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For some electrostatic potentials, such as that represented by a sufficiently deep well, the
Pauli-Weisskopf wave equation has complex frequencies. It is shown that when this happens
the quantized field Hamiltonian can no longer be diagonalized. Some points of similarity and
difference between this theory and the Dirac positron theory are discussed.

T has been shown in the preceding paper?
that the quantized field Hamiltonian of the
Pauli-Weisskopf theory can be brought into
diagonal form by a unitary transformation when

= [VEAB 2V W)

is diagonal. Here, the orthogonality relation
between solutions ¥ of the differential equation
is exi(Ex—E*) =0. It is apparent that when any
of the E; become complex, e is no longer
diagonal, €;=0, and the formalism of the pre-
ceding paper breaks down. In Section I of the
present paper we show that complex frequencies
actually can occur for a simple type of potential.
In Section II it is shown that under these
circumstances the Hamiltonian can no longer be
diagonalized.

I

The existence of complex frequencies of the
Klein-Gordon differential equation is most
readily demonstrated by solving the equation
explicitly for a square well electrostatic potential.
We take a potential that is attractive for a
particle of charge e: eV (r)=—V,<0 for r<a,
and eV(r)=0 for r>a; the character of the
results obtained below for this potential do not
depend on the discontinuity of V() at »=a. The
equation separates in spherical coordinates, and
it is sufficient for our purposes to consider only
the spherically symmetric part Yo=u/r(=0).
The regular solution for a bound state of fre-
quency E, which we shall assume for the moment

1H. Snyder and J. Weinberg, Phys. Rev., this issue;
equations of this paper are referred to as 1(34), for example.
The units used in both papers are such that c=k=mo=1.

to be real, corresponds to E2<1, (E+V,)?>1,
and is:

u=2A sin (¢r/a), r<a, @)
u=Asin ¢£-exp [—n(r/a—1)], r>a.

Here, ¢=a[(E+ Vy)2—11, n=a(1—E?} and the
boundary condition at »=a gives:

£cot £=—n. (3)

The solution of Eq. (3), giving E in terms of
Vo, may be found by plotting £cot & and —7
against E for various values of V,. It is found
that there is no solution such that E?<1 for
small Vy; for V<2 but greater than a value V4,
there is just one root E; that decreases from +1
as Vy increases. This state of affairs continues
for V, somewhat greater than 2 but less than a
value V, at which point a second root E,
slightly greater than —1 appears. As V, in-
creases further, E; continues to decrease while
E; increases, until for a value V3 of ¥, the two
roots come together and the solutions become
identical. For V> V3, the roots are complex
and their solutions complex functions that are
regular for all . The pair of roots and the pair
of solutions are then complex conjugates of each
other. For sufficiently small ¢, V; can be greater
than 2, while V2 and V; are always greater than
2; all three decrease with increasing a.

We can readily evaluate e from Egs. (1) and

(2):
e=4rA%[(E+4 Vo) (1—sin £ cos £/§)
+Esin? £/9],
from which it follows that
e= — (4rA?sin? £/a)[(8/0E) (& cot £)
—(8/0E)(—n)].

By comparison with the slopes of the curves of
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F1G. 1. The frequency E of the Klein-Gordon equation
with a square well potential in a large box, as a function
of the depth V, of the potential, for /=0.

£ cot £ and —7 against E, one sees that ¢>0 for
the root E;, €<0 for the root E,, and e=0 for
E = Ey(Vy=Vj3) since the two curves are tangent
to each other at this point. This behavior of the
lowest frequencies and their €'s is followed by
the higher roots that arise from the other
branches of the £ cot ¢ curve.

It is instructive to follow the behavior of the
frequencies in the continuum as well as for
E?2<1, in order to ascertain whether or not
anything happens in the continuum to make up
for the loss of pairs of real discrete eigenvalues.
This can be accomplished by placing the po-
tential well at the center of a spherical region of
radius R>>a, at which the current is made to
vanish. The “‘continuum” (E?>1) then consists
of a set of closely spaced discrete states. The
(unnormalized) regular solutions are properly
joined pairs of the following:

u=sinh (\r/a), r<a, (E4 V)21, @)
u=sin (¢r/a), r<a, (E4Vo)>1;
#=sinh [(n/a)(r—R)], r>a, E2<1) (5)
u=sin [ (u/a)(r—R)7], r>a, E>1;

where A=qa[1—(E+ V)2, u=a(E?—1)% The
positions of the roots are most readily found by
plotting the logarithmic derivative of Eqgs. (4)
against (E+V,) and the logarithmic derivative
of Egs. (5) against E, superposing them on each
other with the origin of the former curve shifted
to the left by a variable amount V,, and picking
off the values of E for which intersections occur.
The schematic curves of Fig. 1 were obtained in
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this way; they move to the left and crowd
together as a increases. It is seen that the lowest
level of the upper “continuum’ (E>1) and the
highest level of the lower “continuum” (E < —1)
come together fist, then the second lowest of
the upper and the second highest of the lower
“continuum,” etc. Thus the confluence of a pair
of roots represents a genuine replacement of a
pair of real frequencies by a conjugate complex
pair of complex frequencies, accompanied by no
other gain or loss of roots.

It must be remembered that the contribution
of one of the real frequencies to the quantized
field energy and charge is given by NEe and
Nee, respectively, where N is the occupation
number for the state in question. Thus the
frequency E, represents (for N=1) a particle of
charge e bound by an attractive potential, while
the frequency E; represents a particle of charge
—e bound by a repulsive potential such that its
energy is between 0 and 1. It should be re-
marked again that all of these results follow in
qualitatively similar fashion for any sufficiently
deep and broad potential well, and do not depend
on the discontinuity of the above chosen V(r)
at r=a.

In view of the paradoxical result italicized
above and the appearance of complex frequencies
for sufficiently deep and broad potentials, it is
of interest to see if similar results obtain in the
case of a Dirac particle. Separating in spherical
coordinates in the usual way? and considering
only the pair of solutions of lowest angular
momentum (j=%, k==+1), we obtain for the
(unnormalized) solution corresponding to the
first of Egs. (5) and k= —1:

rg=sinh [(n/a)(r—R)],
rf=(1+E)"{(n/a) cosh [(n/a)(r—R)]
—r~*sinh [(1/a)(r—R) 1},

with similar solutions for the other three cases.
The same -procedure for finding the frequencies
may then be followed as in the Pauli-Weisskopf
case, except that the boundary condition at
r=a is now that f/g be continuous.

The behavior of the roots is plotted schemati-
cally in Fig. 2; again the curves move to the
left and crowd together as a increases. There is

2 H. A. Bethe, Handbuch der Physik 24/1, p. 312.
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no crossing or disappearance of real roots; they
simply move successively from the bottom of the
upper to the top of the lower ‘“‘continuum.” If
the vacuum is defined as that state of the
system in which the total charge is equal to
just that of the filled negative energy ‘‘con-
tinuum” for V=0 and the energy is a minimum,
then one sees that there are no bound positron
states, and the paradoxical result obtained above
for the Pauli-Weisskopf case does not occur
here. For sufficiently large V,, however, the
vacuum is not the lowest possible energy state
of the system, but differs from it by a charge
and energy that are both finite for finite V.
The states for k=41 are obtained from the
above by interchanging f and g and changing
the signs of E and Vy; they behave qualitatively
the same as, and are separate from, the states
for k= —1.

IL

We have now to see whether it is possible to
extend the methods of the preceding paper to
this case that the Klein-Gordon frequencies may
be complex. From the example given above it is
clear that as the potential V is deepened, a pair
of €, one positive and one negative, vanish and
that their respective frequencies E;* and E;-
become equal: E;t=E;~=E. As the potential is
further deepened complex frequencies appear.
It is easy to see that quite generally the ¢; must
vanish in pairs, since the identities I (34, 35, 36)
must hold uniformly as the potential is gradually
altered. :

For the special case that the potential is just
deep enough to make a pair of ¢ vanish, energy
and charge take the form

H=(N.—N_)E+Y 'NiEwes/ | x|,
q=(Ny—N_)e+eX ' Nier/ | x|,

where the prime on the summation excludes
states of vanishing e Since only (N, —N_)
occurs in these forms, N, and N_ cannot be
determined by charge and energy alone, and
the system is degenerate: an arbitrary number
of pairs may appear without contributing to the
energy. For this state charge and current
density will in general be infinite. This situation
is the extreme limit for which stationary states
of the field may be defined.
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When complex frequencies Ej occur, ex=0
also; and we must restate the essential conclu-
sions of the preceding paper. Defining:

o= f Y (EtEf— 26V )udo,

and
an €)= 6nk:
l

we get:
€ 1(Ek - Ez*) =0

—orthogonality relation ;
q= e%%(aka Fafor)en
—total charge;
H= Z;%(aka Ftarfan) e By
’ —total energy;
L(x,t; x",t) =i§§kz¢k(x)¢z*(x') =0
—Green'’s function ;
[¥(x) ¥*(x") 1= %[akﬂ F ()¢ (x") =0

—commutation law.

~
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Fi1G. 2. The frequency E of the Dirac equation with po-
tential as in Fig. 1, for j=1, /=0, x=—1.

Either from the requirement dy=—1iEax
=[ax,H], or from the commutation laws I(8)
taken together with the uniqueness theorem for
the Green’s function, we obtain the commutation
rules: ‘

Lara* 1=, Lanar*]=¢wu*, (6)

with all other commutators zero.
If one state has the complex frequency
E=U44W corresponding to a wave-function ¢
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and quantized amplitude @, then ¢* will also be
a solution of I(14), with frequency E*=U—:W,
to which we may assign a quantized amplitude
b*. Since a, b, a*, b* commute with all other
ar, ar*, we may consider separately the terms
g0, Ho in ¢, H, due to the former alone:

qo/e=3%(ab+ba)e+3(a*b*+b*a*) e,
Ho=1(ab+ba)eE+L(a*b*+b*a*)e*E¥,

where the complex number e is defined by:
e=2 [yE-evian,

and where

[a’bjze——l' [b*ya*:|= 5*_1: (7)

with all other commutators zero. We next define
two Hermitian operators N, M :

N=1(ab+ba)e+3i(a*b*+b*a*)e*,
M=(1/20)(ab+ba)e— (1/27) (a*b*+b*a*)e*,

which satisfy [M,N]=0. In terms of these,

go= Ne, Hy=NU—-MW.

Simple application of (7) shows:

[a,N]=a, EbvN]:—b:
[a,M]=—1ia; and [b,M]=1b. (8)

It can then be shown that if a has one finite
matrix element in the representation in which
M is diagonal, then M has at least one complex
eigenvalue. But M was defined to be Hermitian
and cannot have complex eigenvalues. Hence if
there exists a diagonal representation of Hy (and
therefore of M) when complex values of E occur
in 1(14), the charge and current densities will be

- everywhere infinite. Since in this case there are
no physically admissible solutions, we say that
M cannot be diagonalized.

The préeceding discussion may be applied
equally well to scalar or vector mesotron fields,
since the generalized relations (6) hold in either
case.
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In spite of the fact the M cannot be diagonal-
ized, it is easy to find Hermitian matrices of
infinite rank which satisfy (8). The off-diagonal
elements of M in the rth row are of order 7,
and the roots of the rth-order secular determi-
nant for the characteristic values of M approach
no limit as r— . The physical origin of this
divergence lies in the fact that the emission of
pairs into these degenerate states stimulates,
because of the Einstein-Bose quantization, the
further emission into these same states.

The arguments given here show then that
there are certain types of electrostatic potential
for which it is not possible to find stationary
states for the scalar field. A situation somewhat
analogous to this occurs in the Dirac electron
theory, with a Coulomb field and with Z>137,
in the present scalar theory with Z>3-137, or
even in nonrelativistic wave mechanics, for
potentials a/72, for a < —1%; in all these cases the
S-state eigenfunctions become singular, and the
set of functions satisfying the regularity condi-
tions is not complete: wherever this is so, the
field Hamiltonian cannot be brought to diagonal
form. The case we have here considered, however,
is unique in that the potentials V involved are
nowhere infinite, and solutions of the Pauli-
Weisskopf field equations free of singularities
exist.

In all these cases where the energy cannot be
brought to diagonal form, we must take into
account either existing deviations from the
assumed potential, such as the breakdown of
the Coulomb ‘law at small distances, or the
reaction of the pair field itself on the external
field. In the simple case discussed in Section I,
it is clear that no finite work can maintain the
potential indefinitely, and the power necessary
to maintain it for a finite time can be calculated
from time dependent solutions of the field
equations.
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