
JANUARY l, 1940 PII YSICAL REVIEW VOLUM E 5 7

Multiple Scattering of Electrons

S. GQUDsMIT AND J. L. SAUNDERsoN*
University of Michigan, Ann Arbor, Michigan

(Received November 8, 1939)

A theoretical treatment of multiple Rutherford scattering is given which is exact if one con-
siders electrons with the same total path length in the scatterer. The approximations necessary
for the actual solution of the problem for a thin scatterer can be shown to have little eEect
on the results for small angle scattering. The distribution of scattering is expressed as a series
in Legendre polynomials which has been evaluated numerically; the final result for thin
scattering is approximately a Gaussian curve. It is shown that this distribution depends in a
sensitive way upon the deviation from the Rutherford law for small angle scattering due to
screening by electrons. This may perhaps explain the discrepancies between experiments and
theory.

1. INTRODUCTION

XPERIMENTS on the scattering of electrons
have, to some extent, lacked importance

because of the uncertainties concerning their
interpretation. It is very difficult to investigate
any theory of single scattering since observation
must be made at large angles where the intensity
of scattered electrons is very small. Moreover, for
somewhat smaller angles, it is difficult to deter-
mine exactly how multiple scattering influences
the observed scattering. The Wentzel criterion,
which is at best only a qualitative statement and
can even be shown to be too lenient, is of very
little help. A general theory of scattering would
therefore be an immense help, inasmuch as it
could be compared with observations made on
small angle scattering. In principle, this paper
uses a method which should yield the complete
distribution of scattering. So far, however, calcu-
lations have been made which give information
concerning only the multiple scattering regions;
to extend the theory in order. to find the distribu-
tion at larger angles requires, as will be seen,
additional refinements and calculations.

The most recent theoretical treatment of this
problem has been given by E. J. Williams. '
Comparison of Williams' results with the experi-
mental data' indicates a rather serious and
consistent discrepancy. Though somewhat more

* Now at the Dow Chemical Company.' E.J.Williams, Proc. Roy. Soc. 169, 531 (1939).' W. A. Fowler, Phys. Rev. 54, 773 (1938); N. L.
Oleson, K. T. Chao, J. Halpern, H. R. Crane, Phys. Rev.
56, 482 (1939); C. W. Sheppard and W. A. Fowler, Phys.
Rev. 56, 849 (1939).

involved mathematically, the present paper uses
a different method of approach and one which is
to a certain extent exact. To facilitate the
calculations, certain approximations are made,
but the theory shows clearly at which points the
use of approximations may influence the results.

2. THE UsE oF LEGENDRE PQLYNQMIALs

In the following, we think of a particle being
scattered a certain number of times, n, after
which it has a certain direction, 0. It is a property
of the Legendre polynomials that the average
value of any polynomial after n impacts is equal
to the nth power of the average value' of the
polynomials after one impact, provided that the
law of scattering is cylindrically symmetrical. 3

To show this, let 0I be the angle of deflection
after the first collision, and 02 that caused by
the second. If the two azimuthal angles are pl
and p2, respectively, and the total deviation
from the original direction, 0, the addition
theorem for spherical harmonics gives the re-
lation

Pi(cos 0) =PI(cos Oy)P((cos Oo)

+QP( (cos tty)Pi (cos 82) sin m(42 41) (l)

If the elementary law of scattering has cylindrical
symmetry, the average'over sin m(@&—

@&) gives
zero, and only the first term remains. A repetition
of this averaging process for n collisions yields

' Compare L. S. Ornstein, Proc. Amsterdam Acad. 40,
464 (1939).
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the result stated above, that4

(P1(cos 8))A„=(P1(cos 81))A,". (2)

The final total average of any Legendre
polynomial will be the average considering all

possible values of n, the number of collisions
suffered by the electron. Denoting the average
by G1, and by W(n), the probability that an
electron makes n collisions, we have

G1= Q W(n) (P,(cos 0,))A„".
0

These averages completely determine the angular
distribution of the emerging electrons. The in-
tensity of scattering per unit solid angle in the
direction 0 is given by

1
f(0) =—P(2l+1)G1P1(cos 8).

4m.
(4)

This function can be evaluated numerically, if
necessary, for various values of 0, when the
averages G~ are known. It is well to notice that
this formula is normalized such that

21r~J f(8) sin 0d8=1
0

and that all averages are meant to be taken
over the spherical distribution. For example, Gt
would be given by the relation

r
G1——21r P1(cos 8)f(0) sin 0d0.

0

(6)

With the G~ known, various other averages can
easily be obtained from the explicit expressions

4 If we restrict ourselves to small angles, we can use the
a.pproximation

P)(cos 0) —Jo(lo).
The average value after n trials is again the nth power of
the average after one trial

(Jo(~0))A = Vo(~0 ))A

This can be proved strictly for a centrally symmetrical
probability distribution of a variable 0 in a plane using the
addition theorem of Bessel functions. The coefficient l can
then have arbitrary values, but should be chosen equal to
the roots of Jo for use in expansions in series. For a sym-
metrical probability distribution of the variable 0 on a
line it is easy to show that cosl8 is the function which
possesses this multiplicative property of the averages.

for the polynomials, such as,

(cos 8)A, =G1,

(cos' 8)A„——-', (1+G2),

(sin' 0/2)A„——-', (1—G1),

(&)

(8)

(9)

3. THE NUMBER QF CQLLIsIoNs

We shall denote the total collision cross section
of an atom by m p', the number of atoms per cc
by N and the thickness of the scatterer by t.
The average number of collisions v which one
electron makes in traversing the scatterer is

v = 7r p2%$.

The probability that an electron has n collisions
is expressed by a Poisson distribution

W(n) =e "1"/5!—(12)

This formula would be strictly valid if t were
the true path length of the electron in passing
through the foil, and if this path length were the
same for all electrons. It will be pointed out
below that this uncertainty in actual length of
path in the foil can have very little effect upon
the accuracy of the results when foils of such
thickness are used such that the distribution of
the emerging electrons does not approach com-
plete diffusion.

Using the Poisson formula (12) in (3), we
obtain

where

G1=+e "v"(P1(cos 01))t, "/n!=e "o' (13)

Q1 1 (Pl(cos 81))A~

In most cases we shall find that Q~&&1 for a large
range of values of /. Therefore, any probability
distribution W(n) which has a rather sharp
maximum at n= v will yield the result given in

(sin4 8/2)A„——6 (2 —3G1+Gu), etc. (10)

The main problem is thus reduced to the
evaluation of the average values of the Legendre
polynomials. In order to do this, we must know
the probability distribution of the number of
impacts suffered by an electron traversing a
scattering material and, also, the average values
of the Legendre polynomials for a single collision
according to the chosen law of scattering.



26 S. GOUDSM IT AND J. L. SAUNDERSON

Eq. (13). This can, for instance, be verified
easily when W(n) is assumed to be Gaussian.
Unless the distribution W(n) is very wide and
has a half-width of the same order as the average
value, the result will still be almost identical
with Eq. (13). It is understood that o)&1, if we
are to have multiple scattering.

It is fortunate that the result given in Eq. (13)
does not require an exact knowledge of W(n)
for thin scatterers. When the average path
length is taken as the actual thickness t of the
foil, the value obtained for v will be slightly too
small. This can be corrected to a first approxi-
mation by taking for the path length t/(cos 0)A.

=t/Gr. Important modifications may be neces-
sary only when the scatterer is very thick, in
which case W(n) becomes very wide, and also,
perhaps, when the atoms of the scatterer are
distributed in some regular way as in single

crystals.

4. THE SCATTERING LAW

calculations we obtain

where

g(y) =1 «r y&yo
g(y) =o «» y&yo,

yo
—(1+as/K2) —1~K/a. (20)

B. The Born approximation for a field of the
rm

This gives'

with

V(r) = (Ze'/r)e

g(y) =y'/(y +yo")'

yp' ——t/2a,

(21)

(22)

(23)

a =a s/Zl =hs/me'Z', (24)

where ao is the Bohr radius of hydrogen. Hence,

yo'=s("/h ) '/(so' —)" ( S)

in which 2m'A is the wave-length of the incident
electron. The exponential factor is supposed to
represent approximately the screening effect. In
both cases A and B, it is usual to take

The following formulas can be expressed con-
veniently in terms of

in which m is the total energy of the particle in
units mc'.

C. The field as given by the Thomas Fermi-
atom The fu.nction g(y) can be obtained easily
from the tables of Bullard and Massey. '

y=sin 0/2.

The distribution of scattering for a single col-
lision, normalized for one incident electron per
cm', can be written 5. THE AvERAGE VALUEs QF THE LEGENDRE

POLYNOMIALS AFTER ONE COLLISION(16)2rrI(0) sin 0d0=2srx'g(y)dy/ys,

K = (Ze'/mc') (1 —P') **/P'

where We use Murphy's expansion expressing the
(It) Legendre polynomials in powers of sin 0/2,

in which the symbols have their usual meaning.
The factor g(y) is applied to the Rutherford
formula in order to correct for the screening of
the nucleus by the orbital electrons. For a bare
nucleus g(y) =1. For neutral atoms g(y) ap-
proaches unity rapidly for larger angles of
scattering, that is, as y approaches unity. For
values of y near zero, g(y) is very small and
keeps the various integrals over y from diverging.
The total cross section per atom is

1

xp'=2m. x"- t g(y)dy/y'.

(l+k)!
Pt(cos 0) =Z( —1)"

(l —k) !k!' (26)

Substituting for srp' as given in Eq. (18), and
separating from the summation the first two

The average value after one collision is

(l+k)!
(Pt(cos 0i))s„——2srx'P( —1)'

(l —k) !k!'

~1
X g(y)y"-sdy/srp-'. (27)

J 0

We consider three cases for g(y): 5 G. Wentzel, Zeits. f. Physik 40, 590 (1927).
A rutherford scattering with a sharp cut og of '-E. C. Bollard and H. S. W. Massey, Proc. Camb.

Phil. Soc. 20, 556 (1930) or N. F, Mott and H. S. W.
the Coulomb field at the radius a. From classical Massey, Atomic Collisions !Oxford, 1933), p. 126.
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terms, we obtain

(P~(cos eq))A, ——1 —
Q~

——1 —2(«'/p-")

1

X l(l+1)Jl g(y)dy/y
p

(i+k) !—2(—1)" !! g(y)y'" 'dy (28)
(f k)—!k "&

The omission of g(y) is not permissible for very
large values of /. This can be shown most easily
by taking the example of case A, which gives
for the sum

L (1+k) f l y 2« —2

~~= 2(—1)'
(l —k)!k!' (2k —2)

as long as
/yp«1. (32)

6. THE AvERAGE VALUEs AFTER
MULTIPLE SCATTERING

The average number of collisions in a path
length t is

p = z p~Nt.

If the conditions mentioned in Section 3 are
valid, we find for the final averages of the
Legendre polynomials

G) ——e "&

with

vQ&=2~«'Nt l(l+1)) g(y)dy/y
p

(1+k) '

—2(—1)' J' g(y)y'" 'dy (29)
(l —k)!k!2J

It is important to note that the factor in front
is always the same, independent of g(y).

7. FVALUATION OF TIIE INTEGRALS

We shall denote the sum in the bracket ex-
pression of Eq. (29) by S& and consider it first.
For the higher powers of y, the main contribution
to the integrals comes from the region near y= 1

where g(y) = 1 and thus we can approximate the
result by omitting the screening factor. This
gives

(f+k)! 1
~~ =Z( —1)'

(f—k)!k!' (2k —2)

= l(l+1) (,'+ ,'+ ', -+1/-l). —(30)

The proof we have for this last identity is some-
what too lengthy to be included in this paper. "

' The sum is also equal to
l

2(I+1)Z( —1)kc(l, k)/(2k —2),
2

where c(l,k) denotes binomial coefficients.

The approximation (30) is sufficient, but for
larger / values the terms containing yp do not
decrease at first and may, therefore, give
appreciable contributions. The relation /y = 1

gives the approximate value of y where the
Legendre polynomial has its first root.

Writing for the first integral in Eq. (29)

pl
~' g(y)dy/y=log 5,

0

(33)

log Pa=log (1.10a/X). (36)

Assuming in all cases that a=ao/Zl we see
that cases B and C give practically the same
result. Case A, however, usually differs very
much from the other two, since

gs/P~ «/t = (Z/137)w~/(m' —1)l.

For the radius of the total scattering cross
section in each case, we find

-pg =G
ps = 2«a/lt

pc = 2.9«a/X.

It is possible, of course, to choose a different
value for a in each case so as to yield equal

' In the formula following formula (13) on page 125 in
Mott and Massey, reference 6, the exponent 17/3 should
read 7/3.

and using Eqs. (19) and (20), we find by direct
integration for case A,

log gg=log (a/«). (34)

In a similar manner for case B, with the use of
Eqs. (22) and (23), integration gives

log P& ——log (2a/X) ——', =log (1.21a/X). (35)

Finally, from an approximate numerical integra-
tion of 8ullard and Massey's data for the
Thomas-Fermi field, ' the .result is



S. GOUDSMIT AND J. L. SAUNDERSON

values for p or P. It is clear that the results are
quite sensitive to the behavior of g(y) near
y=0.

In view of Eqs. (30) and (33), we may now

write for the average value of the Legendre
polynomials after multiple scattering

Q +
—27ra2Ntl(l+I) [log $—(&+q+ ~ ~ +1/l) ]

7 (37)

for not too large values of /. The restriction on / is
that the exponent must remain negative (com-
pare Eq. (32)).

8. THE PROBABILITY DISTRIBUTION FOR

MULTIPLE SCATTERING

As was mentioned above, it is possible to
write the scattering probability as a series in

Legendre polynomials. This was given by Eq. (4)

1
f(8) =—P(2l+1)G~P~(cos 8).

4~

The summation does not need to be extended to
too large values of /, the restriction being given
in this case by Eq. (32).

An approximate Gaussian behavior of f(8) for
small angles would have the form

4mf(8) =e "' '/a' e ""'/a' (38)

provided we may extend the integration over y
to infinity.

It is possible to transform the sum for f(8)
into a power series in y by again using Murphy's
expansion for Legendre polynomials. The coeffi-

cients of the various powers are then sums

themselves, which may be approximated by
replacing with integrals. It is, however, not
difficult to use numerical values directly in the
expansion (4). In this way the numerical ex-

amples given in Table I were obtained, by using

from 10 to 20 terms in the series. ' The numerical

results closely follow a Gaussian curve in y over

Tables up to P» by Hj. Tallqvist, Soc. Scient. Fennica
or Finska Vet. Soc., Comm. Phys. -Math. Vol. 6, No. 3 and
No. 6 (1932).

Note that this Gaussian curve is again normal-

ized to unity on the sphere, that is,

p
00

2z ~ f(8) sin 8d8 e "'~'2ydy/o. '=1 (39)
~o 0

TABLE I. Numerical calculations.

&max*

Al 0.0025 cm
0.010
0.025

Pb 0.0038
0.013
0.0063

C 03

m xxiNt log (

2.8 0.00103 5.22
2.8 0.00411 5.22
2.8 0.0103 5.22
2.8 0.035 4.60

20 0.0018 6.63
9 0.0045 5.82
9 0.0045 6.70

v calc. obs.

96 6' 6'
380 14' 11'
960 23' 19'
940 43' 22'

2800 11' 6'
1400 16' 11'
6900 15' 11'

Hmsx actually means the angle corresponding to the most probable
value of sin 8/2 and is simply a measure for the width of the Gaussian
curve, sin (9»ax/2) =a/Q2.

a range extending from y = 0 to well beyond the
half-value, with

1/n' P(2l+1)Gi (40)

The calculations are made for case 8 of Sec-
tion 4.

The experimental results on the first four foils

of the table were obtained by using electrons of
approximately uniform energy, " while a range
of energies was used in the experiments on the
last three. ' For the first lead foil the calculated
angle is so large that it is unlikely that the con-
ditions mentioned in Section 3 are valid. The
discrepancy with the last three examples is
unexplained.

9. COMPARISON WITH WILLIAMS THEORY

M. M. Slawsky and H. R. Crane, Phys. Rev. , to be
published.

The theoretical treatment of the problem by
Williams is based on the assumption that small

angle multiple scattering will yield a Gaussian
distribution. The width of the Gaussian curve is
calculated by multiplying the mean square de-
Hection for a single collision by the average
number of collisions. In this calculation large
deHections, occurring on the average less than
once for each electron, are at first omitted and
afterwards added as a small correction, giving
the so-called "single scattering tail. "We shall not

go into a detailed analysis of Williams' method,
but his result can be obtained with the present
method by proceeding as follows. We integrate
Eq. (29) up to a, value y =y& instead of y = 1 and
omit the partial harmonic series. This gives for
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the exponent of G~

vQ& ——2m~'Ntl(I+1) log ($y&), (41)

which, substituted in Eq. (4), yields approxi-
mately a Gaussian curve with

IIb. Disregard of back scattering

It is frequently assumed that all electrons are
scattered only in the forward direction, and that
all electrons which enter the scatterer on one
side leave it at the other.

o.~= 27rK2Nt log (gyes).

The upper limit y& is defined by"

2m'z Nt dy, ly = 2~vrz Nt/y&,

(42)

(43)

III. Disregard of inelastic scattering

The effect of energy loss by the electrons upon
the distributions of scattering is very difficult to
determine, hence the assumption is made that
all scattering is elastic.

which means that the two largest deHections
have been omitted. In our examples, however,
these deflections are almost as large as the
average angle due to multiple scattering. The
omission of the partial harmonic series has a
more subtle meaning and is connected with the
way in which the distribution approaches a
Gaussian curve. Neither for a very small nor
for a very large number of impacts do we expect
a Gaussian distribution. It will be a good
approximation only in some intermediate cases.

10. DISCUSSION AND CONCI. USIONS

The approximations frequently encountered in
the several solutions of the scattering problem
may be classified as follows:

I. Assumption of a Gaussian distribution

In this case it is assumed that the single
scattering intensity decreases rapidly enough
with increasing angle to insure the validity of a
Gaussian distribution for multiple scattering. In
the more general case, this assumption leads to
the treatment of the problem by means of a
diffusion equation. "
IIa. Assumption of equal path lengths

Here it is assumed that all angles involved are
very small so that the path length of the elec-
trons can be taken equal to the thickness of the
scatterer. "The situation may be somewhat im-
proved by a simple first-order correction (com-
pare Section 3).

' Setting this equation equal to 2 instead of 1 is not very
essential and is done because Williams considers the
projection on a plane of the scattered beam as observed in a
cloud chamber.

~ W, W. Bothe, Zeits. f. Physik 54, 161 (1929); H. A.
Bethe, M. E. Rose and L. P. Smith, Proc. Am. Phil. Soc.
'78, 573 (1938).

~' This would mean neglecting the factor cos 8 in Eq. (11)
of the paper of Bethe et al.

Inasmuch as no one has satisfactorily treated
the relation between energy loss and scattering,
all theories contain assumption III. The theory
of Williams makes the other assumptions listed
above as well. The present paper makes all

except the first approximation, and is valid for
thin scatterers only. It is an exact solution
(except for III) for the ideal case of electrons
with equal total path lengths. The theory of
Bethe, Rose and Smith does not involve assump-
tions IIa and IIb, but their solution is, according
to them, valid only for thick scatterers. It is
not easy to see what effect assumption I has upon
their results.

In regard to this paper, several more remarks
may be made concerning the reliability of the
results. An approximation of a different nature
arises from the circumstance that w'e have no
exact know'ledge of the single scattering law, We
believe that more precise information about g(y)
is likely to improve considerably the agreement
between theoryandexperiment, which is at present
quite bad even for thin foils. The sensitivity of
the results to g(y) is clearly seen from Eq. (33).

For high velocities and small Z the relativity
corrections add a factor (1—y') to g(y) for large
angles. It is also possible that higher terms in the
series of Eq. (4) give more important contribu-
tions than expected, but preliminary investiga-
tions make this appear unlikely.

We wish to express our appreciation for dis-
cussions about the scattering problem with
Professors Crane, Fermi and Williams during the
Summer Symposium at the University of Michi-

gan, and more recently with Professor Uhlen-
beck. This investigation was undertaken in
connection with work supported by the Horace
H. Rackham Fund.


