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In the present paper x is represented by x4 x?. Also

mi\?fcitci\!
I(x) = G](—) (~———) e F A Fy(A) T 50, (29)

n CiCj

Jii(x)=Fy Y (4) Fy (4 j)fdw:f’mwn(& a)dQ- 2 f2 - (1+0:£°) (1 40,1,°) (xi+xi—x —xi'). (30)
The following identity holds, . .
Ly (X x) =T i(x).
Also, definition of the square brackets in H.U. is related to the present one by,
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The theory of diffusion in ternary and higher order gas mixtures is completed with the
discussion of thermal diffusion. The theory is carried to the point where assumptions about
molecular interactions are necessary to obtain quantitative expression of the coefficients. In the
special case of elastic spheres the formulae have been given in terms of the masses and cross
sections, neglecting, however, the diffraction effects. '

INTRODUCTION

HERMAL diffusion remains one of the few processes of diffusion which are difficult to analyze
from elementary considerations, even for the case of binary mixtures. The coefficient is a
function of differences in masses and force interactions and, in addition, respective particle concen-
trations and their ratios. No emphasis therefore need be given to the increased complication which
the analysis of ternary and higher order mixtures introduces. It is nevertheless desirable to obtain
formulae for the thermal coefficients in such cases in order to obtain additional insight into the
processes involved as well as to check values obtained by direct experimentation.

In connection with the theory of isotope separation it is of interest to determine if the addition
of new components has any optimum effect, and if so, to determine what the characteristics of these
additional components must be in relation to the isotopes involved. It is also true that the isotopes
occur frequently as groups of three or more so that from the point of view of application of theory
to experiment, the binary analysis is inadequate for an actual description of results. These problems
receive added interest and importance in light of the recent work of Furry, Jones and Onsager,!
on isotope separation by thermal diffusion coupled with convective action.

The effect on the distribution function of the gas molecules by a temperature gradient is given
by the equations which the first-order variations must satisfy (I APPENDIX (A))*
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where the symbolism is that of (I).

! Furry, Jones and Onsager, Phys. Rev. 55, 1083 (1939).
* Reference to the first part will throughout be indicated by I.
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If we take x to be given by

one then obtains the following system of equations,

2exp (1) &ia .5 pD % mitmg\ }
oo (rt=2 Yk = S ) oA, @
AiF'}(Aj) (le); 2 ’IijT 8=1 MW s

And one obtains as in (I),
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As in I, attention has been focused on the gth component, and the basic set H,? of I employed
in II. Egs. (2), unlike the set in I, maintain symmetry with respect to all components. Since also
the brackets {¢,; N; M} vanish, it is necessary to include functions quadratic in 7. Thus, the simplest
set sufficient to discuss thermal diffusion is,
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Since the experiment to which we wish to apply the theory is one wherein a gas-filled vessel is
in equilibrium under a certain temperature gradient, it is convenient to add the perturbations of
the distribution functions due to pressure and temperature variations.
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where A is the denominator in (3), and the term > L,Z* is to be summed over all “s,” (I). The con-
ditions for equilibrium then demand that the particle current of any component calculated from
(5) is zero, and that the total pressure be constant,

N
(X p9=const.).
=1

In analyzing the separations produced in a set of gases by thermal diffusion, one would then
desire the values of all partial pressure gradients as well as the temperature gradient. From (5) it
is possible to obtain N—1 independent equations by making the particle currents vanish. One
additional equation is obtained from the condition that the sum of all the partial pressure gradients
must vanish.
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The relations which may now be used to simplify (5) are
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In computing the currents from (5), one finds that the contribution from the %’'s vanishes. More-
over, one finds, apart from a common factor, that the functions H19, Hs? - - - contribute to the current
of particles of type “j,” j#q, the amounts,
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and to the current of particles of type “¢"’ the amounts,
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If one replaces in (5) the values given (6), (7), (8), (9), (10), and (11), denoting the cofactors of
the last column by 4.° (where s denotes the particular current considered, and 7 the row), one finds
the following set of equations to determine the various partial pressure gradients (where the classical
values have been taken for the expressions (8)),
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It may be easily shown then, that
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where
bis= {qu; N; hs,}; a'r,s= {hr,; N; hsl}-

To evaluate the determinants, it is necessary to calculate the a.,, and b; .
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With the values of the various brackets given in the group (14) the problem of the determination
of the separations which can be produced in gas mixtures is halted until definite assumptions about
the force interactions have been made. The simplest force law which can be used, which may be
regarded as a first approximation to the actual law, is the elastic sphere model. In this case the
various P functions have the following values,

Prl)y=5,/2, (15a) Pol(1)=35,,/2, (15¢)

Poi(1) =352, ,/2, (15b) Pri(1)=6S2, ,, (15d)

where the S, are the elastic sphere diameters of interaction, equal to the average of the actual
diameters of the two types of particles.
One has for then the case of three gases,
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where
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An application of the preceding theory has been made with respect to a mixture of hydrogen,
deuterium, and helium. The ratio of hydrogen to deuterium was taken as 5000 to 1 and the concen-
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FiG. 1. Plot of the separation of deuterium and
hydrogen, and of deuterium and helium against a
variable helium concentration.

tration of helium was taken as 0, 1/5, 2/5, 3/5,
4/5 and 1 with respect to the hydrogen number
density. The collision diameter of deuterium was
taken equal to that of hydrogen. This assumption
appears to be sufficiently accurate in view of the
experiments of Grew and Atkins? on thermal
diffusion in deuterium mixtures.

The results on the deuterium, hydrogen,
helium mixture are of particular interest in view
of the equality of masses of deuterium and helium.
Any effect between the latter in a binary mixture
depends solely on differences in cross sections. It
is found that helium is much ‘“harder’’ relatively,
than deuterium. In the case chosen for applica-
tion it may be expected from the mass effect that
the result of addition of helium is to increase the
separation of hydrogen and deuterium, provided
the separations are dependent mainly on the mass
ratios. Similarly from the mass effect it may be
expected that the addition of an element inter-
mediate in mass will tend to increase the separa-
tion of any pair of elements. The character and
extent of such separation will of course be in-
fluenced by the remaining variables, which de-
scribe the mixture (cross sections and concentra-
tions). For particular mass ratios it is apparent
that the latter variables may be most important.

2K. E. Grew and B. E. Atkins, Proc. Phys. Soc. 48,
415-420 (1936).
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If hydrogen, deuterium, and helium are numbered successively 1, 2, and 3, then we find,
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From (23) and (24) one readily obtains
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Let us define the coefficient A as
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It is this coefficient which will be used as a measure of the separations to be produced in a mixture,
and in Fig. 1 has been plotted for deuterium-hydrogen and for deuterium-helium, against an increas-
ing helium concentration.

It will be observed from Fig. 1 that in both cases the separation becomes less as the helium con-
centration increases. No experimental data appears to be available as a check on this behavior
and thus no check on the effect of the elastic sphere approximation can be made. Both hydrogen
and deuterium, admittedly are not symmetric molecules and deviations are likely to be found
from the curves in Fig. 1, since the phenomenon of thermal diffusion is so dependent on the type of
force interaction between molecules.



