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Now the maximum uncertainties present in the
IIp's are no more than 1/3000, or eg

——0.03
percent, and the maximum uncertainty present
in XR is no more than 0.8/100, or e4 ——0.8 percent.
Thus we may say that v is good to less than
0.9 percent and m/e is accurate to well within
1.0 percent. These are the maximum relative
errors which can be present (aside from any
undetected systematic errors) in the values of v

and m/e got in this experiment.

Thus the evidence seems to point conclusively
to the fact that the RaB P-particles conform
more nearly to the expression derived on the
Lorentz theory than to the expression derived
on the Abraham theory.

Finally, the writers wish to express their
sincere appreciation for the valuable'aid given
them by Dr. H. A. Wilson throughout the
experiment. They wish to thank Mrs. O. S.
Moilliet for her help in taking the data.
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Formulas are derived for the magnetic moment of a particle moving rapidly in a central
field of force. Possible nuclear applications, particularly to the problem of the deuteron, are
discussed. In view of the greatly increased accuracy in the measurement of magnetic moments,
the relativity e6ect appears to be of measurable magnitude.

HE fact that the Zeeman splitting of the
hydrogen lines is given correctly by the

Lande formula, even when the relativistic wave
equation is used in the calculation, was demon-
strated by Dirac. ' Since his interest was confined
to the slowly moving electron in the hydrogen
atom, he neglected terms of order v'/c'. Breit'
has given a formula for the magnetic moment of
an electron in a heavy atom. At present there is
renewed interest in the Zeeman effect problem
because of its intimate relation with nuclear
magnetic moments. The precision which has
recently been achieved in the measurements of
the latter, chiefly by the ingenious magnetic-
resonance method of Rabi, makes it appear
worth while to inquire how the magnetic moment
of a charged particle depends in detail on its
velocity. The basis of the computation will be
Dirac's equation.

In nonrelativistic theory there are two equiva-
lent ways of calculating the magnetic moment of
a particle, both givirig the same result. One is to
determine the energy change of the particle in

' P. A. M. Dirac, Proc. Roy. Soc, A118, 351 (1928}.' G. Breit, Nature 122, 649 (1928}.

V=ir sin 0

0
0
0

0 0 e'&
0 —e'~ 0
e'& 0 0
0 0 0

We must calculate the diagonal elements of this
operator for the two states j=l+-', and j=l——,'.
If the components of a P-function are uq u4,

' The representations for a, and n„are those in Dirac,
Princip/es of Quantum 3fechanics.

a weak field and subsequently to compute
BZ/BII The other. is to calculate the mean value
of the operator (e/2nzc) (I.,+2S,). Relativisti-
cally, the two procedures give different answers,
and the second is probably not justified. Never-
theless it will be discussed briefly later. We first
calculate the magnetic energy of a particle
moving in a central field of force.

The magnetic term in the Dirac Hamiltonian
is —en A, e being the operator for u/c and A

the vector potential. When the uniform field II
is chosen along s this perturbation term takes
the form

U = -',eII(a,y —u„x).

Written as a matrix' it becomes
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the diagonal element is

~= l'e~{(1 I « '"l4) —(2I «'"13)

+(3I ~e '"12)—(4I ~e" I1) I (1)

where p = r sin 0-and

(1{al4)= I u,*au,d. .

The normalized functions u~ . .u4 are'

pl —m+$~ -'

I 'f (r) ~4+i,.-4
2l+3 )

if we fo11ow the convention of putting a = —(l+1)
forj=l+-,'; ~=l forj =l ——,'. f and g are the two
radial functions occurring in u' . u4.

The integral in (2) can be transformed with
the use of the two differential equations defining
fandg:

(fic) '(E U+—3Ic')f=g'+(1+a)g/r
(Ac)-'(8 —U 3IIc'-)g =— f'+—(~ 1)f—/r. (3)

On multiplying these by g and f, respectively,
and subtracting, there results

rfg = (5/2Mc) {rg'g+rf'f+(~+ 1)g' —(a —1)f'I.
Now

pl~~1~
I

pf ~4+~. -+4
2l+3

~1~1~~
u, =l

I g~&,
E 2l+1)

)l —m+-', ~
-'*

u4 ———
I I g~4, -+;

2l+1 )

if j=l+-„

Jfrfgd r=' (~——',) ~

g'dr (~+-.', ) I
—f'dr

22VIc

Jl rg gd'r=
J g gr dr= p J~g r dr,

and a similar relation holds for J'rf'fdr Hence.

pl ~1~~
u~=I I pf Y4 ~„&

E 2l 1)—
(l —m —-', ) '*

»=I ——
I

pf ~4-i, +.—
4 2l 1j—

because

.--;-2,J&f d,

J~g d, + I'f d, =1.

When this is introduced in Eq. (2), the result is
~l —m+-,'~ '*

up ——
I I gY4, „;

2l+1 ) 2K
~fd, .

K

(4)Hm
2Mc K+-,')i~2~1~

u4 ——
I I g~~~

21+1 )

(l+1)m—4' fgrdr ifj =l+
(2l+3) (2l+1)"

lm4' , ~fgrdr if j =l
(2l —1)(2l+1)~

2j+1
up(j+p) 1 —

J
f'dr if' =l+p

j+1
(5)

27+1 f
up (j+-', ) 1 — ll~f'dr if j=l——,'.

j+1
Both may be combined to

Km
V=4eH

(2~—1)(2~+ 1)~ Here up is written for ek/2'. The remaining

4 cf H A g h ~ dg g d p jl 'p y j 24/1
integral may be evaluated easily for the two

p. 311 et seg.
' '

limiting cases of high and low energy particles.

The first term of this expression is the ordinary
formula for the anomalous Zeeman effect,

When they are inserted in (1) and the integrals ~/(a+ —', ) being the Lande g factor (whose value
evaluated, the result is is 2(l+1)/2l+1 ifj =l+ p, 2l/l+1 if j=l—p).

The second term is the relativistic correction.
The magnetic moment is obtained from (4) by
putting m=j and dividing V by H. Thus

V
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If E—U»Mc' then

so that each integral equals —,'. This follows at
once when Eqs. (3) are multiplied by f and g,
respectively, and then integrated. Hence, for
this case, Eqs. (5) reduce to

(6)

wave functions. The most convenient way is to
put at once I=j in the u functions and then to
calculate the mean value of the s component of
(7). This procedure yields

iU+l) i i+i
(S—2~)J f'd.

j+1 j+1 j+1

the upper sign referring to j=l+-'„ the lower to
1

To discuss the case where v/c((1 we turn to
the relation

J
(E—U+Mc')f'dr= (E—U cVc')g'd—r,

which is easily obtainable from (3). If we write
& for the ratio of the kinetic energy (&—sic' —U)
to 2Mc', we have

J
(1+a)f'dr= "eg'dr

Neglecting the small quantity e on the left
against 1 we see that J'@dr is small against
J'g'dr, so that

J~f'dr= Je(g''+f')dr=i

Thus the correction term in (5) is proportional,
in this approximation, to the mean kinetic
energy of the particle.

The present results are applicable strictly only
to electrons. In attempting to deal with nuclear
particles one is confronted with the difficulty
that po is no longer the Bohr (nuclear) magneton.
On the other hand, considerable success has been
obtained by treating nuclear magnetic moments
as composed of two parts, that due to orbital,
and that due to spin angular momentum. This
corresponds to the assumption that the magnetic
moment operator for a single particle is given by

p,pL5+2yS, (7)

where b = i if the particle is a proton, 0 if it is a
neutron, and y is the intrinsic magnetic moment
of the free particle. It is perhaps of some interest
to compute the mean value of (7) with Dirac

The leading terms of these expressions agree, as
they must, with those of (5) when 5 and y are
put equal to pp. The relativistic terms, however,
are quite different, the second eve'n with respect
to sign.

The relativity effect here computed seems at
present to lie within the accuracy of measure-
ment, and it may be of interest in connection
with the magnetic moment of the deuteron.
When the question is raised as to the additivity
of nuclear moments, the present effect will have
to be considered. Thus far experiments' indicate
that the deuteron moment is the exact sum of
proton and neutron magnetic moments. This
would not be expected to be the case if the
deuteron has a sizeable electric quadrupole
moment. For the existence of the latter can only
be explained by an admixture of a D state
function to the ground state of the deuteron.
A 'D state in the relative coordinates of neutron
and proton produces a magnetic moment equal
to ~

—2(p„+y„), while the S state contributes

(p„+y„). If we assume, following Bethe, ' that
the relative weights of 5 and D states in the
deuteron wave function are approximately 93
percent and 7 percent, and that' ' p +p„
= (2.789&0.003) —(1.935w0. 030) = 0.854&0.033
nuclear magneton, strict additivity would yield

p(H2) = 0 93(0.854 ~ 0.033) + 0.07(0.323 & 0.016)
= 0.817~0.032 n.m. The measured value is
0.856~0.002 n.m. So far, then, there is perhaps

~ Kellogg, Rabi, Ramsey and Zacharias, Phys. Rev. 56,
728 (1939).' H. A. Bethe, Phys. Rev. SS, 1261 (1939).This assump-
tion is of course independent of the meson theory of
nuclear forces.

7 Values and limits of error were kindly communicated
by Professor Rabi.

L. W. . Alvarez and F. Bloch, Bull. Am. Phys. Soc. 14,
13 (1939).
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no definite evidence against additivity of nuclear
moments in the deuteron, although the ranges
of error of the computed and measured values
barely overlap. It seems, however, that a slight
disagreement is produced if the relativity effect
is included.

While the exact relativistic treatment of the
deuteron problem is ambiguous, it is possible to
determine the sign and the order of magnitude
of the correction required in the magnetic
moment. If we consider the proton alone and
apply the first of formulas (5) with j=-'„ the
correction is —4poe/3. Now ~ may be computed
from any model of the deuteron. It depends of
course upon the type of force chosen for the
interaction between proton and neutron, and

there is a further uncertainty connected with
the mass appearing in Mc'. A reasonable estimate
for e arrived at by the potential hole model;
seems to be 0.006. This would make the correction
—0.022 n.m. It is difficult to see how to treat
the neutron and its negative moment. If its
absolute value is also diminished in proportion
to its p, o the sum of the moments will undergo a
correction only about -', as large as the value
stated, but the correction will still be negative.
These matters, however, will be of greater
interest when the neutron moment is known
with greater accuracy.

I express my gratitude to Professor Wigner,
whose remarks have stimulated these compu-
tations.
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The energies and the relative intensities of the gamma-

rays emitted from nitrogen bombarded by deuterons of
700 kev energy have been measured by the positron-
electron pairs and recoil electrons ejected from thin laminae
placed inside a cloud chamber. The distribution of pairs
ejected from a lead lamina 0.026 cm thick reveals two
strong components of quantum energy 7.2&0.4 Mev and
5.3&0.4 Mev, and a number of weaker components which

may be attributed to radiation of about 4 and 2 Mev.
There are also a number of pairs which extend up to
11 Mev. The distribution of recoil electrons from a carbon
lamina 0.12 cm thick indicates two strong groups of
quantum energy-4. 2 and 2.2 Mev. No attempt was made
to extend the recoil measurements to higher energies.

The 7.2-Mev radiation is attributed to the reaction

N'4+ H'~C" +He4,

because radiation of this energy has been observed in other
reactions producing C". The 5.3-Mev radiation is at-
tributed to an excited state of N" of this energy according
to the reaction

N'4+ H'~N" +H'

in good agreement with the value of 5.4 Mev predicted
by the range measurements of Cockcroft and Lewis.
An attempt is made to correlate the energies and intensities
of the gamma-rays produced by excited states in C'2, N'5

and 0"according to several reactions.

INTRODUCTION

HE gamma-radiation from nitrogen bom-
barded by deuterons was first investigated

by Crane, Delsasso, Fowler and Lauritsen' by
measuring the recoil electrons ejected from a
thick glass wall of a cloud chamber. They

* H. H. Rackham, Post-Doctoral Fellow, University of
Michigan. Now at Ohio State University.

f On sabbatical leave of absence from the Physics De-
partment of the University of Kentucky.

Crane, Delsasso, Fowler and Lauritsen, Phys. Rev. 48,
100 (1935).

obtained a complex spectrum consisting of a
number of components at 1.9, 3.1, 4.0, 5.3 and
7.0 Mev. Employing the method of measuring
gamma-ray energies by the positron-electron
pairs and recoil electrons ejected from thin
laminae placed inside a cloud chamber, ' we have
reinvestigated the radiation, and have obtained
results which are not in contradiction with the

' Delsasso, Fowler and Lauritsen, Phys. Rev. 51, 391
(1937); Fowler, Gaerttner and Lauritsen, Phys. Rev. 53,
628 (1938).


