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Stationary States of Scalar and Vector Fields
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In the presence of an electrostatic field (but not for a static world scalar or magnetostatic
field) the stationary solutions of the quadratic relativistic wave equation for scalar particles do
not form an orthonormal set. In spite of this they may in general be used to introduce normal
coordinates for the quantum theory of this field. If the wave field and its canonical conjugate
are expanded in terms of these stationary solutions, then the commutation laws for the ampli-
tudes follow from the wave field commutators and the assumption of the integrability of the
classical wave equation for arbitrary initial function and time derivative. Parallel considerations
are applied to the vector field. An alternative method is described that involves the introduction
of orthonormal functions and the construction of a "particle Hamiltonian. "

unquantized field. Our principal task is to show
that Bose quantization of these amplitudes is
equivalent to the canonical commutation laws
for the wave fields.

Furthermore, in the cases where (a,b,c) are
true, it is possible to show that the frequencies
and Fourier coeKcients are the eigenvalue and
eigenfunction, respectively, of a Hermitian oper-
ator, which may be interpreted as a "particle-
Hamiltonian" for the individuals of an Einstein-
Bose ensemble. In this paper we show how such
a "particle-model" may be constructed in the
case of the breakdown of (b,c), although not if
any of the frequencies are complex.

HE scalar and vector wave fields may be
quantized according to Bose statistics by

taking canonical commutation laws for the wave
fields and their canonical conjugates. However,
it has not been clear that the Hamiltonian can
be brought to diagonal form by means of a
unitary transformation when there is a static
electric field present. When the electric field
vanishes, and there are only static magnetic and
gravitational fields present, the Hamiltonian is
readily brought to diagonal form. One can easily
understand why this, is true. If we make a time
Fourier analysis of the field we find: (a) all of
the frequencies are real; (b) to every positive
frequency there corresponds a negative frequency
with equal magnitude, and the space dependence
of the Fourier coefficients of the positive fre-
quencies is the same as that of the corresponding
negative frequencies; (c) the Fourier coeKcients
form a complete set of orthogonal functions in
the space variables.

The situation is quite different when there is
a static electric field present: (a') the frequencies
are not necessarily real, although there exist
potentials for which they are; (b') there is no
direct correspondence between the positive and
negative frequencies or their Fourier coeKcients;
(c') the Fourier coeKcients do not form a set of
orthogonal functions. If the frequencies are real,
Pauli' has shown, in spite of (b') and (c'), that
the total charge and energy take their canonical
form in terms of the Fourier amplitudes of a

We will be co@cerned in this section only with
electrostatic fields 8= —V'U. The Lagrangian for
the scalar field then becomes

—'V* ~4 —4*4 (&)

The momenta canonically conjugate to f and
f* are:

s.= 82/8(8$/Bt) =P* ie UP*, —
*=82/8 (8$*/Bt) =. $+ie UP

(2)

The Hamiltonian for the system, obtained in

the usual way, is:

' W. Pauli, Princeton mimeographed notes (1935).

n
«W. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709

(1934).
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with

U= v*m. +V/* VP+f*P+p V,

where the charge density p is given by

p =ie(v*P* vf—).

(4) If we substitute v~ from (6) into (7), treating
P as a classical field, we find that P must satisfy
a second-order partial differential equation,
namely, the Klein-Gordon' equation

These expressions will be considered to be sym-
metrized whenever we use them quantum-
mechanically.

From the Hamiltonian (3) we can immediately
find the Hamiltonian equations of motion, which
are, of course, equivalent to the Lagrangian
equations.

f=bH/8v =m* ie. V—Q,
$*=8H/4*= v +ie UP*,

s.= 8FI/g =—AP* P*+—ie U~,
8H/8P—*=hP P ie—Vm*—-(7)

[f(x),~(x') $ = i8(x —x'),
$P*(x),m*(x') j=i8(x x'), —

and all other commutators zero. With these
commutators it is easily shown that the time rate
of change of any function f(P,P*,x,~*) is given by:

if'=
I f,Hj

In particular, the equations of motion for P, f*,
~, and m* are (6) and (7).

One can also see that:

ij = Lq,H]=0,

The usual method of quantizing this Hamiltonian
is to suppose that the P, P*, m. , and ~* satisfy the
following commutation relations:

(8/Bt+i e V)2P =DP (12)

with a similar equation for P*.
"Any"' arbitrary function P(x,t) may be

written

p(x, t) =Jt dEke 's"pa(x). (13)

As a consequence of this, the general solution of
(12) may be written:

(15)

where the Pq(x) are all of the solutions of (14)
satisfying suitable boundary conditions, and
where

ag ———i&g~p. (16)

(For the present, E~ is assumed to be real. )
It should be noted that, in general, the func-

tions Pq are not orthogonal to one another, but
satisfy an orthogonality relation of the form:

Pz~(EI,+E ~
—2e U) P ~dv = 0 (k 8 I), (17)

which has the weighting factor (Es+E& 2eU). —
For all k, l,

If p(x, t) is to satisfy the K-G equation, then the
pq(x) must satisfy:

(EI eV) Vg —A a4——a — (14)

where (18)

is the total charge of the system.
Because of (10), both g and FI should be

simultaneously diagonalizable. It is, however,
quite difficult to carry out the diagonalization
explicitly using the commutation relations (8),
because of the occurrence of V in the right-hand
side of Eqs. (6). For this reason, we have carried
out the quantization in a different manner, but
we will show later that this quantization is
equivalent to (8).

where t.I, is a number, which depending upon the
particula. r P&, may be either positive or negative.
The case where some of the eI, vanish will be
treated separately; it is connected with the Klein
paradox. This division of the P~ into states with

positive and negative e~ corresponds, as we shall

see, to the division of the system into states of

' K-G will be used as an abbreviation for Klein-Gordon.
4 The quotation marks mean that this is true for any

function which is sufficiently regular and which remains
bounded at positive and negative infinite times.
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positive and negative charge. For the total zero. This can be done even when electrostatic
charge is given by fields are present. Then the charge becomes:

q=ie ~(zr*P* ~P)de. (19)
a = e~s&s~s/ I ~s I.

IV.

(30)

Because zr*=P+ieViP, we find

zr*= iZ—sas(Es eU—)fs, etc.

The total charge then becomes:

g =&aaa ax~a&

(20)

(21)

in which the division into states of positive and
negative charge is evident.

A similar simple calculation gives the Hamil-
tonian its canonical form:

[4 (x),f*(x')]=~"s Vs(x) 4s*(x') (31)

We have given a quantum theory of this field

by quantizing the normal coordinates a&. We
must show that this method of quantization is
equivalent to taking the Einstein-Bose commuta-
tion laws (8) for P, P*, zr, and zr* and all other
commutators zero.

We discover, using the commutation laws for
the a~ and a~*, that:

~=~ear ax+A:~x

TRANSITION TO g NUMBERS

(22)
[P(x),zr(x') ]=iZsss 'Ps(x) Ps—*(x')

X[E,—e V(x')], (32)

[zr*(x),zr(x')] = Esses 'Ps(x—)Ps*(x')
X [Es eV(x)][E—s eV(x') ].—(33)

Our procedure for quantizing this Hamil-
tonian, which up to this point has been treated
classically, is to find commutation laws for the
as and a~s so that for any function f(as, a~*) we

have if= [f,H], or, in particular,

zas = [as,H] =E,as.

All other commutators vanish, except the com-
mutator of P"(x) and zr*(x') which is the complex
conjugate of (32).

If the commutation laws (31), (32), and (33)
are to be the same as the usual ones, then the
functions fs must satisfy the following identities:

We suppose that [as,a~]= [as*,a~*]=0, and then &sos Vs(x)4s*(x') =o, (34)

Esas=+t&Ei[asat ar ai ass],—
Esas = & i&rK[as, at ]as (24)

Zsss
—'Ps(x)Ps*(x')Es ——8(x—x'), (35)

Zsss
—'Ps(x) Ps"(x')Es'= 2e V(x)8(x x') —(36).

from which we see that we must take:

Las,a i*]=&si/es (25)

The characteristic values of the symmetrized
form of ag, *aI, are:

z[as as+asas =](+ +s)zl/~sl
'

As=0, 1, 2, . (26)

The total charge and energy. then become:

a= e~s(&s+ l)~s/I ~s I, (27)

II=ZsEs(Xs+ ,')es/I ss I, (28)-
where

's/I'sl = +1 (29)

In order that the total charge vanish when there
are no particles present, we must set the con-
ditionally convergent series uses/I ss

I
equal to

The validity of these identities will be proven
by constructing the Green's functions for the
K-G equation. We observe that every solution
of the K-G equation which remains bounded in
time may be written:

Q =Zsas'e 'fe"ps(x), (15a)

in which the a~' are arbitrary numerical con-
stants, and the time variation of P is written
explicitly. Since P satisfies a second-order differ-
ential equation in time, we must specify not
only the initial value of f but also its time
derivative at the initial time, say t=t', in order
to calculate P at other times. This means that
the values of a&' depend not only upon the initial
values of P, but also upon those of f. Further-
more, because "every" solution P may be written
in the form (15a), there must exist as' so that p
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and P will take on arbitrary initial values at
t =t'.

From the fact that the differential equation
is linear in P and of second order in the time
derivatives, there will exist two Green's functions
G(x,t; x', t') and L(x,t; x', t') by means of which
we can calculate th'e value of tt at t from the
values of P and tL at t', namely:

y(x, t) = ~t G(x,t; x', t')P(x', t')ds'

+ L(x,t; x', t') P(x', t')do'. (37)

We will construct the functions 6 and L as
bilinear forms in Pq(x) and Pq*(x'). We write for
the initial values of P and P at t= t':

f( xt') =Zlaj„'e ' ". PI, (x'),

P(x', t') = iZ(,ag'E—ge 'E"Pg(—x'),

(38)

(39)

X I [E~—2eV(x')]f( xt')+i (tLxt') }do', (40)

knowing that ai, exist which will give them any
pre-assigned values.

If we multiply L(txt') by e'e'"P&*(x')

X[E&—2eU(x')], and P(x', t') by ie'e'"P&*(x'),
add the two results and integrate over all space,
we find:

f and P are arbitrary at t=t', we see from Eq.
(37) that:

L(x,t'; x', t') =iZgeg 'P—I, (x)tLp*(x') =0, (44)

which is equivalent to identity (36), since identity
(35) is true. The diA'erentiation of L in (35) with
respect to time gives us a repetition of the proof
of identity (35).

In this way we have proven that our method
of quantizing the scalar field is equivalent to the
usual method of quantization under the con-
dition:

that for arbitrary initiaL P and P, the K-G
equation rrtay be integrated to gine a P
which renzcins bounded in time.

There exist potentials for which this condition
will not be satisfied: if this happens it can be
shown that the Hamiltonian and charge cannot
be simultaneously diagonalized when the com-
mutation relationships (8) are satisfied.

V.

G(x,t'; x', t') = Egest
—'Pg(x)Pg*(x')

X [Ea—2e V(x') ]=b(x —x'). (45)

Equation (44) is the identity (34), and Eq.
(45) is equivalent to identity (35). By differ-
entiating Eq. (37) with respect to the time, one
finds, for the same reasons, that:

dG(x, t; x't')/dt },=;= iZ—peg 'PI,—(x)

XPa*(x')E~[E~—2e V(x') ]= 0, (46)

or, since we are supposing all eL, &0,

Qg =6) 'e' L' ~* x

The methods of Sections II to IV may be
employed to extend the results there obtained
for the Pauli-Weisskopf scalar field, to the case
of the mesotron vector field. The mesotron Ham-

X I[E,—2 U( ')]p( ', t')+ 'j( ', t') Id '. (41)
ilto»an has been given by Yukawa and Sakata'
in terms of the vector field-coordinates f, &*and

If we place this value of a&' in Eq. (].5a), we their respective canonically conjugate momenta

find the following expressions for G and L:

L(x,t; x't') =i'll, eI, 'e' "&' '&Pa(x)|La~(x'),

G(x,t;x't')=Z, ,-' e'~e'e-'&

(42) H= t Ix"ms+(De. x)(D m. *)

+(D*X$*) (DXf)+pV+P* P}dv (48)
XP (x)A*(x')[E —2eU( ')] (43)

These expressions (42) and (43) are the Green's
functions for the K-G equation and give tL and P
their initial values (38) and (39) at t=t' Since.

'H. Yukawa and S. Sakata, "The Interaction of Ele-
mentary Particles III," Proc. Physico-Math. Soc. Japan,
Ser. 3, 20, 319 (1938).

'Vector signs will be omitted, for convenience, on the
symbols like P, D, a, G. ( ~ ) and L)(j have their usual
meanings.
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where A, U are the vector and scalar potentials
of the electromagnetic field (assumed time-
independent) and where we define

D=V —ieA, D*=V+ieA, (49)

and where the charge-density p is given by

p=ie(n. * P" m" f).— (50)

Using Green's theorem, one may write (48) in
the form

that, for the moment, we shall exclude the possi-
bility e&

——0, treated separately in the succeeding
paper.

We may now proceed to the quantum theory
by symmetrizing all bilinear expressions in m. ,

P, ~*, f*, and by redefining P, m* in terms of a
sequence of operators a~ independent of the
space-variables but dependent on the time. %e
shall take:

(61)

H=) {7r"[v*—D(D v*) ieU&]—

+P*' [f+DX (D Xf)+ie Urr*] }dv (51).

corresponding to the general classical solutions
of (54). Applying (60) to (50) and (51), one finds

By varying n. and P* and their complex conju-
gates, we may obtain the classical Hamiltonian
equations of motion:

q=) pdv. =Kg ,(aa*ak+a. kak*)kk/2,

II=+kEa(ca*rka+QaQa*) ka/2,

(62)

(63)
v'*= bH/8—P*= —D X (D XP) P ie Vrr*—, —(52)

p =BH/&r = 7r* D(D. m.*)—ie UP,— (53)

and conjugates. Under restrictions similar to
those in (13), one may make a Fourier analysis of
P and v.* with respect to the time: zGk =EaGa = [ikk,H], (64)

for the total charge and energy, respectively.
(This is comparable to (21) and (22) in the Pauli-
Weisskopf case. ) To obtain the quantum analog
of the canonical equations, we. must take

e
—iekfp vk —g e

—rektrr (54) which, in general, will require

In order, then, to satisfy (52) and (53), we
must have:

i(Ea eV)~a*=la—+DX(DXA), (55)

i(Ea eV)g—a=krak—D(D ~a*);— (56)

)t {(Ea eV)pi*—7ra*+(Ei eV)pk —v i}dv=0, (57)

t {(Ek eV)7ri pk+(E—i eV)ma* pi*}dv—=0, (58)

and, for the present, we shall assume EI, real.
From (SS) and (56) one easily obtains:

This, of course, results in Bose quantization of
the states numbered by k, as shown by the results
(26) to (30), which now follow exactly as before.

It is not clear, however, that these equations
represent the quantization of the mesotr'on field,
until one can demonstrate that tt and m. defined

by (61) and (6S) satisfy canonical commutation
laws as in (8). For the vector-functions P, ~, one
must then be able to prove:

[n P(x),P v(x'))=i(n P)h(x x'), —
[ P*n(x),P ~*(x')]=i( P)nr(x x'), —(66)

which may be combined to give the analog
ll th t t zero for

of 17: stant vectors, n and P. By (65), we find, however:

or

& I {4' i
' &a 4'a ' & i }dv = &a4 i— (60)

(Ea —Ei)i ' {4i* ~a*—4a 7ri}dv=0, (59) [n f(x),P 4*(x')]=~kkk 'n. ka(x)P 4a*(x')
[n p(x),p ~(x')]=Zkka . n ifk(x)p ma(x'),

[n m.*(x),p ~(x')]=gaea ' .n~*( )xp. ~( x),

[n x*(x),p $*(x')]=Zkkk 'n n.*(x)P.Q*(x'),

As before, the sign of ~k will determine the sign all other commutators zero. If these are to be
of the charge of particles in the kth state, so equivalent to (66), the following identities must
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then be shown to be valid:

&a~s 'a A(x)p f~*(x')
=Zger, -'n &rg*(x)p &r&„.(x') =0, (68)

Zgeg 'a pg(x)p vrp(x')
= —prep-'a x&,*(x)p p&,*(x')=i(n p)t&(x —x'). (69)

We may prove (68) and (69) by returning to
the classical equations (52) and (53). If they
exist, the following vector functions form a
system of Green's functions for (52) and (53):

G(x, t;x', t') = iZ—
&, e&,

'e' '&' "n P~(x)~~(x'),

L(x,t;x', t') =it&, f&, 'e' ""—'&n P&,(x)P~*(x'),
, (7o)

r(x, t; x', t') = —iZ...-'e's «'-'&n x,*(x)~,(x'),

desired relations (68) and (69); and hence the
validity of (66) is proved.

In this way we have shown how to bring the
energy of the mesotron field into diagonal form

in the presence of static electromagnetic fields,

subject to the restriction of (47).

I 0+*0+ @ *4—I-ds- (74)

VI.

In this section we deal with the problem of
finding a transformation from canonical field

coordinates f(x), &r(x) to new field quantities

@+(x), P (x) in terms of which the charge q and

energy FI take their diagonal form:

A(x, t;x', t') =iZ&~&, 'e'E"&' '&n —
&r&,*(x)P&,*(x'),

in the sense that II= I &I&+*0+&t&++&I&
*f1 &t& I dr&, (75)

n P(x, t) = G(x, t; x', t') P(x', t')d&&'

I.(x,t; x', t') ~*(x',t')d. &&',

*(,t)=~Jr(, t; ', t') &t( ', t')d '
(71)

where the products of p's are to be taken sym-

metrized, and where Q~ are Hermitian, linear,
functional operators on the space-coordinates.
We shall also require the commutation rules

corresponding to the Einstein-Bose quantization
to hold:

L4+(x) 0+*(x')3
=L~-(x),~-*(")j=&(x-"), (76)

+ t (x,t; x', t') ~ x( xt') d'&.

L(x,t'; x', t') P=I'(x, t'; x', t') P=0, (72)

(71) may be verified by applying (54) and (60)
to the general solution of (52) and (53).

Because the latter form a linear system con-
taining only first derivatives in the time, it is
assumed that we may assign initial values inde-

pendently to P(x, t), m-*(x, t) for all values of x
at some time t=t', when f, x* are expressible in

the form (54). This is equivalent to the assump-
tion in Section IV that P and P may be given

arbitrary, independent, initial values. Choosing
this pair of initial values as 0, P&&(x—x') at
t=t' in (71):

all other commutators zero.
If the p's are expanded in terms of the ortho-

normal set of eigenfunctions of the corresponding

Qa, one obtains the canonical forms of Section
III, (25), (27), (28). This means that Q~ may be

interpreted as a Hamiltonian for a single particle
of charge &e; and the field may then (insofar

as the total charge and energy are concerned)
be interpreted as an Einstein-Bose assembly of
such particles.

Pauli and Weisskopf' have shown how to con-

struct a "particle Hamiltonian" of the scalar
mesotron field when no external fields are present,

by means of the transformation'

&=2-:(1-~)-:(~++~");
~='2—:(1-&)-:(~+*-~-),(77)

G(x,t', x', t') p =X(x,t', x', t') p
= (a P)&1(x-x'). (73)

Making use of the definitions (70) in (72) and

(73), shows the latter to be identical with the

~ The "square root of a Hermitian operator C", C&, oper-
ating on any function f may be defined by expanding f
in eigenfunctions yI, of u.

Gyl =C7yf, f=~Iffyf
for then we may set

C&f= &I CI &f~VI
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(78)0+——0 =(1—6)*. The Klein-Gordon equation must satisfy the
restrictions of (47); and, in particular, the fields
must not be so strong that there occur any
Klein-Gordon solutions with e~

——0. In this
formulation of the problem, complex frequencies
EI, may not occur because of the Hermiticity of
Q~. These cases are discussed separately in the
following paper. Thus, when the total Hamil-
tonian and charge may be diagonalized at all,
the "particle-Hamiltonian" discussed here may
be constructed.

When high Fourier-components of V are not
present, one may neglect

~
[6,V]~ &&1; and as-

suming that all momenta p((i, the equation
defining 0 becomes

with

4 =(20)-'(4++4-*), =~2 '0'(4 * 4 —), -(79)

with n~=n =0, O'=X(x) —(V' ie—A)' .(80)

When electrostatic fields, 8= —VU, are pre-
sent, however, it is not at all easy to obtain such
a transformation. The behavior of positive and
negative charges in this field is essentially differ-

ent; and Q+ must be different operators which
are interchanged by changing the sign of e. The
difficulty also may be understood formally from
the fact that the solutions of the K-G equation,
in this case, are not properly orthogonal.

It may be shown that when it is possible to
obtain p~ by linear functional transformation on
ir and P, this may be done in the form:

0'—.1 —6, Ot.—0—1 —-,'h. (87)

In this nonrelativistic limit, we obtain the
ordinary Hamiltonians for particles of charge ~e.

Q+—1 ——', ~+eU, Q .—1 —-,'~ —eV,

y,=2 ~gyi~*),

2&(—iP*+i~),

ir*=iP+ieVQ

(81) (88)

(89)where 0 is defined as a solution of

0'+e[0, Vj=1—6; (82) where

One sees clearly how to modify the transforma-
tion when magnetostatic fields V XA (x) or
world-scalar fields VE—(x) a're present:

and O~ is the operator complex-adjoint to 0,
satisfying

(Ot)' —e[Ot, Vg= 1—A. (83)

The energy operators are given by

D~= (0+Ot)'(0+eU)(0+Ot) *,

0 =(0+Ot)&(Ot —eU)(0+Ot) l.

From the work of the preceding sections, it is
not surprising that the characteristic values of
Q+ turn out to be ~E~, where EI, are the fre-
quencies corresponding to the solutions Pi, with

e&/~e&~ =&1 of the Klein-Gordon equation with
the given potential U. The connection between
the eigenfunctions P~(~~ of Q~ and the corre-
sponding solutions Pi, of the Klein-Gordon
equation is:

(1—~)A = (&~—x/a) V~ (9o)

with ei =0. If we set p = i(d/dx—), [0,Vj

= —(i/a) (dO/dp), and 0 is determined by

o' —(~/a) (doldp) =1+p'. (91)

We may define ~(p) by

( —i/a) (d/dp ln (o) =0 (92)

The 0 equation may be solved exactly in the
simple case of a homogeneous electric field of
infinite extent e V= x/a, a) 0. Although the
analogue of the Klein paradox is certainly present
in this case, there are no solutions of the Klein-
Gordon equation:

y~"'= (0+Ot)'*Pi„~i/~ e,
~

= &1, (85) and then co must satisfy the simple equation

with Q~j,~(&) —~jv&y~(&) (86) (d'/dp') co+a'(1+p') co = 0 (93)

These last remarks make clear the limitations
under which it turns out that one may construct
a "particle-Hamiltonian" of the field with the
aid of a linear functional transformation: (0+0 ) '=a&(o /W (94)

In this case, where 0 is a function of p alone,

[0,Otal =0, and we may write
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where
dhl/dp (dW= ( i—/a)

is a real, constant number, which should be taken
positive to make (0+Ot)& Hermitian.

The orthonormal eigenfunctions p~'~' defined

by (86) are given explicitly by (95) in the form

p~(k) (X) a$/2ir JI (~/~t)~qeii'(z ask)dP— (97)

One can easily verify that pa&") are orthonormal
in the sense:

From (84) and (92),

0+——( i—/a)[d/dp ln ((0/(u )&]+(i/a)d/dp,
0 =( i—/a)[d/dp ln ((o/J)&] —(i/a)d/dp, (95)

Then:

4+"'(x)-4-"'(-x)
~(2s)ke «(k+—(f~l2)(» tk tk—'+e+~lk~)

(100)
~+'"'(-x) -~ "'(.)

~ (27r))ie (ia(k—)()n h—&k'+e+w(ka)

for large positive values of x and gk = (x—aEk)/a.
The transmission coefficient e ' ", analogous to
that of Dirac's electron theory, appears in these
results.

In a recent paper, Kemmer has carried
through a linearization of the Proca' and K-G
equations with the aid of Duffin's" 5- and
10-rowed matrices. Although the energy appears
in a form analogous to (75),

)( (t ~"(k&(t ~('~dx=l&(Ek —Ei). II= i ~%'tp, KC —di),

From (85), (94), (97) one obtains:

„+00

pk(x) =(1/27r)(a/W)&~I (d(p)e'i'(' 'ek&dp (98)

for a state k corresponding to positi()e charge.
By a brief calculation, one may verify that
fk(x) actually satisfies the Klein-Gordon equa-
tion and the required relation (18):

~+00

itk*(Ek+ E i 2x/a) —)t idx = b(Ek Ei)—

k)(p)/~t(p) e—(iaik&(» y+p'+i)) (99)

where 8 is a real constant depending only on a.

Because of the covariance of the wave functions
under translation of the origin of coordinates,
there is some freedom of choice of co, the only
restrictions on solutions of (93) being that W) 0
and that the integrals defining pk and it ~(k&, (97)
and (98) must exist. Here we choose (0 so that
the asymptotic behavior of it~(k&(x) for large
values of ~x~ is simply obtainable. For large
values of

~ p~, we take

where i+=A+, one should observe that, in our
units, (lk=c=m(&=1),

K= e U+ pi XZk[pk, pi]
BXIe

+ (e/2) Zkhk{[pk, pi']+ pk},

where PI„P4 are Hermitian matrices, and
hk= —() U/Bxk, (k = 1, 2, 3) are the field-strengths
of the external electrostatic field. Thus K is not
Hermitian, but contains noncommuting Her-
mitian and skew Hermitian parts proportional
to 81,. This is intimately connected with the fact
that the eigenfunctions of K (essentially the
fk's) are in general not orthogonal and that
characteristic values of K may be complex. These
limitations must be kept in mind in applying
Kemmer's particle-Hamiltonian.
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