TRANSITION PROBABILITIES

the value for the water absorption. According to
a formula developed by King,® at the lowest
frequency used, 84 percent of the sound energy
is contained in a cone whose semi-vertical angle
is 4 degrees and 20 minutes; at the highest
frequency, 84 percent of the sound energy is
contained in a cone whose semi-vertical angle is
1 degree and 40 minutes. This is an estimate
which greatly exaggerates the spread, since most

9 L. V. King, Can. J. Research 11, 135 (1934).
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of the energy of the beam is contained within
narrower limits than those here given. Neverthe-
less, the value of A(2a) is independent of this
slight spurious effect, since it represents the
difference in absorption due to the addition of
the suspension. .

We wish to express our sincere thanks to
Professor R. B. Lindsay for his suggestion of
the problem and for his help throughout the
investigation.
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The theory of quadrupole radiation is formulated in such a fashion as to make available
all the methods of computation and sum rules which have been developed for electric-dipole
radiation. Formulas for the strengths are given for the SLMsMy, scheme as well as the SL/M
scheme. The problem of the relative strengths of the multiplets in a transition array is treated,
and formulae are given that explicitly solve this problem for all possible transitions between
two-electron configurations. Values for np n'p&snp n''p, np n'p=np?, np n'p—np n'p and
np?—>np? are tabulated. The spectroscopic stability method and the eigenfunction method of
obtaining relative multiplet strengths are given a convenient formulation; and values are
computed for npi—>np3. A root S?of the line strength is defined in such a way that it transforms
like a Hermitian matrix component. This enables convenient computation of line strengths in in-
termediate coupling. The J-file sum rule is shown to hold in intermediate coupling with the same
degree of generality as for the electric-dipole case. Finally, closed formulas for the magnetic-
dipole strengths in LS coupling are given and the method of transformation to intermediate
coupling is indicated.

HE following considerations were developed in preparation for a complete tabulation of all
quadrupole and magnetic-dipole strengths within the configurations p?, #3 and p*, for all
possible cases of intermediate coupling, by a group at the Harvard College Observatory.!

I. QUADRUPOLE RADIATION

For the case of quadrupole transitions, the relative strengths of the Zeeman components of a line
and of the lines of a multiplet were first computed by Rubinowicz? and later, from group theory,
by Brinkman.? The J sum rule was shown to be obeyed within the multiplet. But nothing has been
done, from a general point of view, in connection with the relative or absolute strengths of the
multiplets in a transition array in LS coupling, and in connection with other coupling schemes of
importance, such as intermediate coupling, the SLMsM; scheme, and jj coupling. Condon* has
computed the absolute strengths of most of the lines of p?, p3, and p*%, for LS coupling and small

1 G. H. Shortley, L. H. Aller, J. G. Baker and D. H. Menzel, ‘“Tabulation of Strengths of Forbidden Lines in $2, 3, p*
as a Functicen of Coupling,” to appear soon in the Astrophysical Journal.

2 A. Rubinowicz, Zeits. f. Physik 61, 338; 65, 662 (1930).

3 H. C. Brinkman, Zur Quantenmechanik der Multipolstrahlung, Dissertation, Utrecht, 1932.
4 E. U. Condon, Astrophys. J. 79, 217 (1934).
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departures therefrom; but always by tediously writing explicitly one of the intermediate-coupling
eigenfunctions in the SLJM scheme for each separate level and computing from these the line
strengths. It turns out, however, that all the simplifications which are used in the computation of
ordinary dipole radiation® are available also in the case of quadrupole radiation; similar methods
of computation may be used and similar sum rules are obeyed. In this note we give a formulation
of the theory which is very convenient in this connection, and outline, frequently by analogy with
the dipole case, the necessary proofs.

Preliminaries

The strength Sy(aJ, &’J’) of a quadrupole line, in terms of which the probablhty of spontaneous
transition from the upper level aJ to the lower o’J’ has the value

1 32x8%°
A(ad, ' J)=—— Sq(ad, a'J"),
2J4+1 Sk
is defined by Sy(ed, &' T) =Sy(a' T al)= 3 (T MW |o T M")|2. . (1)8
Mo
Here N is the dyadic N'=—eX(riri—3123), (I=1i+jj+kk) (2)

the summation running over the electrons. In (1), the absolute square of a dyadic means the double-
dot product of the dyadic and its complex conjugate, which is the sum of the absolute squares of
the nine elements of the dyadic.

The formulas of Rubinowicz for the elements of the Hermitian matrix occurring in (1), but in a
notation patterned after that used by TAS for the dipole components, and which will prove ex-
tremely convenient, are

(e T MW/ T M£2) =(aJiNid/ NI[JFM)JFM-1)(JTEMF1)(JTEM+2)] K(£2),
(a T MW/ T M£1) =(aJiNid/ NN3QMEDN[TFM)JTEM+1)] K(F1),
(a« T MW T M) =(a JiNid' )6~ 3M2*—T(J+1)] K(0),
(aJ MW/ T—1 M+2)=(a JiNia' J—1)
+D[TFM)JFM-1)(JFM-2)(JxM+1)] K(x2),
(a J MW T—1 M) =(a JiNie/ T—1)3(J£2M+1[(TJFM)JFM-1)] (F1), (3)
(a T MW/ T—1 M) =(aJiNie/ T-1)M[3(J—M)(JT+M)]J: K(0),
(a T MW T=2 M=42)=(a JiNia/ T=2)3[(JFM)(JFM—-1)(JFM-2)(JFM-3)] R(x2),
(a T MW T—2 M*1)=(a JiNia/ J=2)(£)[(J-M)T+M)JFM-1)(JFM—-2)] K(£1),
(a TMW|/ T~2 M) =(aJiNid J=-2)[3(J—-M)JT+M)(JT—-1-M)(J—1+M)] (0).
Here the (AM) represent the dyadics
R(£2)=3li—jjxi((+jiD)], R(£1)=3[kit+ikti(Rj+jkR)], K(O)=+/3[kk—3ii—3jj]. (4)

The factors (aJ:Nia'J’) are expressible in terms of the factors (aJiria’J’) employed in the dipole
discussion (TAS, pp. 63, 95) as linear combinations of quantities of the type

S S (adiria J") (o Tiria ) =D(J,J",T"), (5)
namely (aJ:Nia! J)=D(J,J,J) = D(J,J—1,J) = D(J,J+1,7);
(aJiNid! J—1)=D(J,J,J—1)+D(J,J—1,7—1); (6)

(aJiNid/J—2)=D(J,J—1,7-2).

5See E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Camb. Univ. Press, 1935), to which we shall refer
by the letters TAS.
6 TAS, p. 93 et seq.; E. C. Kemble, Quanium Mechanics (McGraw-Hill, 1937), p. 469, p. 462 (footnote).
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The factors (aJiNia'J') form a Hermitian matrix which transforms like the matrix of an observable:

(BJINiB'T") = 2 (BIla))(afiNiaJ") (o T'|B'T"). (7

This may be easily demonstrated from the known transformation properties (TAS 9312, p. 64) of
the separate factors of (5).

The SLM sM; scheme

Computations in Russell-Saunders coupling are frequently simplified by using states characterized
by the quantum numbers M sMy in place of JM. For example, one can obtain the dependence of
the matrix components of ' on MsM; much more simply than on JM. They are diagonal in .S
and Mg, and by exactly the arguments used in the computation of (3), we see that the dependence
on My is

(YSLM M)Wy SL'MsM ') = (vSLiNiy'SL’) X factor given by (3) with JM replaced by LM 1. (8)

The elements (ySLiNiy'SL’) are given by (5) and (6) with « and J replaced by v.S and L (cf. 1129,

p. 70 TAS). From this Eq. (8) we see at once that the selection rules forbidding transitions J=0—0,

3—3%, 0=1, which are embodied in (3), apply also to L; transitions L=0—0, 0=1, i.e., S—S and
=P are forbidden.

The SLJ/M scheme

The matrix components of 9’ in this scheme should be expressible in terms of the same elements
as occur on the right of (8). This may be done by using 1138, p. 69 TAS to express the factors (6)
in terms of (ySLiNiy'SL’). This rather tedious calculation was carried out by Rubinowicz; we
give a typical formula:

(vS L JiNiy'S L—1J+1)=—(yS LiNiy'S L—1)
X[(S+L—J)(S+L—J~1)(J+S—L+1)(J+S—L+2)]%
2J(J+D+2)L2T+1)(2+3) 1

Sum rules, line and multiple strengths

T+ =SS+ ++L)EL+1D]. (9)

From (3) we easily evaluate the sums corresponding to 1331, TAS, which we need for the line
strength formulas and the proof of the J-file sum rule:

S (@I MW [T M) 2 (o T MW" T M) =81 yrdrrar (@i Nia J') (o i Nia YH(JT, T),  (10)
MI

where ‘ H(J,J)=3J(J+1)2T—1)(2T+3),
H(J,J-1)=3JJ+1)(J—-1)(2T—-1), H(J,J+D)=3JJ+1)(JT+2)(2T4+3), 11
HJ,J-2)=JJ—-1)(2J-1)(2T-3), H(J,J42)=(J+1)(J+2)(2T4+3)(2T+5).

These are not symmetric in J and J’, but become so when multiplied by 2741 to accomplish the
summation over M. This gives the formula for the line strength:

Sqla, o J)= ¥ (@ MW |a'J' M")|2= (2T +1) H(J,J")|(a]: Nia' J')|2. (12)
M, M’

By exact analogy with the simple transformation argument used to obtain the similar dipole sum
on p. 72 TAS we may write the value of the sum over J’ in the SLJM scheme:
2 (WSLIMW ' SL'T'M') « (v'SL'J'M' W\~ SL"J"M"")
JM

=875 8umBrr (vSLiNiy'SL') (v'SL: Niy"'SL) H(L,L'). (13)
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Since the right member is independent of J and M, dropping the double primes and multiplying
by 2J+1 to accomplish the summation over M gives us the ordinary J sum rule which holds within
a multiplet. If instead we multiply by (2S+1)(2L+1) to sum over J and M, we get the total multi-
plet strength

So(vSLy'SL) = ¥ Sa(ySLJy'SL'J") = (2S+1)(2L+1) H(L,L")|(vSLiNiy'SL)) 2. (14)

J,J’

The strengths of the individual lines of the multiplet are to be obtained by substituting in (12)
the formulas of the type (9) to obtain, e.g.

Sq(ySLJ,v'SL—1J+1)
_)2(S+L—J)(S+L~J—1)(J+S—L+1)(J+S-L+2)[J(J+1)—S(S+1)+(J—I-L)(L+1)]"’
8J(J+1)(J+2)

=(

. X|(yS LiNiy'S L—1)]2, (15a)
or in general

Sq(¥SLI 'SL'J") = (2J4+1) H(J,J') | (ySLI:Niy'SL'J")|2= fo(SLJ,SL'J")|(vSL: Ni4'SL")|2. (15Db)
In this notation the value of f(SLJ,SL'J") is 1% the coefficient of G?, H?, or I? in the table of p. 253, TAS."

Multiplet strengths in a transition array. Two different configurations. Coupled groups

We now turn to the question of the relative strengths of the different multiplets in a transition
array in LS coupling. The transition array must either connect two different configurations, differing
in regard to the #l value of one electron, or be entirely within the same configuration. For two
different configurations all the arguments of §3° p. 244 TAS may be repeated in the quadrupole
case. If the configurations are expressible in the forms I4+1II and I41V, respectively,® we may reduce
the strengths to those connecting II and IV. The parent term y'SIL! cannot change. Only the
part, M1, of M’ which refers to the electrons jumping from II to IV enters the consideration. This
part commutes with LT and from the known properties of the dipole components we see that the
factor? (yLSILY, yIISTILII SLINTUAISTLL, 4IVSIILIV SI') which enters (14) and (15) is independent
of S and is the same function of LILI'L, L'LYVL' as (ySLJ:Niy'SL'J") is of SLJ, SL'J’, cf. (9).
With this knowledge, a comparison of (14) with (15b) gives us the formula

Sq(vISTLY, ST LI Sy LSTLL 4V SILIY STY)
= (2S+1) fo(LALIL, LIV L) (yASHLIE NIy VSULIV) 2. (16)
That the last factor is independent of yLSIL! is shown by the fact that the matrix components
(YISTLIM ' M LA LSTLI M UM IR |y LSTLIM T M L F WV STLY M g1 M 1Y),

which are given by formulas like (3) in terms of the same factors, are independent of yISILT (see
the discussion in §18 TAS of vector coupling in antisymmetric states). If we sum (16) over all values
of L and L’ consistent with the given values of LY, LI, and L'V, we obtain, in analogy with (14)

7 There is one error in this table, in the ninth row, for the entry given explicitly in (15a), the — sign before J(L-+1)
in the bracket should be changed to +.

8 For example, I41I might be p2-sd, I+1V, p2.d2 The invariant part $2 may be considered as the parent configuration
to vIvhich the groups sd and d? are added. It is necessary that none of the electrons in either II or IV be equivalent to any
in I.

9 The functional dependence follows clearly from the definition of this factor and the discussion of §113, p. 67 TAS. The
argument of TAS (top of p. 70, bottom of p. 237) for the independence of S is, however, not clear. That in this case any
matrix component of N’ in the SLM sM1 scheme, and hence (cf. 8) the factor in question, is independent of .S may be
shown at once by transformation to a scheme employing quantum numbers SISIIM sIM sIt, where the components are
known to be independent of MsI and MII by a standard theorem (TAS 338, p. 49).
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and (15), for the total strength of all multiplets of spin S built on SILT by the addition of STIL!!
and STILIV the value
Sq('YISILI,‘{IISIILII,S ;’YISILI,'YIVSIILIV,S)

= (2S+1)(2LT+1) (2L +41) H(LULY) | (yILSULIE NIy IVSIILIV) (2 (17)

But the last two factors here are those in terms of which the multiplet strengths in the transition
ITI—-IV are expressed by (14). Hence we may set (17)

(2S4+1)(2L™41)
sy

Sq(,yIISIILII’,YIVSIILIV)' (17/)

This completes the reduction of the strengths to those of II—IV. In particular it is interesting to
note that in the case in which I involves only closed shells, so that ST=L1=0, S=S1, L=L1,
L'=L", (17") reduces to an equation which says that the closed shells do not influence the strengths.

Addition of an electron to an ion

For the case in which the jumping electron is not equivalent to any in the ion in either the initial
or the final configuration, the total strength of a supermultiplet is given by (17) and the strengths
of the multiplets in a supermultiplet by (16). We let ¥1SIL! represent the parent term of the ion,
yULY =yl and yIVLV=n'l', the #nl values of the jumping electron in the initial and final states
(nl#£n'l"), and S™'=1. The multiplet strength is

Sq(¥ISILY 1l SLSILY n'l! SL') = (2S41) fo(LUL, LW L") | (nki Nin/I') 2. (18)

The relative strengths of the multiplets in a supermultiplet are thus the same functions of LIL, L'I'L’
as the relative strengths of the lines in o multiplet are of SLJ, SL'J’. To obtain absolute strengths
we need to evaluate the last factor of (18), which is just the factor which arises in connection with
intensities in one-electron spectra. This is easily done by expressing one of the 9 components of
the dyadic —err in terms of this factor by (8) and then expressing this component as an integral.
In this way we find

LENin'l 2 sz DR#' D) dr= Ln'l
(niNin' 1) —mL r*R(nl) R(n' 1) dr=sq(nln’l),
(n ENin' 1—1) =0, (19)
e 0
iNin' 1—2) = — 2 R(nl) R(n' 1—2) dr=sq(nln’ I—2).
(niNin’ 1—2) (21—1)[(21—3)(21—}-1)]9-[; r2R(nl) R(n'1—2) dr=s,(nln'1—2)

The short sq-notation for these components is in practice convenient.

Two-electron configurations. Transitions involving an electron jump

If neither initial nor final configuration is composed of equivalent electrons, the multiplet strengths
are given at once by (18). If the two electrons of one of the configurations are equivalent, Eq. 6817,
p. 232 TAS, shows that the strengths of the allowed multiplets have just fwice the values given by
(18). The numerical values for np n'p=np n'’p and np n’'p=np? are given in Table II.

Summary

For transitions involving an electron jump, the jumping electron not equivalent to any in the ion
(but see the previous paragraph), the computation of the line strengths in terms of s, (19) involves
successive application of the following three formulas, which are very convenient as soon as tables
of F(SLJ,SL'J’) are available:
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Line strength in terms of multiplet strength, from (14) and (15)

fo(SLJT,SL'J")
“Sq(vSLJT,y'SL'J") = Sa(vSL,y'SL") = F,(SLJ,SL'J") Sq(vSL,¥'SL"). (20)
(2S+1@2L+1)H(L,L")
Multiplet strength in terms of supermultiplet strength, from (17) and (18)
Ffa(LUL,LY'L")
Sq(YISILY nl SLAISILI #'l’ SL') = Sq(YISILY nl S,yLSILY n'l’ S)
(2L™+1)(214+1) HE)
= Fo(LNL,LYVL") Sq(vIS'LY nl S,yLSILI »'l’ S). (21)
Strength of supermulizplet, from (17)

Sq(yISILY nl SyISIL 'l S) = (2S+1)2LT4+1)(214+1) HEY) s *(nln'l). (22)

Spectroscopic stability method. Any transition array

For any transition array we may obtain the relative strengths of the multiplets by a method,
based on the principle of spectroscopic stability, similar to that sketched in §4° p. 249 TAS. This
method, while quick and convenient, has the disadvantage of giving only the amplitudes and not
the phases in the matrix of 9’. Hence it is of no value for departures from LS coupling. For this
reason we do not give detailed formulas. Roughly, in this method, one first computes the absolute
squares of all matrix components of I’ in the #nl m m,; orbital scheme in terms of the s,’s, making
use of (8) for the one-electron components. Then the quantities |(ySLM sM [N |y'S'L' M s'M1)|?
are expressed in terms of |(ySLiNiy/S’L’)|? by (8). Applying the principle of spectroscopic stability
to each M gM, partition then gives equations to determine |(vSLiNiy’S’L’)|?, and hence from (14)
the multiplet strengths, in terms of the s,’s.

Eigenfunction method. Any transition array

This method is the only one available in cases not falling in the categories covered by the matrix
methods when it is desired to relate the phases of the strengths (see definition later) to those of the
eigenfunctions. It requires writing just one eigenfunction in the SLM sM scheme for each term
of the initial and final configuration. From these eigenfunctions we may calculate one component
of N’ in the SLM sM, scheme for each multiplet, employing the standard techniques for reducing
the matrix components of an observable of this type to one-electron components and evaluating
these from (8) in terms of s,. This same matrix component is, on the other hand, directly expressible
by (8) in terms of (ySLiNiy’SL’). This enables us to obtain this last quantity in terms of the s4's
with proper phase for the particular choice of eigenfunctions. The multiplet strengths and line
strengths are then obtained from this by (14) and (20).

The methods of the previous two paragraphs are applicable in cases of transition between two
terms of the same configuration as well as in cases in which an electron jumps. Before considering
matrix methods available for such cases, it will be desirable to consider the transformation to inter-
mediate coupling.

Intermediate coupling. Computation of line strengths

In any coupling, the strength of a line aJ, &’J’ is given in terms of (aJiNia'J") by (12). The
transformation properties of (aJiNia'J’) are known from (7). If we introduce a quantity S.*(aJ,a’J’)
defined as the square root of the line sirength taken with the sign of the matrix component (aJ:Nia'J'),
we obtain the transformation formula

Sqt(BJ,BJT) = Z, BI|at) Sq¥(ad, o/ T") (' T'|B'T"). (23)
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This enables us, in particular, to obtain the line strengths in intermediate coupling in terms of
those in LS coupling if the intermediate-coupling eigenfunctions are known in terms of the LS-
coupling functions and the values of S,* are known for the same Russell-Saunders functions with
the same phases.

For the matrix computation summarized above, the phases of S3(vSLJ, y'SL'J’) are given,
in terms of the standard system of eigenfunction phases employed in TAS, by (20), (21), (22) if in
taking the roots we use for the phases of f,* or of F.} those in the table of p. 253 of TAS. These
phases are those in the column marked ‘‘Sign” multiplied by the sign of the quantity in the bracket
which occurs squared in some of the elements.

Intermediate coupling. Sum rules

The J-group sum rule of course holds because of the principle of spectroscopic stability. This
sum rule says that the sum of the strengths of the lines connecting all the levels of a given J in the
initial configuration with all the levels of a given J’ in the final configuration is independent of
coupling. For the case in which the initial and final configuration are identical, it is clear that in
those groups with J=J’ we must include the strengths of the ‘‘lines’ connecting a level with itself
and must double the strength of all other lines.

In case the initial and final configuration are different, the J-file sum rule obtains. A J file is the
set of all lines connecting a single given level of one configuration with all levels of the other con-
figuration. The sum rule states that for any coupling, the strengths of the J files referring to the levels
of the initial (final) configuration are proportional to 2J+1 provided that the jumping electron is not
equivalent to any other in the final (initial) configuration. The proof parallels exactly that for the dipole
case on pp. 279-281 of TAS since the sum relations (10) and (13) are similar to the corresponding
dipole sums. In particular, if the #l electron which jumps is equivalent to k—1 other %! electrons
in the configuration to which the J files refer, and jumps to an #'l’ orbit, the invariant strengths
of the J files are

EQJ+1) HIY) sd(nl, n'l'). (24)

Matrix calculation for transitions between states of the same configuration (no-electron jumps)
For a configuration I+41I consisting of inequivalent coupled groups, the strengths may be reduced
to those within configuration I and II separately by methods similar to those used for the spin-
orbit interaction in §11 p. 266 TAS. The procedure will be clear from the discussion of the important
two-electron case, to which we proceed at once.
In the case of transition nl #'l'—nl n'l’ the roots of the multiplet strengths are (cf. 14)

Sl n'l! SL, nl n'l SL’)=[(2S+1)(2L+1) H(L,L’)]'* (nln'l LiNinln'l' L), (25)

the last factor being independent of S because ' commutes with the spins of both electrons. The
arguments of pp. 216, 232 TAS show that the last factor may be evaluated by ordinary vector-
coupling methods, writing N=N;+ N., giving the first electron the quantum numbers #l, the
second the quantum numbers #’l’, and ignoring considerations of antisymmetry. This is true whether
or not nl and n'l’ are equivalent. '

The part (nl #'l' L:Nainl n'l' L) of this factor is the same function of I'L, 'L’ as (ySLJiNivy’SLJ")
is of SLJ, SLJ'. Hence its contribution to Sg} is, cf. (15b), (2S+1)} fIWL, WL sq(n'V n'l).
The factor (nl #'l' LiNinl »'l' L') is the same function of VIL, VIL' as (ySLJ:Niy'SLJ’) is of SLJ,
SLJ', except for phase. The reversal of the roles of the added vectors makes a phase change of
(—1)H¥—Ltiti=L' = (—1)L+L’ (cf. 1437, p. 78 TAS). In this way we find for the total root multiplet
strength

Sd(mln'l SLynl 'l SL') = 2S+ DI fPWW LWL sqm'V V)4 (—1)22 fAVILVIL) sq(nlnl)], (26)

in terms of which the root line strength with the standard phase choice is given by (20).
In this case the J-file sum rule does not hold unless either sq(#l,nl) or sq(n’l',n'l') vanishes.
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TasLE 1. F(SLJ, SL'J"), which gives
the relative strengths of the lines in a
quadrupole multiplet, and the relative
strengths of the multiplets in a super-
multiplet, The sign of Fo}is indicated.

TaBLE I1. Line strengths in quadrupole transition arrays.
(The sign of S?q ts indicated.) The array labeled np n'p
snupn''p is applicable to arrays of the following four
types, according to the choice of a and B:

np n'pEnp n''p
=B =sa(n'p, n");

2n 2, / np n'pnp?
. ?’/ZD5= , a=8 =25q2(Ellp,(1’lP) for allowed lines;
P32, X%/ 3533 np n'p—np n'p [cf (27)]
zp 2 4-3 4»7 75 * PG P/ PZ a=(Sq’+5q)2; 3=(5q’_sq)2;
e 5, [0 0% npt—np? .
3 3p_3p -"po 03 ol a=4s2(np, np) for allowed lines.
1 "2 3 36
3 ¥, +o +. ] 31 4, -+ 36
s, 35 7)s Ble0'7
/ 1 /
"D/ 30: D, .aDI aDz "D_, o n's <o o ' ) So P, D,
T
%,[0200 5p, (2135 POPE=DP NP sl 0 0 Td|
3 | e - ;3 b f Pl O Ja 98 |z
p, 275 28 780 DE 352540 360 /DE +4l1 '93 +7(X
3 -t 3 v, -+
P, o 3556 'D; |4 40%96 s s
P % P b %R b, Db
Pol 0.l o o o Tioox008] o
iti "o Y00a "
Transition arrays np n'p—np n'p and np*—np?. 3‘;; g Lo ,720‘ .j;’g: . 2050‘ _":50: f*jgg;
In these cases the f,'s occurring in (26) are ::DI _;__‘?...,iféf?“ :?051‘.’.:!:470‘ 1/3:‘5@..;245“;:?.529.‘.37;6
given by the entries of Table I for 3P—3P and ;,ge égg‘;i? 000a 5;55“ _Z"z"’s'"" ;_;:‘;"‘ ;ff?s f.?;gﬁ
. ' - 280
the relation f,(\PsPr) =15 FoCP.iP,). T we | oG e e
write sq for sq(npmp) and s, for sq(n'pn'p),
(sd +s=a, (s —54)2=8, we find for the mul- np?—>np?® np>— np?
1 / "h - le 35 353, |
tiplet strengths of np n'p—onp n'p: / 50, P, %, 0, ) 5520, °P D50
¥
50519 5,057 =0, SEERE
Sq(}S,1D) = (+)? 55 (sq' +54)* = (+)* Ha, 3plo 0% % olEsf ZPL/Z. 0lo 06 14|5
Sq(PIP) = (—)2 34 (sq +54)%=(—)? ¥a, p, 04 ‘o 7 0 2Dy, (076 610 0
Sq(PP,ID) = (—)2 134 (sq —sq)?=(—)? 1348, ‘D6 0 0 0%s %Dy loi2 1410 ©

S4(D, D) = (+)° 23 (sq/+s0)" = (+)? %

2¢,
54(5,38) =5, (.S,P) =0, (27)

Sa(SD) = (4)? S(so/+50) = (+)? Set,
SuCPAP)= (=) 195y +50 = (=) ia,
Sq(PRD) = (=) 9 (sq/ —sq)? = (=) 4348,
SaCD.D) = (+)* *8i(sy'+s0)'= (+)* i

‘The strengths of the multiplets actually occur-

ring in np?*—np? are given by these same formulas
with sq=s5,=snp,np); a=4 si(npnp).
From (27), (20), and Table I we immediately

obtain the line strengths given in Table II. The
strengths of the lines connecting a level to itself are of course of no interest in pure LS coupling,
but play an important réle in Eq. (23) in transformations to intermediate coupling.

Transition array np3—np?

This transition cannot be handled by these matrix methods. The multiplet strengths are found
very simply, however, by the eigenfunction method given above, using the eigenfunctions of 486,
p. 224 TAS. It turns out that there is only one nonvanishing multiplet,’® namely 2P-2D, for which
(2PiNi2D) = — 3~ s (np,np) and S,(P2D)=(—)%30 s®(np,np). This, with the F,(*Ps2Ds/) of
Table I, gives the line strengths of Table II.

10 That the strengths of the ‘‘diagonal’’ multiplets of $® vanish is analogous to the vanishing of the Landé intervals,
and follows from the almost-closed-shell considerations given below in the following way: When we consider $? as starting
to fill the shell we denote it by &; when we consider it as three electrons missing from a closed shell we denote it by 9.
The considerations of almost-closed shells shows that (R2P:N:2P)= —(R2P:N:R2P); (¥D:N:¥2D) = — (R2D: N:R?*D).
Now from the way the correlation of the states of € and 9 are made, it is not necessary that L2P and R?P, €D and
R2D be identical; but because they really represent the same physical state we must.have @P=+R2P (in our case
actually —), 2D = +R2D (actually +). From this it follows at once that the above diagonal elements vanish. Such general
arguments give no information about the value of the nondiagonal element (22P:N:22D), which equals — (R2P: N:R®?D).
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Transition arrays involving almost-closed shells. The array np*—np!

When we investigate the relation between transition arrays involving almost-closed shells and
the corresponding simpler arrays, we find just as in the dipole case (p. 316 TAS) that if the transition
is between two different configurations containing the same almost-closed shell the strengths are
the same as for the simpler array in which the almost-closed shell is replaced by the missing electrons.
But for quadrupole radiation we have another case to consider, the case of no-electron jumps. Here
we find, by an examination of the corresponding matrix components in the m m-orbital scheme
that the sirengths are the same for a pure almosi-closed shell array (such as p*—p*) and for the comple-
mentary array (such as p*—p?). The matrix components of 9’ and hence the phases of St are of
opposite sign in the two cases. Hence the strengths are not the same in an array such as p'd—pid
and in the corresponding array p?*d—pd. Rather, the one set of strengths will be obtained from the
other by reversing the sign of sq(p,p). This is analogous to the rule which holds for spin-orbit
interaction.

77 coupling

It is clear from the similarity of the above formulation to that for the dipole case that the methods
used in the latter to obtain strengths in jj coupling (see TAS p. 264) are directly available here.

II. MAGNETIC-DIPOLE RADIATION

The strength Sw(aJ, «’J’) of a magnetic-dipole line, in terms of which the probability of spon-
taneous transition from the upper level oJ to the lower level &’J’ has the value

An(ad, o'J") ! 64T4oaS (ad, a'J") (28)
m\&J, & = m\&J, & )

2J+1 3k
is defined by

e
Sulat, /I =Su(d'T, aJ)= Y |[(«JM|M|a’J'M")|2, where M= —T(L-{—ZS). (29)
MM’ uc

In LS coupling, magnetic-dipole transitions occur only between two levels of the same term. It does
not seem to have been generally realized! that simple closed formulas can be obtained!? for these
strengths in LS coupling, and that these strengths can be used in transformations to intermediate
coupling. By the same procedure as in the electric-dipole case (p. 99 TAS) we can write

Sm(ad, o/ J)=(2J+1) E(J,T)|(aJ: Mia'J")|2 (30)
The last factor can be evaluated from 1032 pp. 64, 66 TAS to give

1 For example, by Condon, reference 4.

12 These formulas, at least for the nondiagonal elements, are given by Brinkman, reference 3. They are of considerable
direct interest in connection with the excitation of the ground term in rarefied atmospheres. For example, Dunham,
Nature 139, 246 (1937), found four interstellar absorption lines from the lowest level 4Fg/2 of Ti II and none from the
next level 4Fs/; in spite of its low excitation potential of only 0.012 volt. The reason for the absence of absorption by
4Fyq is its short mean life for magnetic-dipole radiation of 7.6 hours, as determined from (28) and (31), whereas collisions
occur much less frequently. This mean life was computed by Houston from Brinkman’s formula and reported by Dunham,
but with a numerical error of a factor of 103, as Houston has kindly verified.
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Sw(SL J,SL J+1)=[+1?

(J--S-FL—}—1)(J-I-S--L-i-1)(-7-I-S+L+2)(5-|-L—J)(_ﬁ)2

4(J+1) 2uc

s (31)
Su(SLJ,SLJT)  =[g(SLI)T: J(J+1)(2J+1)( —2__) ,
e

where g is the Landé factor for the Zeeman effect. If we define Sni(eJ, o’J’) as the root of S, taken
with the sign of (aJiMia'J’) when measured in units (—e#/2uc), the transformation of coupling is
effected exactly as in (23). In LS coupling, the sign of Sn! is the sign of the quantity in square
brackets in (31), which is + except in rare instances.

The magnetic-dipole strengths do not satisfy the ordinary J sum rule within a multiplet. Instead,
one obtains the formula

T Su(SLJ, SLT) =[2J(J+1)+25(S+1) = LL+1) 12T +1). (32)

In intermediate coupling, only the J-group sum rule is obeyed.

It is interesting to note that while one easily obtains the simple closed formulas (31) for the
magnetic-dipole strengths in LS coupling, the strengths in jj coupling are relatively difficult to
obtain; for many configurations the last factor of (30) cannot be evaluated by matrix methods
and recourse must be had to the eigenfunctions or to transformation from LS coupling.



