes
it is convenient to make use of the fact that B
(cf. (74b)) is much larger than A if xp is of the
expected magnitude (about 0.4). If A is neglected
entirely, the solution of Eq. (73) will be a
function of

s=Bp'x (76)

A p gG+xp6 8 0

b=—=
Bp a(xo '+xo '+-', )

(76a)

only. The inHuence of A can then be considered

by expanding in powers of

d'y/ds' = by 42 &p-,

d'po/ds'= —v2y+(1+b+6/s') p

(76b)

Both the regular solutions of (76b) contain only
odd powers of s, one of them contains also a
logarithmic term. Similarly as in (75), there is
one solution- in which x is the "leading" wave
function and one in which it is q. The 6rst pair
of solutions is

in practice, only terms up to b2 need to be
considered. In these variables, the wave equation
(73) becomes

yp ——s —0.00900s — +log s(0.020s'+ ~ )+b(0 1667s.' )—+b log s( )+
I'pp —0.01298s'+0.01202s'+ . . —log s(0.2828s'+ )+b(0.011.3s'+ )+

The second pair in which y is the leading function does not contain the log s:
—yp= 0.07071s'+0.002405s'+ +b(0 0041s'.+ ),

@4=so+0.0714s'+ . +b(0.0714s'+ )+

(77a)

(77b)

(77c)

(77d)

The values of y and q and their derivatives at xp were computed from these formulae to 4 signihcant
figures. The value of s corresponding to xp is (cf. (74b), (76))

so= Lae *'(1/xo+1+xo/3)]*. (78)

Outside solution

For very large x, a solution of (73) was obtained in terms of a power series. Unlike the case of the
singlet state, only the terms without a and those linear in a can be expressed in terms of tabulated
functions, this diff'erence being due to the energy term ~ in the wave equation. There is again one
pair of functions in which y is "leading" while y vanishes for a=0, and another pair in which the
reverse is true.

The pair in which g is the leading function is, up to terms linear in a:
yg

——e
—'*+(a/6p) G(x),

42a 2po+3p —3 (2p —1)p'-

+
8~4 x'

3 —4~2
e-&'+'& *+ F(x)

26

(79a)

(79b)

where G(x) = e-"Ei( x)—+e'*Ei[—x(1+2p) j, —
(1 p p'q (1 p p'q

F(x) = e' Ei ( x)
I

—+—+——I+e'*Ei—(—x(1+2p))
I

+
t x' x 3) Ex' x 3)

(79d)

The second pair of functions in which y is the leading one is:
V2g 1 1+c 2e —1 3 —4&2

yp= — —+ + e "+'*+ —G(x),
12 xs x2 x 126

(80a)

(1 p p')
~ =e-'*I —+-+- I+a

Exo x 3)

1 ( 3 3 3 1 1 1 i 1 (2p'+3)(2p —1)
+I — + + ++ ~

I + g
—{1+e)x

6x' 4 16p' 16p' 8p' 4p 6 12 ) x' 48p'x

+ — + F(x) . (80b)
32&' 16'' 12&..
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TABLE III. Cut-og distances xo for the ground state.

Neutral Theor'y, a = 1.6
Neutral Theory, a =2
Symmetrical Theory, a =2
Symmetrical Theory, a =3.2

ZERO
CUT-OFF

0.3092
0.3628
1.0560
1.2975

STRAIGHT
CUT-OFF

0.4051
0.4989
1.374
1.733

These functions simplify considerably when the
value -', is inserted for e.

The terms in a' were calculated using an approximate
half-analytical procedure. For this purpose, the terms linear

in a in the wave functions (79), (80) were approximated
as closely as possible by exponentials, and the same was

done for the terms proportional to a in the wave equation

((73), (73a,b)). The term 6/x~ which is not important for
large x was replaced by a suitable average. The resulting
wave equation could then be integrated in an elementary

way in exponentials. The terms in a' never contributed
more than 1 part in 1000 to the main wave functions yI
and q 2 and 1.part in 100 to their derivatives, at the point
where numerical integration was started.

Intermediate region

In the region between xo and xI =2 or 3, the wave

equations (73) were integrated numerically. The method

used was the same as in $11, i.e., y =log x was introduced
as independent variable, and

g=x &x f=x-&q (81)

as dependent variables. Because of the rapid change of
the potentials A and 8 and of the wave functions, it
was necessary to.use a smaller interval, viz. , k=0.1. The
numerical integration was started at yI =0.7 for the neutral

theory, at yI=1.1 for the symmetrical theory.
The functions gI, fI, g2, f2 increase exponentially towards

smaller x. The actual wave function, on the other hand,
will reach a maximum and then decrease; it must therefore
be a small difference between the large functions gI, fI and

g2, f2. To improve the accuracy and save labor we calcu-
lated, instead of the second pair of functions, a linear
combination of the two pairs which was somewhat closer
to the actual wave function (but still "on the side of" g2, f2).
We chose for the neutral theory

g(&) =0'6g2+gI) f(2) =0 6f2+fI' (82a)

For the symmetrical theory and a=2, we took

g(2) =2g2 gI~ f(2) = 2f2 fI~ (82b)

while for greater a we used g2, f2 themselves. Even so, it
was necessary to carry 5 significant figures in gI, fI, g2, f2
for small x in order to get the fourth figure in the result
reasonably correct.

The increased number of wave functions (four instead
of one), the smaller interval (0.1' instead of 0.2), the
greater accuracy required, and the more complicated
differential equation, all together make the integration
about 20 to 30 times more laborious than in the case of the

singlet state. The integration was therefore carried out
only for very few values of a. Table II suggests that the
correct value of a will be in the neighborhood of 1.6; this
value was therefore chosen. Even before the singlet

integration was performed, the triplet state had been
calculated with a=2. These two values, a=1.6 and 2,
were sufficient to determine the correct a and xo and the
correct wave function by interpolation.

All the foregoing formulae and discussions hold for the
neutral theory. In the symmetrical theory, the potential
has to be multiplied by —3 for the ground state ($4).
This can be done formally by replacing a by —3a. This
makes obviously the convergence of the expansion in

powers of a worse; therefore yi was chosen equal to 1.1
instead of 0.7. The first integration was made with a=2
but this was found considerably too small. a=3.2 was

estimated to be about correct for the straight cut-oA, and
this estimate was confirmed by actual integration. For the
zero cut-off, a was found to be about 3.8 by extrapolation.

Determination of cut-off distance

xo is determined by the condition of continuity
of the functions and their derivatives, vis. ,

Cig i+C2g 2 = C3g 3+C4g4

c&f~+cgf2 c3fg+c4——f4
( )c ldg g/dy +cmdg 2/dy = c8dg 3/dy +c4dg 4/dy

cjdf~/dy+c2df2/dy =c~dfa/dy+c4df4/dy

The functions 1, 2 are the outer solutions, ob-
tained by numerical integration, the functions

3, 4 are the inside solutions. Since the functions
are all given (for given a), the equations (83)
represent four linear homogeneous equations for
the four coefficients cic2C3C4. Therefore the de-

terminant must vanish

gi g2 g3 g4

fl f2 f8 f4 (84)
dg&/dy dg2/d3 dga/d3 dg4/d3

df /dy df~/dy df /dy df /dy

(84) is the equation for the determination of xo.

(Strictly speaking, xo is the largest root of (84).)
For zero cut-off, the inside functions are very

simple (cf. (75a,b)), and (83), (84) reduce to

~1 dgmld3 kg2 df~/dy (5/2)f2-
(84a)

cm dgy/dy —
2gg dfy/dy —(5/2)fy

The two fractions in the middle and on the right-
hand side were computed from the numerical

solution at various points; the point where they
are equal was then found by interpolation. For
the straight cut-off, the inside functions are
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NEUTRAL THEORY SYMMETRICAL THEORY

fR/II, C

X0
Max. of BQ2 (Mev)
CI
C2

Percent D
Qin10»cm2
r'2Av in 10 26 cm2

e =Q/rr'A

ZERO
CUT-OFF

1.664
0.0800
0.318

625
0.323
0.1225
6.80
2.705
3.31
0.0815

STRAIGHT
CUT-OFF

1.600
0.0770
0.405

288
0.322
0.119
6.63
2.615
3.28
0.080

ZERO
CUT-OFF

3.76
0.181
1.396

38.4
0.286
0 446

18.03—20.0
8.31
0,241

STRAIGHT
CUT-OFF

3.165
0.152
1,725

15.1
0.267t;—0.390

18.52—17.8g
7.51
0.238

more complicated. In this case, the determinant
(84) itself was calculated at various points and
then interpolated.

The results obtained are given in Table III.
For the neutral theory and straight cut-off,
a=1.6 gives (accidentally) almost exactly the
same value of xo as was obtained for the same
theory and the same a for the 'S state (cf.
Table II, 0.4051 and 0.4056). This shows that
1.6 is the correct value of a for this theory.
Extrapolation using the result for a = 2 gives
a=1.5997, x0=0.4050. For the final wave func-
tion, we took the one computed for a=1.6.

In the case of zero cut og, ne-utral theory, a= 1.6
gives a larger xo for the triplet state (0.3092)
than for the singlet state (0.2447) while for @= 2

the relation is reversed (0.3628 and 0.5959).
That xo will depend less strongly on a for the
ground state is to be expected from the strong
divergence of the potential in this state. Since
xo/a (in the triplet state) does not change much
from a=1.6 to 2 this quantity was used for
(linear) interpolation. Then the values of xo for
triplet and singlet state agree for c= 1.664.
Direct linear interpolation of xo for the triplet
state would give a=1.6633. The corresponding
value of xo is 0.318, by both methods of
interpolation.

For the symmetrical theory, straight cut-off,
a =3.2 gives approximate agreement between
triplet and singlet state (1.733 and 1.741). If
xo'/a for the triplet state is linearly interpolated
between @=2 and 3.2, triplet and singlet will

intersect at a =3.165, xo = 1.725. The triplet wave
function for @=3.2 was taken as final.

The correct value of a for the symmetrical
theory, zero cut-off, is obviously greater than
3.2. In view of the generally unsatisfactory
results for this theory (too large xp) it was

TABLE IV. Results.

considered sufficient to extrapolate the results
for a=2 and 3.2. We assumed x02 for the triplet
state to be a linear function of a and found that
a=3.76 will make xo for singlet and triplet agree
and will give xo ——1.396. The value of a may
easily be in error by &0.05 unit and xo by
~0.02 unit, these estimates being obtained by
using different methods of extrapolation. The
wave function was also obtained by extrapolation
from the results for a=2 and 3.2, assuming
linearity in a. This assumption was checked by
the correct behavior of the wave function near
xp, vzs. , X~x~. and p ~x ' .

The wave functions obtained as described
were normalized by the condition (46), viz. ,

J~ (x'+q')dx= I. (85)

f'/kcx' (86)

Our calculations give about 0.08 for f'/t'tc (cf.
Eq. 87) and therefore 0.5 or 0.8 for the above
ratio for straight and zero cut-off, respectively.
These figures are quite close to unity.

That xo must be smaller for the zero cut-off is
evident: When the potential is zero inside,
instead of having a finite value corresponding to
attraction, this must be compensated by a
larger potential outside; and the outside potential
is increased most effectively by making xo
smaller.

A cut-off at x0=0.3 or 0.4 represents a rela-
tively slight modification of the Yukawa po-
tential ae /x. This can be seen from the small
change of c necessary to compensate the effect
of the cutting off,for the singlet state: Our a is
1.6 or 1.66 instead of the value 1.489 found
without cutting off ($11). In particular, the
general behavior of the singlet potential is

(13. RESULTS FOR THE NEUTRAL THEORY

The calculations in the preceding section gave
cut-off distances xo= 0.405 for the straight cut-off
and 0.318 for the zero cut-off. These values are
very reasonable indeed, and are, in fact, just of
the order of magnitude which we expected from
general considerations of the field theory in (6.
It was mentioned in that section that Mftller and
Rosenfeld found the ratio of second-order to
first-order interaction to be about
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d. d

2.0

0.8

02

Fro. 1. Radial wave functions of the 5 and D state of the deuteron. Neutral theory, two
ways of cutting off.

preserved, vis. , the exponential decrease at large
distances and the stronger. than exponential
increase at small x. Especially the latter may be
helpful for removing the discrepancies in the
older theory of the three- and four-body
problems. 4'

The interaction constant a does not depend
appreciably on the method of cutting off. This
is satisfactory and makes it probable that the
actual theory which may be developed in the
future will give a similar value for c. The most

' W. Rarita and R. D. Present, Phys. Rev. 51, 788
(1937).

important reason for this insensitivity is that c
is principally determined by the singlet state,
and that this state is not sensitive to the cutting
off ()11).The same fact makes a also insensitive
to the mass of the meson. A change of p would
only change the natural unit of length 1/K, and
therefore also the constant y, in the inverse
ratio of p. Because of the small value of y, even
a change of the meson mass by a factor of two
either way would cause only a small absolute
change of y, and therefore a small change of a.
We estimate that a doubling of p, would increase
a by about 0.08, i.e., five percent.
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The actual value of a is considerably less than
that reported in previous papers. Sachs and
Goeppert-Mayer" find a = 2.83 for p,

=' 177m.
This difference is due to the fact that these
authors assumed that the trip/et state is deter-
mined by a potential of the Yukawa type ae */x;
the lower energy of the triplet state requires of
course a larger a than the one found in this paper
from the singlet state.

The absolute value of the interaction is most
easi1y appreciated when instead of a we use the
quantity f'/kc. From (40), we have

P/Ac = (p/2M) a. (87)

Therefore, with our value p, =177m=0.096~35,
we find

The wave functions X and y themselves are
shown in Fig. 1 for the two ways of cutting off.
The two graphs are seen to be very similar. Of
the two wave functions, X behaves very similar
to the usual wave function of the deuteron and
has a flat maximum at x=0.6, i.e. , outside the
cut-off distance but within the range of the
nuclear forces. At large distances, x will always
behave as e '* independent of the special form of
the nuclear forces as long as the forces have
short range. " The radial wave function of the
D state, y, has a steeper maximum at a slightly
smaller distance (x=0.5).

In Table IV, we have also given the percentage
of D function contained in the ground state, vis. ,

100 times the quantity

f'/kc =0.0800 for zero cut-off, (87a)

f'/Ac = 0.0770 for straight cut-off. (87b)
Pa =

) q 'dx. (88a)

This means that f' is about 11 times the square
of the electronic charge, e', or about the geo-
metrical mean between e' and kc.

In Table IV, we have listed the more impor-
tant results. After the values of a and xo, we
have given the maximum value (obtained at xo)
of the "coupling potential" between S- and D-
state, B&2 (cf. (73), (73b)). It is seen that this
quantity does not reach excessive values but
remains considerably smaller than the rest
energy of the deuteron (1860 Mev). This makes
it improbable that the cutting off is due to
simple relativistic elfects (cf. )6).

The next two rows in Table IV give the
coefficients c~ and c2 in the normalized wave
function

This percentage is again almost independent of
the method of cutting off as is to be expected
from the similarity of the wave function. The
value of pD is 6.6 to 6.8 percent, i.e. , rather
small, in spite of the large effect which the
mixing of S and D state has on the energy.
The reason for this is the large value of the
coupling potential BV2.

f14. THE 1VIAGNETIC MOMENT

As Schwinger" has pointed out, the percentage
of D function in the ground state is important
for the magnetic moment of the deuteron. For
a pure 5 state, the magnetic moment may be
assumed to be equal to the sum of the intrinsic
moments of proton and neutron,

X=CjXl+C
g =Cz pz+C2+2.

gs= ps+pe. (89)

These coefficients are seen to be almost the same
for straight and zero cut-off, and what difference
there is, is due to the difference in a. For the
same a, the coeScients for the two methods of
cutting off agree within the accuracy of the
calculation (about 1 in 500). The reason is that
a small change in these coefficients would mean
a considerable change in the shape of the wave
function, owing to the rapid increase of XI q ~X2q 2

towards smaller x.
47 R. G. Sachs and M. Goeppert-Mayer, Phys. Rev. 53,

991 (1938}.

= 2g r. —zgs~ (90a)
4' H. A. Bethe and R. Peierls, Proc. Roy. Soc. 149, 176

(1934}."J. Schwinger, Phys. Rev. 55, 235 (1939},Abs. 13;
and further unpublished results.

In the past the neutron moment has always
been calculated from this formula, gq being
identified with the measured magnetic moment
of the deuteron. For a pure 'Dj state the moment
would be given by the Lande formula

S(5+1) L,(J+1)—
go = —(2gs 1rg)+, (gs —g~) (90)

2J(J+1)
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g= (1 p~)gs—+p~gD
=gs —$pD(gs —p).

(91)

The cross terms between the 5 and D wave
function do not contribute to the magnetic
moment.

The observations give almost exactly g=gs,
i.e. , the observed moment of the deuteron is
within the experimental error equal to the sum
of the moments of neutron and proton. The
measurements of Kellogg, Rabi, Ramsey and
Zacharias" give for the deuteron

g =0.855~0.006,

for the proton

p,~ ——2.785 &0.02,

whereas Bloch and Alvarez" find for the neutron

p~ = —1.935&0.02.

since I =2, 5=J=1. Here g~ is the g value of
the orbital momentum, and we have

(90b)

since the proton carries one-half of the total
orbital momentum of the deuteron. All moments
are of course given in nuclear magnetons. If
we have a mixture of a 'S~ and a 'Dj state, the
moment will be

further increase in the precision of the experi-
mental values of the moments.

Schwinger's theory" gives a greater percentage
of D function in the deuteron ground state, vis. ,

about 10 percent or more. He introduces a
central force and a tensor interaction which are
constant inside a certain radius r&=e'/mc' and
zero outside. The magnitude of the central force
is assumed different in triplet and singlet state
and is adjusted to give the correct binding
energies, and the magnitude of the tensor inter-
action is adjusted so as to give the observed
value of the electrical quadrupole moment. Since
our theory also gives the quadrupole moment
correctly, the difference between the two theories
apparently arises from the different shape of the
radial functions. This point requires further
consideration. At the moment, Schwinger's re-
sult seems somewhat worse than ours.

)15. THE QUADRUPOLE MOMENT

As has been pointed out repeatedly, the
deuteron will, according to the present theory,
have a quadrupole moment. We define the
quadrupole moment in the same way as Kellogg,
Rabi, Ramsey and Zacharias, "vis. ,

Q= (3s"—r")~,——r"(3 cos-'0 —1)p„(92)
Therefore the difference between the deuteron
moment and the moment expected for a pure
S state is

g —gs =0.005+0.03 (91a)

nuclear magnetons.
From the theoretical Eq. (107), we should

have

g —gs= —0 53pa (91b)

Therefore a value of PD of 0.067, as it follows
from our theory, would be just outside the
limits of the experimental error. However, if it
were not known that the deuteron had a quadru-
pole moment, the result of the experiments would
doubtless be taken to indicate exact additivity
of the magnetic moments of neutron and proton
in the deuteron. Whether a pa of 6.7 percent is
actually permissible, can only be derided after a

"L. W. Alvarez and F. Blot h, Phys. Rev, 5'7, 111
(1940).

where 2.
" and r' are the coordinates of the proton

with respect to the center of gravity of the
deuteron, i.e. , one-half of the coordinates used
in this paper which give the position of the
proton with respect to the neutron. The average
is to be taken for the magnetic state Sf=1;
a positive quadrupole moment thus indicates
that the deuteron is elongated along the direction
of its spin, and vice versa. Putting r'= ,'r= x2/~-

we have

Q= (1/4gP)~tx (3 cosP 0 —1)+dr (92a).
The wave function P of the state &=1 is

(«(&2), (44))

f=x 'y(s) Fpp(8, pp)n(1)n(2)+x ~pp(x)10 '

X [&pp(6&p) n(1)n(2) +3*' Ypy(d pp) I n(1)P(2)

+0(1)n(2) I/F2+6'* ~»(~p )&(1)&(2)j (93)
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Inserting (93) in (92a) we obtain

Q = (1/10~') Jfx'dx(xq v2 —', p')-

In other words, the 'D~ state alone would give
a negative contribution to the quadrupole mo-
ment (—-', p'). The interference term between S
and D function, xq V2, is positive provided y and
p have the same sign which is the case for our
neutral theory. As long as y is not too large
which again is fulfilled in our theory the positive
term will predominate. Thus tke quadrupole mo-
ment will be positive, ~n agreement witk the experi-
ments of Kellogg, Rabi, Ramsey and Zacharias 89.
This was already deduced from qualitative
considerations in )10.

The integral in (94) was calculated from the
wave functions for the two types of cut-oR.
The result is again almost independent of the
cut-oR and the small existing difference of about
three percent is mostly due to the difference in a.
A correct theory would therefore give a similar
value provided the principle of cutting off singlet
and triplet potential in the same way is pre-
served. The final result (cf. Table IV) is

Q=2.70s&(10 "cm' (zero cut-off)
Q= 2.615)&10 ' cm' (straight cut-off). (95)

This value should be compared with the experi-
mental value

Q=2.74&&10 "cm'
&2 percent (experimental), (95a)

could not be treated with the theoretical con-
cepts deduced from the phenomena known
previously or disagreed with them. E.g. , the
cross section for the scattering of slow neutrons
did not agree with the value deduced previously
from the binding energy of the deuteron but
required for its explanation the postulation of
the singlet state of the deuteron —a postulate
which was well confirmed later. The binding
energy of the triton cannot be deduced from
deuteron data but can be adjusted at will by
changing the range of the forces. The binding
energy of the n-particle disagrees with the
forces deduced from the two- and three-body
systems. In our theory, there are for the first
time more experimental data than there are
arbitrary parameters: The data are the positions
of .triplet and singlet state of the deuteron, the
mass of the meson and the quadrupole moment.
The parameters are the nuclear unit of length,
1/~, the interaction constant a, and the cut-off
distance xo. This makes it possible to calculate
one datum from the three others. This has been
achieved by using the principle of simplicity in
the fundamental theory, particularly by the
assumption that the spin-independent interaction
is absent (Single Force Hypothesis, $5). The
good agreement obtained justifies this hypothesis.

To judge the significance of Q for the shape of
the deuteron we compare it with the average
value of r"A, where r' is the distance of the proton
from the center of gravity. We have

which has been derived by Nordsieck" from the
experiments of Rabi and collaborators. " The
agreement is excellent.

This is practically" the first time that a
calculation in the theory of simple nuclear
systems gives a quantitative agreement. In all
previous instances, any new phenomenon either

"A. Nordsieck, Bull. Am, Phys. Soc, , New York Meet-
ing, February, 1940, Abstract No. 9. I am grateful to Dr.
Nordsieck for communicating his results to me before
publication.

6'As other instances, the capture cross section of pro-
tons for slow neutrons, and the cross section of the photo-
electric effect of the deuteron for 2.62-Mev p-rays may
be quoted; also to some extent the energy dependence of
the scattering of neutrons by protons. However, the
theory of all these phenomena is almost independent of
the range and nature of the nuclear forces so that the
agreement proves only the short range of the forces. Our
case is quite different in this respect.

=3.31)&10 "cm for zero cut-off

=3.28X10 "cm' for straight cut-off. (96)

For comparison we note that for infinitely short
range of the nuclear forces r"A„=2.39&(10 "cm',
i.e. , the finite range causes a moderate increase
in the size of the deuteron as is to be expected.
We define the excentricity of the deuteron

(96a)

e would have the value 2 if the proton and
neutron were constrained to move on a straight
line in the direction of the spin. In our case
(cf. (95), (96)) we find e=0.081' for the zero



MESON THEORY OF NUCLEAR FORCES 407

and 0.080 for the straight cut-off showing that
the deuteron does not differ too much from
spherical shape.

)16. THE 'PI STATE

As has been shown in f9, the potential in the
'P& state is strongly attractive. It would therefore
be conceivable that this state might be lower
than the 'S+'D~ state. We have made it plausible
in $10 by a semi-quantitative argument that this
is not the case. However, because of the im-

portance 'of this question we have made a
direct numerical calculation of the 'P~ state.
This calculation was also meant to decide
whether the 'P~ state is higher than the 'S state
which question could not be investigated by the
method of $10.

We have calculated the 'P~ wave function for
zero energy and zero cut-off'. The radial wave
function obeys the wave equation (cf. (51))

d'P (2 e *
=

~

——a (1+x) ~y (x)x.)
dx' &x' x'

(97)

y= log x= 0.7 and the values of their derivatives
at y=0.65. Then both solutions were integrated
numerically towards smaller x, using the same
method as in f11 and 12 and interval k=0.1.
Finally, a linear combination of the two solutions
was joined at xp ——0.318 to the inside solution

x'. The result is (cf. (98))

y = 2.39. (99b)

This value of y is positive showing that there is
no bound 'P& state. This confirms the qualitative
result of )9 that the 'S+'DI state is the ground
state. Moreover, the value of y is not excessively
large as it would be if a virtual state existed in
the neighborhood of zero energy. This shows
that the 'P~ state is also "higher" than the 'S.

To estimate the scattering of 'P~ neutrons we
write down the wave function at a finite energy. '

P = —cos (kx 18) +sin (kx+5) /kx. (100)

Here k' is the relative energy of neutron and
proton in nuclear units of 8.7 Mev, x the distance
of the two particles and b the phase shift. If
kx((1 but still x»1 so that the nuclear forces
are negligible, (100) reduces to

dx x
(x (xp)

P=-', (kx)' cos 5+sin 5/kx. (100a)

PI ——x' —ae *(1+1/x)+-'a'e '*/x'+

1 a (6 2
e-*( ——-+1—x

)
—x'Zi( —x)

x 24 Ex' x )

(99)

xp= 0.318, a = 1.664.

The inside solution is simply f x . The asymp-
totic solution for very large x is

(98)
with

x', Pp 1/x. (98a)

For values of x which are still large but not
infinite we expand in powers of a and find:

Comparison with (98) gives

tan 5=6=-,'k'y= 0.80k'. (100b)

As example let us consider the scattering of
D —D neutrons. The kinetic energy is about
3 Mev, therefore the relative kinetic energy 1-,'
Mev and k'= 1.5/8. 7 = 0.17. Eq. (100b) then
gives for the phase shift of 'Pj the value 6 = 0.056
=3.2' which is small but not negligible. In spite
of the strong attraction, the 'P~ state is therefore
only of slight importance for the scattering of
neutrons of moderate energy. The angular dis-
tribution of the scattered neutrons will be almost
spherically symmetrical as in the older theory
and in experiment. "

Q 2

+
360

(9 12 7
8+16x

)

Ex' x' x i )17. RESULTS OF THE SYMMETRICAL THEORY

—15e-*Bi(—x) (1+1/x)

+32x'Ei( 2x) + . (99—a)

The values of pI and pp were calculated at

The main results of the calculations have
already been given in Table IV, $13. The most

"The angular distribution of the scattered neutrons as
a function of the phase shifts of the 'S, 'P, 'S, 'P0, 1, 2

waves has been given by Hoisington, Share and Breit,
Phys. Rev. 56, 884 (1939).
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conspicuous feature is the enormous value of
the cut-off distance, xo ——1.396 and 1.725 for
zero and straight cut-off. It can be said that the
potential must be cut off before it has really
begun to act. This is also shown by the smallness
of the maximum value of the coupling potential
BV2 which is 38.4 and 15 Mev, respectively.

It is evident that these results are entirely
unacceptable from the standpoint of general
nuclear theory. A potential which exists only at
distances greater than 3XIO "cm (zero cut-off)
is obviously in violent contradiction with the
known short range character of nuclear forces.
Such a potential could never explain that the
binding energies of the triton and the O.-particle
are large compared with that of the deuteron;
it would lead to nuclear radii at least three times
as large as the observed ones, and it would mean
a very considerable influence of the I' waves in

the scattering of 2-Mev protons by protons for
which no such influence has been observed. "
The potential obtained with straight cut-off
which is constant up to 4&(10 " cm and then
falls off rather slowly is equally out of the
question.

Moreover, it seems inconceivable that the
theory of the meson field should break down at
such enormous distances. The relativistic correc-
tions are minute, the potentials being only 38
and 15 Mev. Likewise, the second-order inter-
action (cf. (86)) should give only 0.09 or 0.05
times the first order. That the field theory would
be worthless in the case of such an early break-
down goes without sa'ying.

In view of this situation, it seems hardly
necessary to give additional evidence against the
symmetrical theory. However, it should be men-

tioned that the quadrupole moment has the wrong

sign, negative instead of positive (cf. Table IV,
and reference 50). This was already realized by
Heitler" and it seems very difficult to devise a
mechanism to change this result. The enormous
size of the quadrupole moment, 7 to 8 times the
observed value, is only in keeping with the
long range of the nuclear forces.

The reason for these results can be appreciated
most easily by a comparison with the neutral

54 G. Breit, H. M. Thaxton and L. Eisenbud, Phys. Rev.
55, ioi8 (j.939).

55 W. Heitler, Report to the Solvay Conference 1939.

theory. The central force V& (cf. (34)) has the
same value for singlet and triplet state in the
symmetrical theory so that the tensor interaction
is only responsible for the difference between
these two states. In the neutral theory, the
central force is repulsive in the triplet state,
therefore the tensor interaction must overcome
this repulsion, must provide an attraction equal
to that in the singlet state, and in addition make
the triplet state lower than the singlet. This
means that the tensor interaction must have a
much smaller effect in the symmetrical than in
the neutral theory. But the analytical expression
for the tensor interaction, in terms of a and x,
is three times larger in the symmetrical theory.
Therefore its effect can only be reduced by
cutting the interaction o'ff at a very much larger
distance xo.

This effect is further enhanced by the fact
that an increase of xo means a reduction of the
effective potential in the singlet state which
must be compensated by an increase of a
(cf. Table II). In fact, the final value of a is
twice as large or more in the symmetrical than
in the neutral theory. An increase of a increases
the tensor interaction still further and thus
necessitates an even larger cut-off radius xo, etc.

Our result that the symmetrical theory dis-
agrees violently with experiment is very re-
grettable indeed. For all qualitative arguments
are in favor of the symmetrical and speak
against the neutral theory. In this connection
we do not think primarily of the fact that
charged mesons have been observed in cosmic
rays while there is up to the present no experi-
mental evidence for neutral ones: The existence
of neutral mesons is indispensable for any theory
of nuclear forces, symmetrical as well as neutral.
But the symmetrical theory is capable of ex-
plaining at least in principle the P disintegration-
and the magnetic moments of neutron and proton.

There is as yet no actual theory of the extra
magnetic moments, and it is already clear that
such moments could cot be expected in the
approximation of the field theory which has been
considered in this paper. However, it seems at
least possible qualitatively to interpret the
moments as due to charged mesons which are
present part of the time. With neutral mesons
no such possibility seems to exist; moreover, we
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X—&I'+Sf, 3II —+e +n
I'—+%+Sf+, M+—&e++n (101)

(%=neutron, P=proton, M+ and 3I =positive
and negative meson, a=electron, n=neutrino).
Obviously no such scheme for the P-disintegra-
tion is available when only neutral mesons
interact with the nuclear particle. In the neutral
theory it would therefore be necessary to fall
back on the original Fermi theory in which a
direct interaction was postulated between nuclear
particle and electron-neutrino field. There are
many points in favor of an indirect interaction
via the meson field as in (101): The direct
splitting of a nuclear particle into three particles
seems. to lead to much more serious divergences
at high energies than the splitting into two
particles postulated in (101). No other instance
is known in nature where the fundamental
process is a simultaneous emission of two particles
whereas the emission of light or of gravitational
waves is quite analogous to (101) in that a Bose
particle is emitted or absorbed by a Fermi
particle. Moreover, the assumption that mesons
are an intermediate stage in P-emission obviously
provides a much more unified picture of nuclear
phenomena; and finally, it seems rather unlikely
that the charged meson which, after all, is known
to exist should play no role at all in nuclear
phenomena.

On the other hand, it is well known that there
is a serious quantitative discrepancy in the meson
theory of P-decay. As Nordheim'6 has pointed
out the observed lifetimes of P-active nuclei
require an extremely short life for the meson
itself. With the latest data on P-decay, and the
most favorable theoretical assumptions, the half-

"L. W. Nordheim and G. Nordheim, Phys. Rev. 54,
254 (1938); L. W. Nordheim, ibid. 55, 506 (1939); H.
Yukawa, V. and S. Sakata, Nature 143, 761 (1939).

have assumed in our theory that neutrons and
protons have exactly the same meson fields
around them so that it would be impossible for
them to have different signs of the extra mag-
netic moment if that moment is due to the
mesons.

Another strong qualitative argument for the
symmetrical theory is the P-disintegration. In the
symmetrical theory this process will proceed
according to Yukawa's scheme, vis. ,

life of the meson comes out'~ to be 9&(10 ' sec.
which should be regarded as an upper limit.
With such a short life, the meson could not be
observed in cosmic rays whereas actual cosmic-
ray data set a lower limit of about 2X10 ' sec.
to the lifetime. The discrepancy of a factor 200
cannot be removed by a reasonable change of the
mass p, of the meson; since the theoretical life is
inversely proportional to p4, the mass would have
to be reduced by a factor of 4 to about 45
electron masses which is entirely irreconcilable
with direct experimental determinations and also
would lead to an impossible range of the nuclear
forces, of about 10 "cm.

This quantitative discrepancy in the P theory
must be regarded as a serious argument against
the symmetrical theory in its present form.

$18. AN ALTERNATIvE METHGD oF CUTTING OFF

Since the qualitative arguments for the sym-
metrical theory are certainly very strong we
attempted to improve the quantitative agree-
ment by using diff'erent ways of cutting off. In a
recent discussion in which he emphasized the
arguments for the symmetrical theory, Heisen-
berg suggested to cut off the potential before the
diiferentiations implied in Eq. (18). Such a
procedure would correspond to a cut-off in
momentum space which seems to be the only
reasonable way to achieve a relativistically
invariant cut-off'. " Moreover, it would seem
promising for a solution of our difficultie because
it might be expected that the tensor interaction
being a second derivative would be more strongly
reduced than the central force, which would
indeed bring about better agreement with the
experimental positions of triplet and singlet
states (cf. $17).

Unfortunately, this is not the case but the
results are even less favorable than in our earlier
calculations, f12 and 17. Let -,'v be the potential
before the diff'erentiation so that the spin-
dependent interaction is

V= —-,'eq ~ curl curl (oqv) ~q ~ ~2. (102)

In the Yukawa theory, v=(2f'/z')(e ""/r). For
' "H. A. , Bethe and L. W. Nordheirn, to be published

shortly in The PJIysica/ Review."G. Wataghin, Zeits. f. Physik 88, 92 (1934); W, Hei-
senberg, ibid. 110, 251 (1938).
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Vl 3ol ' o2 &1 ' &2 ~ ~1 . . 2 (102K)

and the tensor force

U2 ———,'~g ~g(

o1fo2 f
r2

our present investigation, we shall assume that v

is a certain unknown function of r which is
already "cut off, " i.e., which does not diverge
strongly at small r. The central force is then

This means that p, and therefore V1, must
change sign somewhere in order to avoid diver-
gences of m. In other words, U1 is more effectively
cut o6 than U2, in contrast to the expectation
mentioned above. The singlet potential, if at-
tractive at large r, must be repulsive at small r,
whereas the tensor interaction may have the
same sign for all r.

As a simple example we assume for p the
following "rectangular" function:

d t1dvi
(102b)

) dr l r dr)

p= —a for r(r1
p=b for r(r(r2
p = 0 for r2(r.

(106)

In order to investigate the general potential v further,
we note that the radial factor in V1 plays the role of the
charge density associated with v. It is therefore easy to
calculate, for a given V1, the corresponding v and U2.

Let us introduce the abbreviations

1 d'
p

——V'v =——(rv),
r dr'

(1o3)

so that p is proportional to the central force U1, m to the
tensor interaction Ug. Then we have

v(r) = —J0"(1/r) p(r') r"dr' —J„(1/r')p(r') r' dr'

+A/r+B. (104)

We see therefore that both V1 and V2 are second
derivatives of v so that there is no reason to
suppose that V2 is more strongly reduced by the
cutting off than U1.

The neutrality condition (105a) requires then

and we have

c= b(r23/r P 1)—(106K)

m= br~'/r' (r~ &r &r2)
w=o (r&rj and r)r2). (106b)

r2 —r1= 6((r2.

Then (129a) gives

a =3bb/r, .

(1o7)

(107a)

The potential for the singlet state is (cf.
(102a)) simply —p. After a simple calculation,
and with the abbreviations

This shows that m is relatively smallest if r1 is
very close to r2. Since smallness of m is desirable
we assume

It seems reasonable to require that the potential v at large
distances should approach zero and should do so faster
than 1/r, This means

x=(3bbrg)i, q=yr„
&=0100'=4 58X10"cm ', (107b)

B=O, A = Jp p {r')r"dr', (1O4a)

i.e., A is the "total charge. " Then we obtain —-'X2 =3.
tanh x

(108)

v =A/r+cp+c1r+c2r', (1O4c)

v= J; (1/r —1/r')p(r')r"dr'. (104b)

In order to give attraction in the singlet state, p must be
in the main positive, and therefore v also positive, just as
in the original Yukawa theory. For small r, v will behave as

Because of the smallness of y (cf. (107b)), ri will
be quite small provided r1 is of the order of
magnitude of the range of the nuclear forces, i.e.,
a few times 10 " cm. For g = 0, the solution of
(108) is

where A is the total charge (104a) and c1=0 if p is finite
at r =0. Inserting into (103a), we obtain x(g=o) =3.015. (108a)

m = 3A /r' —c1/r+ 3c8r+ {1os)

A = Jp p(r)r'dr=0. (10Sa)

Thus we see that m diverges as 1/r' unless A is zero.
Since any such divergence would lead to infinite binding
energy, we have to require

For the triplet state in the symmetrical theory we
find

t
s+y 1i /f(s)+g(y) 4i

(1o9)(x' 3) 4 x' 3)
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where y = er g, e =0.500f»: =5y,

s = (x'+y') l

s —2
f(s) =s+

s'/3 —sy1

(109a)

(109b)

(109c)

g(y) =y+(y+2)/(y'/3+y+I) (1o9d)

x = 2.3595, y =5.963, s = 6.414
r, = /ye=2. 61 Xi 0" cm.

This result is obviously out of the question, the
range of the forces being more than. ten times too
large. The result is very much worse than the
previous result, in )17, where a cutting-off dis-
tance of 3;7X10 " cm was required. This shows
that the cutting off before differentiation makes
matters considerably more unfavorable for the
symmetrical theory.

For the neutral theory, we get again a perfectly
reasonable result. We have to replace x' by —-', x'
in all formulae referring to the triplet state, i.e. ,

Eq. (109) to (109d). The result is, instead of (110)

x = 2.8840, y = 0.744, s = 1.490
rr ——3.25X10 "cm. (110a)

This range of the forces is only slightly too large
and, correspondingly, the quadrupole moment
will also come out somewhat too large, vis. , about
5X10 "cm'. It is evident that a minor modifi-
cation will make this theory agree with experi-

Terms of order e "have been neglected since z is
about 6.5. If we assume a moderate range of the
nuclear forces, x will be about 3 (cf. (108a)), y
will be small and s=3 (cf. (109b)). This will

make the first factor of (109) vanish, while the
second factor has the value —-', . This shows that
there can be no solution with a moderate range
of the forces. The reason is obviously that the
right-hand side, as well as the subtracted term
4/3, is too large. It can be shown easily that the
right-hand side of (109) arises from the coupling
of S and D state, and the 4/3 from the attractive
potential in the D state itself. These quantities
are therefore too large to allow a moderate range
of the forces, as we know already from the
calculations in $12, 17.

The actual solution of the Eqs. (108), (109),
with y = Sp, was found by trial and error. It is

ment ".g. , going back to the original theory
discussed in $)1 to 17.

For the sake of completeness, we finally
investigated a potential which is repulsive in the
narrow region from rj to r. and attractive inside
r&. Such a potential is not very plausible and
quite contrary to all usual assumptions about
nuclear forces. It gave a slightly better result,
vis. y=1.8, r&=8X1.0 "cm for the symmetrical
theory. Its main advantage is to give the correct
sign of the quadrupole moment, but the range of
the forces is still much too large.

The results of this section can therefore be
described as wholly negative.

fl19. OTHER PossIBILITIEs. ' CONcLUsION

Mgller and Rosenfeld" " have proposed to
introduce two entirely separated meson fields,
one of which is described by a vector wave
function just as our field, while the other has a
pseudoscalar wave function. The interaction be-
tween two nuclear particles consists then of two
parts: The part due to the vector field which we
have considered in this paper may be written

U= (f'/~') [e, e2V'(s ""/r)—
—eI grad (e2 grad (e ""/r))]. (111)

The interaction due to the pseudoscalar field has
the form

U'=(f"/~')e~ grad (e2 grad (e "'/r))

Choosing, e.g. , f'=f, the grad grad terms will

cancel and thus the tensor interaction will vanish.
There remains then only the central force e& cr2V'.

If we choose f' slightly larger than f, we shall
retain a small tensor interaction whose sign is
opposite to that in the vector theory.

It is evident that this will solve our difhculties,
at least qualitatively: The smallness of the tensor
interaction will enable us to get the correct
position of singlet and triplet state with a small,
and therefore reasonable, cutting-off radius. The
change of sign will give the correct (positive) sign
of the quadrupole moment.

Mpller and Rosenfeld have pointed out" that
their assumption will also solve the discrepancies

' C. Mgller and L. Rosenfeld, Nature 144, 476 (1939).
I am indebted to Drs. Mufller and Rosenfeld for sending
me the manuscript before publication.
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in the theory of the P-decay. They assume that
one of the two kinds (vectorial and pseudoscalar)
of mesons disintegrates rapidly into electron plus
neutrino while the other kind disintegrates only
slowly. The second kind would then be the one
found in cosmic rays while the first kind is
responsible for the P-decay of nuclei.

While it must be admitted that the Mdller-

Rosenfeld theory solves the difficulties of the
symmetrical meson theory, I do not think that a
solution should be sought on these lines. I believe
that the solution of the problem of nuclear forces
ought to be fundamentally simple, and this
cannot be said of the Manlier-Rosenfeld propo-
sition. It seems that one type of mesons, either
represented by a vector or by a pseudoscalar
field, is entirely sufficient to account qualita-
tively for all properties of nuclei, i.e. , the forces
between the nuclear particles as well as the P-

transformation, and it seems rather superHuous

to have a second type. Moreover, the theory
would bring us back to the previous stage of
nuclear physics in that it contains as many (or
more) adjustable constants as there are experi-
mental data to fit. It can even be said that the
situation is worse than before because there has
been added to nuclear theory a very complicated
field theory, without achieving any greater
definiteness in the results.

If the symmetrical meson theory is funda-

mentally correct, I believe it is much more likely
that its quantitative aspects will be corrected by
a better understanding of the cut-off process. It
is true that our alternative method of cutting off
in $18 only made matters worse, but we do not
know the correct method yet.

A possibility of preserving at least one essential
feature of the symmetrical theory, plus the single
force hypothesis ()5), is suggested by Schwinger's
calculations. " The feature in question is the
equality of the central forces for triplet and
singlet state. We may try to keep this feature but
disregard all the information of the meson theory
on the shape and relative magnitude of the
potentials. Then we would simply assume "old-
fashioned" square wells or Gaussian potentials,
etc. , for both the central and tensor force and
adjust the constants so as to give the correct
binding energies for the singlet and triplet state
of the deuteron. (Since the range of the forces is

then also unknown, the binding energy of the
triton, or the analysis of the proton-proton
scattering, " is required for its determination. )
Schwinger's calculations show that with such
assumptions a value for the quadrupole moment
of the deuteron can be obtained which agrees
well with the observed value ()15). This agree-
ment is made possible by assuming the tensor
interaction much smaller than the symmetrical
field theory would predict.

The single force hypothesis itself seems to be
well substantiated by our results. The introduc-
tion of a spin-independent force U (cf. (19a)) into
the symmetrical theory would lower the triplet
and raise the singlet state (cf. $4D) Actually. , 'we

have found that the tensor interaction already
lowers the triplet state too much ()17), therefore
the force U would make the disagreement even
worse.

In the neutral theory, U would be felt mostly
in the singlet state in which it is subtracted from

VI. To make up for this, the interaction constant
a would have to be raised; to compensate for the
effect of the raise in a on the triplet state, xo

must be increased as well, and therefore the
quadrupole moment would come out somewhat,
larger. Since the neutral theory in its present
form seems to agree well with experiment, there
is no reason to introduce the force U.

In the present situation, there seem to be two
alternative assumptions on nuclear forces which
are distinguished by inherent simplicity and
seem to us to merit further investigation. One is
the symmetrical theory with the single force
hypothesis but arbitrary choice of shape, range
and depth .of the force (see the discussion of
Schwinger's theory above). It is superior to
older nuclear theory in that the dependence of
the forces on charge and spin follows from general
principles being simply given by oi.e2 ~j ~2, but
it shares with the older theory the arbitrariness of
the constants in the force. Obviously, in such a
theory we could not say anything about the
interaction of mesons with nuclear particles
because we would consider the nuclear forces
following from the meson theory as incorrect;
This w'ould invalidate all calculations about the
production of mesons in nuclear collisions, about
the meson theory of P-disintegrations, etc.

The second alternative is to consider, for the
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time being, the neutral meson theory as correct.
Although it may not be the final solution it may
be a promising working hypothesis for the
problem of nuclear forces as such, i.e. , disregarding
the problems of P-disintegration and the mag-
netic moment. In view of the good result for the
quadrupole moment it seems worth while to
investigate the consequences of the neutral
theory for other problems, particularly the three-
and four-body problem. The steep increase of the

potential at small distances seems rather promis-
ing of a solution of the well-known discrepancies"
in that it may increase considerably the binding
energy of the triton. lt should be realized that a
treatment of systems containing more than two
particles is quite difficult with a force as compli-
cated as that following from the meson theory
but it may be possible to find some simplification
which preserves the most important features—
such as the potential discussed in $18.
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We have calculated the electromagnetic self-energy of a
mesotron of unit spin according to the Proca-Yukawa-
Kemmer theory by an approximate method equivalent to
the second order of perturbation theory. The method
enables the result to be separated into various parts whose

physical significance can be seen more clearly than that
of the total result, but is of course open to the same
objection as perturbation theory for such calculations.
The various parts of the self-energy are due to the longi-
tudinal electric field (Coulomb part), the transverse electric
field (arising from the spin), the magnetic field (also from

spin) and a part due to the influence of the zero point
Auctuations of the radiation field on the motion and
therefore on the proper field of the particle. In terms of a
"cut-o8 radius" a, introduced to make the various contri-
butions finite, but which will later be set equal to zero,
the first and last parts diverge as 1/a'. The second and
third parts diverge as 1/a', but are of opposite sign and
cancel to this order. The whole self-energy diverges as
1/a' in our approximation. These results are compared
with similar ones for spins 0 and —, recently obtained by
Weisskopf.

I. INTRODUCTION —SOME EQUATIONS OF

MESOTRON THEORY

ITH a notation similar to those of Yukawa, '
Proca, ' and Kemmer, ' the system meso-

trons+electromagnetic field is characterized by
the four vectors A„U„U„*, whose space-compo-
nents are treated as "generalized coordinates"
depending parametrically on x, y, s, as well as p,
and by the canonical conjugates of these "coordi-
nates, "

Ai, Ui, U~*t (k=1,2,3).
The Hamiltonian function is (it is understood

that we sum our repeated suffixes, including
those occurring in the square of a quantity having
a suffix —Latin suffixes go from 1 to 3 and Greek

' H. Yukawa, Proc. Phys. Math. Soc. Japan 20, 1
(1938).' A. Proca, J. de phys. et rad. '7, 347, 532 (1936).' N. Kemmer, Proc. Roy. Soc A166, 127 (1938).

ones from 1 to 4)

H= ~~[(1/Sir) I G» I
'+4s ii'c'I Uit

I

'

+(1/4~) I UgI 2+ (1/8') I (pi, ) +(47rcA t) }

4m.c'
I I a/ax&+ (i e/Sc)A; } Uit

I
'7d U, (1)

where i~= (c/k) &(mass of mesotron and we have
used the abbreviations

I
G„,= [Ia/ax& (ie/Ac)A—„}U„—

—
I a/ax" —(ie/sc)A„} U„7, (2)

F =aA /ax& aA /ax"—

= (B, E) (electromagnetic field).


