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Concentration of Isotopes by Thermal Diffusion: Rate of Approach to Equilibrium
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The time-dependent partial diA'erential equation involved in the theory of the operation of a
Clusius thermal diffusion column is discussed. Solutions presented give the concentration of a
given isotope at any point in the column as a function of time. Some are compared with experi-
mental results of Nier, and good agreement is obtained.

I. INTRoDUcTIoib

HE thermal diffusion column, invented by
Clusius and nickel' promises to be of some

importance for the concentration of isotopes. The
theory of the method has been given inde-
pendently by Waldmann' and by Furry, Jones,
and Onsager. ' These authors consider only the
equilibrium condition of the column. It is im-

portant to know how rapidly equilibrium is

approached, and it is the purpose of the present
paper to solve the time-dependent partial differ-
ential equation involved, with various boundary
conditions at the ends of the column. Solutions
obtained for several cases are compared with
experimental results of Nier, who studied the
operation of a column containing methane gas.
The column was to be used for the separation of
the carbon isotopes.

We use in large part the notation and many of
the results obtained by Furry, Jones and
Onsager. The discussion will be confined to the
case where there are but two species of molecules
present, whose concentrations we denote by c&

and c2, so that c&+c2——1. Let vl be the convection
velocity of species 1 and let v be that of the gas as
a whole. Then if both ordinary and thermal
diffusion are present

c&v~=c~v —D grad c&+(Dr/T) grad T. (1)

Here D is the coefficient of ordinary diffusion and

' K. Clusius and G. Dickel, Naturwiss. 26, 546 (1938);
27, 148 (1939);27, 487 (1939).For further references to the
experimental data, see the paper by A. O. Nier in the
present issue.' L. Waldmann, Naturwiss. 27, 230 (1939).' W. H. Furry, R. C. Jones and L. Onsager, Phys. Rev.
55, 1083 (1939). Added in proof.—Two theoretical papers
have appeared recently. P. Debye, Ann. d. Physik 56, 284
(1939); L. Waldmann, Zeits. f. Physik 114, 53 (1939).
The first of these overlaps to some extent the results of
the present investigation.

4 A. O. Nier, in the present issue.

D~ that of thermal diffusion. In the case of
similar molecules (isotopes), these are related,
according to the theoretical treatments of
Enskog' and Chapman' by the equation:

D~ /D =Pr ——uc&cq.

The parameter n is independent of the concen-
tration, and, for the case of elastic spheres, also
of the temperature.

The equation of continuity for species 1 is

8pci/Bt = —dtv (pc iv&)
= —div [pc,v pD grad c, —

+ (pDr/ T) grad T], (3)

in which p is the density of the gas. This equation
is to be solved subject to the appropriate
boundary conditions.

In the actual operation of the column, the gas
is confined in the annular space between two
vertical concentric cylinders, the inner one heated
and the outer one cooled. Following Furry, Jones
and Onsager, we may, for the purpose of analysis,
suppose that the gas is enclosed in a thin flat slab
of thickness d, equal to the difference in radii, of
breadth 8, equal to the mean circumference, and
of length L„equal to the length of the column. '
Let Tl and T2 be the absolute temperatures of the
outer and inner walls and let AT= T2 —T1. Let
the coordinate x(0 (x (d) run across the width
of the slab, and s(0 (s(L) along its length. We
suppose that the thermal convection of the gas as
a whole takes place only in the vertical direction.
(This will be true except near the ends of the

' D. Enskog, Physik. Zeits. 12, 56 and 533 (1911);
Thesis, Upsala (1917).' S. Chapman, Phil. Trans. A217, 115 (1917).

7 Cf. H. Korsching and K. Wirtz, Naturwiss. 27, 367
(1939).

Our d, L are related to m, l of Furry, Jones and Onsager
by the equations: d = 2m, L =21.
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column. ) Then v, =v„=0 and v, =v(x) is inde-
pendent of s. Furthermore, T, and consequently

p and D, are independent of s. The differential
Eq. (3) then becomes:

&pc, aci a'ci a
— ac, pDrQ= —pv +pD—+—pD + (4)

d3 dz ds' dx dx TX

in which we have replaced BT/Bx by its value

Q/X, where Q is the heat flow per sq. cm and X

is coefficient of thermal conductivity. The bound-
ary conditions at the walls of the slab require that

c,v&, —— D(8c—,/rex) +Dr Q/TX = 0
at x=0 and x=d. (5)

The condition that there be no net flow of gas
along the tube is:

Jf pv(x)dx=0. (6)
0

A solution of (4) may be obtained by using
conditions (5) and (6) and by making use of the
fact that the actual variation of c~ across the
width is very small and that the width is small
compared with the length. It will be simpler,
however, to start with the expression derived by
Furry, Jones and Onsager for the total net flow,

v-~, in grams per second, of molecules of species 1

along the column

&1=HLc&c~ —(2A) '(Bci/Bs)], (7)

in which the constants II and IX/2A are, for the
case of Maxwellian molecules, as follows:

II= (d p o'aB/720') (~T/T) f(~T/T), (8)
and

H/2A =d p~g B(AT/T) /362880' D
+BdD(Tp+ TiT2+ T22)/3T'. (9)

The coefficient of viscosity, g, and the acceler-
ation of gravity, g, have been introduced from

the solution of the thermal convection problem.
All the gas constants (p, D, g) are to be taken at
the mean temperature T= (T&+T2)/2. The func-

tion f(AT/T) arises from the variation of the gas
constants with temperature, and is always very
close to unity. The first term on the right-hand
side of (9) arises from remixing by transverse
diffusion which results from the combination of
convection currents and a vertical concentration

' Our A is equivalent to the Ad of FJO, (reference 3).

gradient, and the second term represents simply
the ordinary diffusion along the column.

The conservation of species (1) requires that

pic)cy/8$ = BTy/l9s

IID—Bc&c2/Bs)
—(2A) '(~'c~/~s') ] (1o)

in which O, =Bd is the cross-sectional area of the
column. In what follows we make the assumption
that the concentration of species 1 is always
small, so that we may replace c& ——1 —c& by unity
without appreciable error. The resulting equation
is then linear in c& and can be solved by standard
methods. We further assume that Eq. (10)
applies throughout the entire length of the
column. The equation is, of course, incorrect near
the ends where the convection currents are not
vertical, but the length of these regions is but a
small part of the total.

Four special cases are treated, in all of which it
is assumed that the lower end of the column is
closed. For the condition at the upper end we
take: (1) The upper end is closed. (2) The upper
end is directly connected to a reservoir of infinite
capacity, so that the concentration, c~, is inde-
pendent of time at this point. (3) The upper end
is directly connected to a reservoir of finite
capacity. (4).The reservoir is connected to the
top of the column by a tube along which a
concentration gradient can exist, so that the
concentration in the reservoir is not the same as
that in the top of the column.

Cases (1), (2) and (3) can be solved by the
usual method of expansion in a series of charac-
teristic functions of the partial differential equa-
tion which satisfy the proper boundary conditions
at the ends. These functions form an orthogonal
set, so that the expansion coefficients can be
easily determined. In case (4) the characteristic
functions are not orthogonal, but the solution
can be obtained without difficulty by the opera-
tional method (Laplace transform). As (2) and

(3) are really special cases of (4), we give the
analysis only for case (1) which we treat by
standard methods and case (4) for which we use
the operational method.

II. BoTI4 ENDs oF CoLUMN CLosED

'tA'e suppose that a heavy isotope is being
concentrated at the lower end of the column, and
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let s =0 represent the upper end and s =I the
lower end. The boundary conditions require that
there be no flow (r~ ——0) at these points. It will be
simplest to first find ~~ as a function of s and t,
and then derive cI from vI. The equation for ~I
is the same as that for c&

p(ter, /Bt = IV[(—Br,/Bz)
—(2A) —'(8'r, /8 s') j (11)

and the boundary conditions are:

expression (14) for r& and the equation pQBc&/Bt
= —&r&/BsWe must take the negative of the
derivative of v~ with respect to s, integrate with
respect to t, and divide by pQ, . We thus finally
obtain

c& ——Ee'-'+ Pb„Icos (n~s/L)

+(AL/n7r) sin (nss/L) I exp [As —t/t. ], (19)

in which X is given by (18),

r =0 at s=0 and s=L for all t, (12) b„=2a„nrr/LAII(1+n rr'/A'L )
and

7'] =IIcI at t =0 for all (12')
=4c "( n' z' /A' L')(1 —( —1)~e -~c)

In the last equation, c~o is the (constant) initial
concentration.

The particular solution of (11) which satisfles
the boundary condition (12) is

7 I= ~Q,t7y (n) (14)

Setting t= 0, we find (using (12')):

r~'"~ = sin (nrrs/L)

Xexp [As —(A II/2 p8) (1+n'm'/A 'L' ') t], (13)-
where n is a positive integer. We take

and
/(1+ n

' rr'/A 'L-') "-,-(20)
t, = 2(p8/AII) (1+n"7r' '/A L -) -' (21)

The series in (19) converges extremely rapidly.
For all except small values of t, only the first
term is required.

Numerical calculations based on Eq. (19) have
been made for the purpose of comparing the
theory with the experimental results of Nier. '
Methane gas was used in Nier's work, and C"H4
was concentrated at the bottom of the column. "
For convenience, the dimensions of the column
are listed below.

Hc, 'e "*=Pa„sin (nrrs/L)

Thus, evaluating the Fourier coefficients,

a„=(2IIc,'/L)
J

e "' sin (nrrs/L)ds
0

(15) I =730 cm Q, =d8 =9.4 cm'
d=0.712 cm Volume=SL=6880 cm' (22)
8=12.5 cm TI ——300'K, T& ——600 K.

The gas constants, extrapolated to the mean
temperature, are, for one atmosphere of pressure,

= (2n7rIIc~'/A'L')(1 —(—1)"e—'I)
/(I +n'~'/A'L" ). (16)-

The expression for cI can be divided in two
parts, a steady-state term giving the equilibrium
concentration and a transient term. The equilib-
rium term is of the form

p = 0.433 X 10 ' g/cm',
g=1.60)&10 4 poise,

D = 1 4n/p = 0. .52 cm'/sec. ,

o. =0.0077.

(23)

The value of OI is that found in a direct measure-
ment by Nier. " Using these values we find that
at one atmosphere

(e) +~'&xi zI (17) II= 2.5 X 10 ' gram/sec.

OI E= 2A LcP/(e'" ' —1). (18)

The transient term may be found from the

where X is a constant which may be determined
from the fact that the total mass is conserved.
Thus

L

Lc,o =+~f e»~ ~ds

0

Values for other pressures may easily be found
from the fact that II is proportional to the square
of the pressure.

Empirical values of AL, determined from the
equilibrium separation, are used in the calcula-

' Since the normal concentration of C" is about on»
percent, the condition that cf be small is well satisfied.

» A. O. Nier, Phys. 14ev. 56, 1009 (1939).
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tion. The extent of the agreement between the
theoretical and experimental values of 3 is
discussed in Nier's paper. Runs were made at
three different pressures; 21.7, 40, and 65.6 cm of
Hg. The ratio of the concentration at the bottom
of the column to that at the top of the column is
equal to exp [2ALjwhen equilibrium is attained.
The values obtained by Nier are given in Table I.

Formulae for the ratio of the concentration of
C"H4 at each end of the tube to the initial
concentration, in which only the first term of the
series in (19) is used, are listed below. In each
case the time is in hours.

I'=Z1.7 cm
2AI. = 0.81.

2p8/AII= 19X 10' sec. =530 hours.

I op: c&/c&0 = 0.65+0.26 exp (—t/8. 6).

Bottom: c,/c&' ——1.46 —0.40 exp ( —t/8. 6).

X=40 cm
2AL =. 1.83.

2p@/AII=4. 9X10'sec.= 136 hours.

x
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FIG. 1. Comparison of the theoretical and experimental
values of the relative concentration of C"H4 at the top and
bottom of a thermal diffusion column. Both ends of the
column are closed. In plotting the experimental values of
Nier, an allowance of one hour was made for the column to
heat up. Methane pressure=40 cm.

between experiment and theory is satisfactory.
The measurements indicated by the solid triangles
were taken at a pressure of 21.3 cm, while the
curve (and the measurements indicated by the
open triangles) refers to a pressure of 21.7 cm.
This difference is suificient to account for the
discrepancy shown.

Top: c&/c&' ——0.35+0.44 exp ( —t/10. 6).

Bottom: c&/c&' ——2.18—1.10exp ( —t/10. 6).

X=65.6 cm
2AL = 1.45.

2p8/AII= 3.8 X 10 sec. = 105 hours.

fop: c&/c&' ——0.45+0.40 exp ( —t/5. 3).

Pressure (cm)
exp (2AL)
2AL

21.7
2.25
0.81

40
6.25
1.83

65.6
4.25
1.45

Bottom: c&/c, = 1.90—0.81 exp ( t/5. 3). —

These formulae are valid for values of t greater
than three or four hours.

. Figure 1 gives a plot of the relative concen-
trations of C"H4 at the top and bottom of a
column operating at a pressure of 40 cm as a
function of time. Also shown are the experimental
points. The agreement on the whole is good.

In Fig. 2 we show the ratio of the concen-
tration at the bottom of the column to that at the
top of the column as a function of time for the
three different pressures. Again the agreement

TABLE I. Equilibrium separati on factor, exp (ZA I), for
C"H4, according to measurements of Nier.

III. OPERATIoN wITEI A REsERvoIR AT THE ToP

AVe now discuss case (4) referred to above. The
top of the column is connected to a reservoir
containing gas of mass M by means of a tube
along which a concentration gradient can exist.
It is supposed that the net How of the molecules
of species 1 through the tube is proportional to
the concentration gradient. The bottom of the
column is closed.

Again we let a=0 represent the top of the
column and s=L the bottom. The concentration
cI at any point in the column as a function of
time is given by the solution of the equation

pO, itc, /Bt = II[(Bc~/itz) —(2A—) '(it'c&/r&z') ], (24)

subject to the boundary conditions:

r, =II[c, (2A) (Bc /itz) ]= 0 at —z =L, (25)

and c,&"'& c& Rr&/II a—t z——=0. (26)

In Eq. (26) c&&"'& represents the concentration in

the reservoir and qI that in the top of the column.
The constant R depends on the dimensions of the
tube connecting the top of the column with the

„reservoir. If the tube has length 1 and area a,
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Thus condition (26) may be written:

c,' —c, —3f ' r, (0, t')dt'=R, /H. ( ')
0

The operational method of solution will be used.
The Laplace transform of ci(s, t) is

h(e, p) =j e "'c-i(z, t)dt . (27)
0

We will also need
A P=2I:5cM.

I

6040
TIME HOURS

80 jl e &'(Bci/Bt)dt= —cio+ph,
0

(28)

Frc;. 2. Comparison of the theoretical and experimental
values of the ratio of the concentration of C"H4 at the
bottom of the column to that at the top of the column.
Both ends of the column are closed. In plotting the
experimental values of Nier, an allowance of one hour was
made for the column to heat up.

and if the flow is by ordinary diffusion;

R=/H/apD, (27)

in which p is the density and D the coefficient of
diffusion of the gas in the connecting tube.

The total mass of molecules of species 1 in the
reservoir at any time is equal to the initial mass
minus the mass w'hich has flowed out. This gives

t

Mc, &"s& = Mc, ' jl r, (0, t')dt' — (28).
0

pO(cio ph) —=H[(dh/dt) —(2A) '(d'h/dt')] (29)

The general solution of this equation is:

h=p 'ci'+e"'jKi sinh yA(s —L)
+Ko cosh yA (s —I.) }, (30)

where E~ and X2 are constants, and

7= j1+(2p~p/AH) }". (31)

which result follows by partial integration,
and the fact that at t =0, c~ =c~', the initial
concentration.

Multiplying (24) by exp [ pt$ an—d integrating
with respect to t between the limits zero and
infinity, we find the following differential equa-
tion for h:

The constants Kiand Ko are 'to be determined from the boundary conditions (25) and (26'), which,

by the same transformation become:

and
h = (2A) —'(dh/ds) at s =I.,

p
—'c, ' —h= jR+(H/1llp) } jh —(2A) '(dh/ds) } at s=0.

(32)

(33)

Substituting the expression for h given by Eq. (30) into Eq. (32) we find

P
—icioy(e+c/2) (Ko —yKi) =0 or Ko =yKi —(2cio/P)e +c—

Similarly Eq. (33) becomes:

Ki sinh yAL Ko cosh yA L = jR+ (II/—Mp) } jp 'cio ', (Ki —pK-o) si—nh yAL

+-', (Ko —yKi) cosh yAL}. (35)

Substituting the value for Ko given by Eq. (34) into Eq. (35) and solving for Ki, we find

in which

and

vK ="G(p)/pF(p),

G(P) =
I R+ (H/MP) } j 1 e "c(y sin—h yAL+ cosh yAL) }—2e "~ cosh pAL,

F(p) =y ' sinh yAL —cosh yAL+ (2y) '(1 —p')(R+(H/tIIIp)) sinh yAL.

(36)

(37)

(38)
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Finally, substituting the values of Ri and X2 given by Eqs. (34) and (36) into Eq. (30), we find

Ph/c, '=1—2e~&' c) cosh y(z L)+—e"'{G(P)/F(P) } {y ' sinh yA(z —L)+cosh yA(z —I)}. (39)

To transform back to find c, as a function of time, we make use of the following rules:" If ph(p) = 1,
then

c,(t) =1.
If ptt(p) =p" (n a positive integer) then

ci(t) =0. (41)

then

ptt(p) =f(P)/F(P)

c (t) =f(0)/F(0)+2 {f(P )/p'F'(p ) }e"", (42)

where f(p) and F(p) are series of positive powers of p, and p~ is a root of

F(p~) = o. (43)

The roots are assumed to be distinct, and the sum in Eq. (42) runs over all roots. Eq. (42) expresses
the Heaviside partial fraction rule. Thus we find

ci(«)/ci'= e"' "{(e"'6(o)/F(o)) —1}+e"'2{G(p~)/P~F'(p~) }

X {y), ' sinh y),A(z —L)+cosh pi(z I) } exp {
—P),t], (44)

in which p& is obtained by substituting pi for p in the expression for y (Eq. (31)).The first term on the
right-hand side gives the equilibrium state,

with
&e)/c 0 R'e2Az

X = 2A (M+ poL)/(2MA+ po (e'"c 1)). —
(45)

(46)

The series in Eq. (44) gives the transient terms. To evalua, te them we must find the roots of F(p) = 0,
which equation may be expressed in the form:

tanh y)AL =y&/{1—(p(X/MA) ——',R(y), ' —1)}. (47)

Depending on the value of R, there may or may not be a real value of yI, which satisfies this equation.
There are always an infinite number of pure imaginary roots. If y& is a root of this equation then,
from Eq. (31) we find

p&,
———(AH/2p 8) (1—yi').

The value of pI, is always real and negative.
Differentiating the expression for F(p) given by Eq. (38) and making use of Eq. (47), we find

piF'(p)) = (2yi) '(1 —y), ') {Rsinh y)AL+y), ' cosh y)AL AL csch y+L—}. (48)

Kith these substitutions, we finally obtain:

2(R+ (H/MP))) (e"c
y&, sinh y&L ——cosh y&L) —4 cosh y)AL

ci/ci' ——Re'"'+ P
(1—

y&, ') (y), ' sinh yiAL+yk ' cosh y),AL ALy), ' csch y&,A—L)

X Ly), ' sinh yiA(z —L)+cosh piA(z —L)] exp [Az+ pit]. (49)

"See any book on operational calculus, e.g., J. R. Carson, E/ectric Circuit Theory and Operational Calculus (McGraw-
Hill, 1926), p. 33.
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This expression may appear rather formidable,
but it is not difficult to use because the series
converges so rapidly that at most only two or
three terms are necessary.

Case (2) (infinite reservoir at the top, so that
c~(=c~') is constant in time at s=0) is obtained
in the limit 3E~~, R~O. Case (3) (no con-
necting tube, so that the concentration in the
reservoir is the same as that in the top of the
tube) is obtained in the limit R~O.

Nier4 made one run when a reservoir of 20
liters capacity was attached to the top of the
column. The equivalent length/area of the con-
necting tube was rather large, 27.7 cm '. As we
shall see, this materially lowered the rate of
approach to equilibrium. The pressure (0.6
atmos. ) was that which should give the largest
possible separation factor (exp [2AL] = 6.62).
The total mass of gas in the reservoir (which was
at room temperature) was about 7.8 grams as

INFINITE RESERVOIR

O

4
I-
UJ
O
D
O

UJ

I-

UJ 2
K

IOO

TIME HOURS

200 300

FiG. 3. Plot of the relative concentration of C"H4 at the
bottom of a thermal diffusion column as a function of
time. In all cases, the bottom of the column is closed. The
upper curve represents the case of an infinite reservoir
directly connected to the top of the column. The other
three cases are for a reservoir of finite size connected to the
top of the column by means of a tube along which a
concentration gradient may exist. The parameter R is a
measure of the resistance of this tube to flow by diffusion or
convection. The experimental points are from a run made
by Nier. The calculated value of R for the connecting tube
used by Nier is 1.59 if it is assumed that flow is by diffusion
alone; actually R may be smaller because of convection.
Methane pressure =46 cm (0.6 atmos. ).

compared with about 1 ~ 89 grams in the column.
The expected equilibrium concentration in the
bottom of the column is (from (45) and (46))
4.84cr'.

To evaluate the transient terms in Eq. (49) we
need the following further data:

II=0.6'&(2.52X10 '
=0.91X10 ' gram/sec.

AL =0.945

2p 8/AH =4.2 X 10' sec. = 117 hours.

R=27.7H/(1. 4X1.12X10 ') =1.59.

Using the first three terms of the series, we find
that at s=L (bottom of the column)

c~/c~' ——4.84 —2.9 exp ( —t/213) —0.84
Xexp (—t/8. 2)+0.14 exp (—f/2 7).

The time is measured in hours. This gives a
rapid rise to a multiplication of about 2 and a
slower rise thereafter. A plot of the curve is
shown in Fig. 3. The experimental values of
c&/c&' rise more rapidly than the theoretical with
R=1.59. This may be due to the fact that there
may be so~e convection in the vertical portion of
the connecting tube, so that R is not as large as
predicted from diffusion alone.

An excellent agreement between the experi-
mental and theoretical values is obtained if we
take arbitrarily R = 1.0 instead of 1.59. The
calculation then gives

c$/c&' ——4.84 —3.0 exp ( —t/155) —0.74
Xexp (—t/7. 6) —0.03 exp ( t/2. 4). —

Also shown in the figure are the curves for R= 0
(equilibrium is assumed at all times between the
reservoir and the top of the column) and the
curve for an infinite reservoir. In the latter case
the equilibrium value of c~/c&' at the bottom of
the column is 6.62 instead of 4.84.

In order to obtain the maximum possible
speed, it is necessary to use a large connecting
tube, so that R is made small in comparison with
unity.

The author wishes to thank Professor A. 0.
Nier for frequent illuminating discussions, and
for use of the experimental data in advance of
publication.


