
FEBRUARY 15, 1940 PH YSICAL REVIEW VOL U M E 57

Generalized Theory of Diffusion

E. J. HELLUND

University of WasIIington, Seattle, Washington

(Received September 21, 1939)

The theory of diffusion. in mixtures with more than two components has been developed as
an extension of the theory of Enskog for binary mixtures. In particular, the various coefficients
have been evaluated as functions of the binary coefficients of diffusion. Attention has also been
given to the theory of osmotic diffusion in connection with the Loschmidt experiment. The
analysis has been carried through in such a manner as to be applicable to Einstein-Bose and
Fermi-Dirac gases as well as the Maxwell-Boltzmann Type. The paper has been divided into
two parts which deal with first, pressure diffusion and second, with thermal diffusion.

INTRQDUcTIoN

HE phenomena of diffusion are divisible roughly speaking into two classes which may be charac-
terized as effects of the first and second orders, respectively. One generally considers in the first

class the effects of pressure and potential gradients and in the second the effect of temperature
gradients. In the treatment by means of perturbation theory the first class is a function chiefly of
the first approximation to the first-order variation of the distribution function, . while the second
necessitates the consideration of the second approximation.

Rigorous analysis of the problem of diffusion in mixtures of two gases has been given by Enskog
and Chapman. The work of Enskog, who first discovered thermal diffusion, allows with some modi-
fication the generalization to mixtures with three or more components. It is evident with even first
consideration that the problem of diffusion in this case is not simply a repetition of the theory of
binary diffusion, since one immediately perceives that the possibility exists for diffusion induced by
streaming of one gas through the mixture. This streaming roughly may be thought of as producing
forces which act on each component gas with different magnitudes by virtue of the different inter-
actions which exist between the individual molecules of each component. It is evident that, in special
cases only, is the theory of binary diffusion applicable to mixtures.

One encounters experimentally the condition of streaming by one component quite frequently.
This state occurs for example when a source or sink exists for a given element. That is, whenever
the removal or creation of an element (by such processes as the condensation and vaporization or
combination and decomposition) is not uniform throughout the gas enclosure, pressure gradients are
set up which then induce these currents in the mixture. The phenomena of electron winds and ion

drift produced by electric fields and of polarizable partides in inhomogeneous fields, are likewise
familiar. Seemingly somewhat removed, but still in the same category, one may consider the case of
high temperature radiation through gas mixtures.

In addition to the case of streaming of one component into the mixture we must consider the prob-
lem of diffusion of one component. This leads to an analysis closely related to the diffusion previously
mentioned. Experiments which would fall into this category are those for which diffusion of air
and some other gas is observed. Data on the coeScients for oxygen, nitrogen, hydrogen, and carbon
dioxide into air have been given with considerable accuracy.

Last one must consider the thermal diffusion in mixtures of three or more components. This
phenomenon is like the case of ordinary diffusion complicated by the existence of several components
with different interactions. The expression becomes there the more involved and is not expressible
in terms of binary thermal diffusion coefficients with any degree of simplicity.

The plan followed is to proceed from the Boltzmann equation with the left member transformed
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into derivatives of the pressures and potentials and temperature. In the work' cited below these
equations were simplified at that point by the limitation to mixtures of two components only. A11

discussion up to this point is thus to be obtained in this work which will be referred to as H.U. for
reference in the ensuing discussion.

FORMAL EXPRESSIONS FOR THE MASS CURRENT

One proceeds then from the equations for a mixture of X gases which are the equations obtained
from the Boltzmann equations by considering a solution to first orders alone.
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where f; is the distribution function for the jth component. The remaining symbolism is that given
in H.U. (see also Appendix A). In addition, it must be noticed that only a perturbation by forces
acting on the gth component is considered. There is, however, no loss of generality since the equations
are linear. If one now assumes that the perturbation of the distribution functions is given by

(Bpq
Lq'{ —pqXqo !=vr&L;Zq/—kT,

kT
'

&Bx.

and the collision integrals are transformed by using the relation
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The equations which result are then expressible in the following form
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The I;, are the collision integrals defined with integration on d~ and substitution of the variable

p for g, the relative velocity, where
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In the following we shall have occasion to use the definition of the mixed bracket given by Enskog'
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It is necessary now to extend the definition of the curly bracket, H.U. (Enskog'). The new form

~ E. J. Hellund and E. A. Uehling, Phys. Rev. 56, 818—835 (1939).' Reference 1, p. 67.
4 Reference 1, p. 68.
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is to be taken as
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In view of the properties of the mixed bracket [F, G);, , there exist the same set for {F;N; Gj,

{F;N; G} = {G; ¹ F},
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It may now be shown that the coeAicient of mass diff'usion is expressible in terms of this extended
curly bracket, and that the solution of the perturbation problem resolves itself into a variational
calculation.

It is desired to evaluate the diff'erence of the velocity of streaming of the q component gas and
the entire mixture. That is,
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By transformation of variable this becomes
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The last expression is then bZ virtue of Eqs. (5) and (6), just {L,; N; L, j, so that,
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The mass current of component g is given by
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To demonstrate that the function I. may be arrived at by a variational calculation one proceeds
just as in the case of two components. That is, if,

{I.*;N; L*}= {L*;N;L},
where I* is an approximation to the exact solution which is to be made as good a solution as possible,

by adjustment of the parameters on which it depends, then

0 &~{L*—L; N; I*—I }= {L*;N; L*}+{L;N; L}—2{I*;N I }

= {L;N; L}—{L*;¹I.*j.

Thus I*must be chosen so as to maximize the bracket.
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If temperature variations are considered one also finds the perturbation of the distribution func-
tion to be determined in like manner. However for the present, thermal diffusion will not be con-
sidered, but will be treated after the analysis of pressure diffusion.

EXPLICIT DETERMINATION OF THE MASS AND PARTICLE CURRENTS

When the method of solution has been determined there remains only the consideration of the
auxiliary conditions relating to the macroscopic description of the state of the gas for the perturbed
and unperturbed case, (H.U.). To satisfy the auxiliary conditions the solution may be formulated
in terms of MN+N —1 parameters as follows,

M N N

L"=E 2 P.», '+2 P'{
4n, (m, ) & n, (m, ) &&

(17)

In the following we shall write
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One then obtains the system of equations which are the result of the maximal property for the
best solution to be obtained from a given number of parameters.
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Consequently we have for the mass current
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Excluding the composition dependence of the diffusion coefficient the result for the mass current
is given with sufficient accuracy by the zero-order functions EI,&. Consequently we evaluate the
brackets {II„';N; H, '}.For the case res we have,
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There exist the following relations which serve to evaluate the mixed bracket:s
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where the definition of the function Pi i ' '(1) is that of Enskog' with the modifications due t.o statis-
tics noted in H.U.

Also we have
{H,~; N; L, }= —n'/2P, . (27)

It is to be noted that the statistical density dependence is ignored as well as the interference effect
(H.U.) in the expression for the brackets. Only the eAect in the cross section is included in the form
given. One obtains for the mixed brackets the expression
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It is to be noted here that the coefficient of mass diffusion for two gases is given by

"' Reference j. , p, 91.
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One may therefore express the brackets in term of the binary diffusion coeFFicients as follows,
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One therefore obtains for the mass current of the qth gas component into the mixture of which it
is a member, the determinantal form,

~«rS pkTq *'

2&2) », .(P»+ P.)

pg

+ 2—
f+s, r p

+ +
praq, s p,D,„

(Pt+P,) '

3

2pq

I, 1 = (2kT) *'p,
~8

p k Ty
'*- 1 1

+ +
Dr, s(Pr+ Ps) P«D«, s P«Dq, r

pg 1

" Pq Dt, q(Pt+Pq)

~ 0
l~P'

— —P„.X„(
&ax

33)
(kT)

In the above only the bracket form for res has been used, but it must be remembered that the
diagonal elements of the determinant require the expression (32). The diffusion coefficient itself is
just the coefficient of (Oft«/Bx p,X„)/kT—in Ipq. From the form it may be perceived that no explicit
temperature dependence exists, since the determinant in the numerator has the last row and column
free of temperature dependence. Likewise the factor m will cancel. Hence the coeAicient of the gas g

may be written,
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For the case of three gases which is very nearly the case for experiments of diFfusion of gases into
air the result expanded is,
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The coefficient (35), just derived, as well as (34) is not the coefficient observed which corresponds
to the binary diFfusion coeFficient, but must be changed by the factor,
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and in general,
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It is essential to recognize here that the coeAicients given are taken as giving the mass current
when multiplied into the gradient of pressure or particle density, and not the mass density. Likewise
these coefficients are not with respect to the velocity of the mixture, but the mass velocity. If a
steady state of pressure is to be maintained in an experiment of the Loschmidt type, the total particle
current is zero and hence the diffusion measured with respect to a stationary partition must be com-
pared with the coefficient calculated with respect to the particle velocity. Thus what must be calcu-
lated is,
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This expression is readily evaluated since the function I.q=—I q, I.q has already been obtained.
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To obtain the diffusion coefficient which corresponds to (34), one replaces in the numerator
determinant the last row by the elements,

p„(n nq) yn„pq—
np„

; rgb. (42)

In deriving the expression for the diAusion with pressure gradients on all components, with constant
total pressure, one may use the same basic set of functions H, q to evaluate the perturbations. The
expression for (H, q; X; L, j are changed in the determinant, but the remaining elements remain
unchanged in form and hence the successive contributions to the diAusion are easily summable.
The new brackets are,

(II„»;X; L, l =0; res, (,II,»; X;L, l =qr'/2p, . (43)
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Construction of the form II., ; X; L, I then leads to the replacement of the last column in the
numerator determinant of —x.'Z'/2p~ by,
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For the case of 3 gases, if one assumes that Z'= —Z'p~/(p~+2) and that Z'= —Z'p2/(p~+p2) one
obtains the factor p/(p —p&) given in (36). The general factor follows from the same hypothesis for
the various s;. It would be necessary to justify the values given above in order to claim validity for
the coefficients (36), for a given experiment. In general, however, the pressure variations are arbitrary,
as well as the forces per unit mass for each component.

In (45) the elements of the last row replaced by (42) yield the expression desired to represent the
number of particle which would diffuse through a stationary cross-sectional area in an enclosed vessel
of the Loschmidt experiment, provided, with no external forces, we set
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For the case of three gases one may write
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Also
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It is perhaps of some interest to show that in an experiment of the Loschmidt type, diffusion may
occur even when the gradient of density of the gas in question is zero. The effect, like thermal diffu-
sion, is due to differences in mass and cross sections of the remaining components. This diffusion is
the analog of the osmotic diffusion of liquids. To show this point, let us set, Z'= 0 and Z'= —Z . Then

and
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For the special case when SI 2~0,
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where P is the total pressure.
In (51) the binary coefficients have been given the classical values for elastic spheres. The diffusion

initially set up, produces an opposing pressure gradient which then sets up a diAusion current in the
opposite direction restoring the initial constant density of the third component. This would neces-
sarily imply that the currents, one and two, would alternately exceed one another. The effect initially,
would be large and decrease as the distributions of the first two components tended toward spatial
uniformity.

In conclusion it may be emphasized that all measurements on mixtures of three or more components
are dependent on the density ratios as well as the total densities, although the former dependence
is not particularly strong. This dependence is quite apart from the composition dependence taken
into account by the consideration of further terms in the approximation to the distribution function.

APPENDIX
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In view of the fact that some change in notation between this paper and H. U. exists, the following

equations are given from H. U. as numbered in that paper, and the changes noted.
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In the present paper x is represented by p'+p&. Also

(m;) ' (c;+c,) '

I' (x) =G
]
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I (
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I
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The following identity holds,
I;,'(x*+x ) =J;,(x).

Also, definition of the square brackets in H.U. is related to the present one by,

[F, G];;+[F, G],']n.v. =—[F, G]*;
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The theory of diffusion in ternary and higher order gas mixtures is completed with the
discussion of thermal diffusion. The theory is carried to the point where assumptions about
molecular interactions are necessary to obtain quantitative expression of the coe{ficients. In the
special case of elastic spheres the formulae have been given in terms of the masses and cross
sections, neglecting, however, the diffraction effects.

INTRQDUcTIQN

'HERMAL diff'usion remains one of the few processes of diffusion which are difficult to analyze
from elementary considerations, even for the case of binary mixtures. The coeScient is a

function of differences in masses and force interactions and, in addition, respective particle concen-
trations and their ratios. No emphasis therefore need be given to the increased. complication which
the analysis of ternary and higher order mixtures introduces. It is nevertheless desirable to obtain
formulae for the thermal coefficients in such cases in order to obtain additional insight into the
processes involved as well as to check values obtained by direct experimentation.

In connection. with the theory of isotope separation it is of interest to determine if the addition
of new components has any optimum effect, and if so, to determine what the characteristics of these
additional components must be in relation to the isotopes involved. It is also true that the isotopes
occur frequently as groups of three or more so that from the point of view of application of theory
to experiment, the binary analysis is inadequate for an actual description of results. These problems
receive added interest and importance in light of the recent work of Furry, Jones and Onsager, '

on isotope separation by thermal diff'usion coupled with convective action.
The eff'ect on the distribution function of the gas molecules by a temperature gradient is given

by the equations which the first-order variatio'ns must satisfy (I ApvENmx (A))'"

f;" 1 1 8T( 5 p~ p'——l=Z I Ix'+x'I
A) Cl' T BX E 2 nkT)

where the symbolism is that of (I).
' Furry, Jones and Onsager, Phys. Rev. 55, 1083 (1939).* Reference to the first part will throughout be incficated by I.


