circulation contained 108 Na24 atoms; thus, the number of radio-sodium atoms was only 1/1000 of that of the corpuscles of the rabbit and less than 1/10 of these atoms disintegrated in the circulation during the experiment.

Isotopes, radioactive and nonradioactive ones as well, are not strictly chemically identical and this may become a source of error in certain cases; furthermore, the problem of the permeability of the corpuscles to sodium is not yet finally settled for reasons the discussion of which would lead too far. The objection raised against the use of radioactive indicators in elucidating the above problem based on the possible effect of the radiation on the red cell walls seems to us, however, not to be justified.

Institute of Theoretical Physics, Copenhagen, Denmark, December 14, 1939.

G. HEVESY

¹ A. Barnett, Phys. Rev. 56, 963 (1939). ² W. E. Cohn and E. T. Cohn, Proc. Soc. Exp. Biol. and Med. 45, 445 (1939). ³ L. Hahn, G. Hevesy and O. Rebbe, Biochem. J. 23, 1549 (1939).

Energy and Half-Life of Be10

Recent precision determinations1 of the maximum energy of the charged particles emitted in light nuclear reactions have led to the values 9.01474 and 10.01579 for the masses of Be⁹ and B¹⁰, respectively. On bombarding beryllium with 3.1-Mev deuterons a yield of protons of range 52.6 cm was found corresponding to an energy change of 4.52 Mev in the reaction

$Be^9 + D \rightarrow Be^{10} + H$.

This is in good agreement with Oliphant, Kempton and Rutherford² who found the value 4.59 Mev. The deduced mass for Be^{10} is 10.0165 ± 0.0001 . The energy difference between Be10 and B10 is therefore approximately 0.67 Mev.

The electrons from Be10 were discovered by McMillan³ who states in a brief report that their upper limit is about 0.3 Mev and half-life greater than 10 years. A beryllium probe which had been bombarded by deuterons for approximately 60 microampere hours after three weeks' aging showed a definite activity whose absorption curve indicates a range of 0.25 ± 0.03 g/cm² in aluminum which, by Feather's empirical formula corresponds to 0.75 ± 0.07 MeV for the upper limit, which agrees reasonably well with the masses given above. The half-life can be estimated roughly from the yield: It was found that 4×10^6 protons per microampere per minute were evolved in all directions so that the sample of Be¹⁰ contained 1.4×10^{10} radioactive atoms. The total number of electrons evolved is estimated to be 8 per second from which the decay constant can be deduced to be 5.7×10^{-10} sec.⁻¹ giving a half-life of 380 years.

I wish to thank Dr. Gordon Brubaker for the amplifier used for detection and Mr. W. L. Davidson, Jr., for help in running the cyclotron.

	ERNEST POLLARD
Sloane Physics Laboratory,	
Yale University,	
New Haven, Connecticut,	
January 2, 1940.	

¹ S. K. Allison, E. R. Graves, Lester S. Skaggs and N. M. Smith, Jr., Phys. Rev. 55, 107 (1939); S. K. Allison, Phys. Rev. 55, 624 (1939).
² M. L. Oliphant, E. Kempton and Rutherford, Proc. Roy. Soc. 150, 241 (1935).
³ E. McMillan, Phys. Rev. 49, 875 (1936).

On Bose-Einstein Fluids

It has been suggested by London¹ that the two liquid modifications of helium, below and above its transition temperature, might correspond qualitatively to the two phases predicted by Einstein² for an ideal gas which follows the laws of the Bose statistics. We should like to discuss here the properties of elasticity of such a Bose-Einstein (B-E), fluid as their experimental study might furnish supplementary information concerning the eventual quantum-statistical interpretation of the transition in liquid helium.

The average intensity of light scattered by a given volume of a fluid is, as well known, proportional to $\langle \Delta N^2 \rangle_{AV} / N^2$ or $\langle \Delta V^2 \rangle_{AV} / V^2$ i.e., to the relative mean square fluctuations of the total number N of the particles of the fluid, or its volume V, around the equilibrium value at a given temperature T. Now, one may write

$\langle \Delta N^2 \rangle_{\rm Av} / N^2 = \langle \Delta V^2 \rangle_{\rm Av} / V^2 = kT \chi_T / V$

where k is Boltzmann's constant and x_T is the isothermal compressibility of the fluid at temperature T. For an ideal B-E fluid x_T tends to infinity when the temperature is decreased to the quantum-condensation temperature T_0 of the fluid. Consequently, if this condensation takes place in coordinate space, as the condensation of ordinary fluids, then a B-E ideal fluid scattering light should become opalescent when its temperature approaches T_0 from the high temperature side. If, however, the condensation takes place only in impulse space, the condensed particles do not separate themselves in space from the other particles of the fluid, the elementary scattering volumes of the fluid do not suffer any abnormal spatial change, and in spite of the anomalous isothermal compressibility predicted by the statistical thermodynamics of the fluid, no quantum opalescence should exist near T_0 . The apparent ambiguity in the interpretation of the fluctuational properties of an ideal B-E fluid seems to indicate that the usual statistical thermodynamics of such a fluid does not give an adequate account of its quantum condensation.

In the case of a nonideal B-E fluid where the nonideal character is taken into account by an average potential energy U, independent of the coordinates of the particles, smeared over the whole volume of the fluid, the pressure is

$p = p_{\rm id} - (\partial U / \partial V).$

where p_{id} is the pressure of the ideal fluid and now x_T becomes almost normal around T_0 . This, incidentally, is the same as for the ideal fluid, as there is no apparent reason for $\partial U/\partial V$ having an anomalous behavior around T_0 . The sudden vanishing of $\partial p_{id} / \partial V$ near T_0 causes a slight jump in χ_T from $V^{-1}(-\partial p_{\rm id}/\partial V + \partial^2 U/\partial V^2)^{-1}$ at a temperature slightly higher than T_0 to $V^{-1}(\partial^2 U/\partial V^2)^{-1}$ at T_0 , and in the case of condensation in coordinate space the scattering of light might be slightly abnormal around T_0 . Again, following the mechanism of condensation in impulse space no such anomaly should exist.

The adiabatic compressibility of an ideal B-E fluid xad given by the quotient of x_T and the ratio c_p/c_p of the specific heats may be considered as normal around T_0 , and it will be so a fortiori for a nonideal fluid. Apparently this