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the value for the water absorption. According to
a formula developed by King, ' at the lowest
frequency used, 84 percent of the sound energy
is contained in a cone whose semi-vertical angle
is 4 degrees and 20 minutes; at the highest
frequency, 84 percent of the sound energy is
contained in a cone whose semi-vertical angle is
1 degree and 40 minutes. This is an estimate
which greatly exaggerates the spread, since most

' L. V. King, Can. J. Research 11, 135 (1934).

of the energy of the beam is contained within
narrower limits than those here given. Neverthe-
less, the value of 6(2n) is independent of this
slight spurious effect, since it represents the
difference in absorption due to the addition of
the suspension.

We wish to express our sincere thanks to
Professor R. B. Lindsay for his suggestion of
the problem and for his help throughout the
investigation.
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The theory of quadrupole radiation is formulated in such a fashion as to make available
all the methods of computation and sum rules which have been developed for electric-dipole
radiation. Formulas for the strengths are given for the SLM83II, scheme as v ell as the SIJM
scheme. The problem of the relative strengths of the multiplets in a transition array is treated,
and formulae are given that explicitly solve this problem for all possible transitions between
two-electron configurations. Values for np n'p~np n"p, np n'p~np', np n'p~np n'p and
np'~np~ are tabulated. The spectroscopic stability method and the eigenfunction method of
obtaining relative multiplet strengths are given a convenient formulation; and values are
computed for np'~np'. A root 8& of the line strength is defined in such a way that it transforms
like a Hermitian matrix component. This enables convenient computation of line strengths in in-

termediate coupling. The J-file sum rule is shown to hold in intermediate coupling with the same
degree of generality as for the electric-dipole case. Finally, closed formulas for the magnetic-
dipole strengths in LS coupling are given and the method of transformation to intermediate
coupling is indicated.

HE following considerations were developed in preparation for a complete tabulation of all

quadrupole and magnetic-dipole strengths within the configurations p', P', and P4, for all

possible cases of i.ntermediate coupling, by a group at the Harvard. College Observatory. '

I. QUADRUPOLE RADIATION

For the case of quadrupole transitions, the relative strengths of the Zeeman components of a line

and of the. lines of a multiplet were first computed by Rubinowicz' and later, from group theory,
by Brinkman. The J sum rule was shown to be obeyed within the multiplet. But nothing has been
done, from a general point of view, in connection with the relative or absolute strengths of the
multiplets in a transition array in IS coupling, and in connection with other coupling schemes of
importance, such as intermediate coupling, the SI.3@~&1, scheme, and jj coupling. Condon has
computed the absolute strengths of most of the lines of p', p', and p', for LS coupling and small

' G. H. Shortley, L. H. Aller, J. G. Baker and D. H. Menzel, "Tabulation of Strengths of Forbidden Lines in p', p', p4

as a Function of Coupling, " to appear soon in the Astrophysical Journal.
2A. Rubinowicz, Zeits. f. Physik 61, 338; 65, 662 (1930).
3 H. C. Brinkman, Zur Quantenmechanik der Multipolstrah/ung, Dissertation, Utrecht, 1932.
4 E. U. Condon, Astrophys. J. 79, 217 (1934).
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departures therefrom; but always by tediously writing explicitly one of the intermediate-coupling
eigenfunctions in the SLY scheme for each separate level and computing from these the line

strengths. It turns out, however, that all the simplifications which are used in the computation of
ordinary dipole radiation' are available also in the case of quadrupole radiation; similar methods
of computation may be used and similar sum rules are obeyed. In this note we give a formulation
of the theory which is very convenient in this connection, and outline, frequently by analogy. with
the dipole case, the necessary proofs.

Preliminaries

The strength S~(aJ', a'J') of a quadrupole line, in terms of which the probability of spontaneous
transition from the upper level o.J to the lower n'J' has the value

1 32m. 0
A, (u J, a'J') = 8,(uJ, a'J'),

21+1 5k

is defined by

Here 5' is the dyadic

8,(aj, u'J') =S,(u'J', aJ) = P ~(ajM~R')a'J'M')~'.
M, M'

sZ(r'r' —'3 r"3)— (~~ = ii+jj+kk) (2)

the summation running over the electrons. In (1), the absolute square of a dyadic means the double-
dot product of the dyadic and its complex conjugate, which is the sum of the absolute squares of
the nine elements of the dyadic.

The formulas of Rubinowicz for the elements of the Hermitian matrix occurring in (1), but in a
notation patterned after that used by TAS for the dipole components, and which will prove ex-
tremely convenient, are

(a JM 5'a'
(a JM R'a'
(a JM%' a'

( JM~9t'~ '

(a J MR' 'a

(u JM%' 'a
(a JM %'ia'
(u JM R'a'
(a JM 5'a'

J M+2) =(a
J M+1) =(u
J M) =(a
J—1 M&2) = (u

J—1 M+1) =(a
J—1 M) =(a
J—2 M+2) = (a
J—2 M+1) =(a
J—2 M) =(a

J:N.'u' J) -,'[(J+M) (J+M —1)(JISM+1)(JA M+2)]' I(+2),
J,'N:a' J) 2(2M+1) [(JWM)(j&M+1)]' R(+1),
J'N:a' J)6 '[3M' —J(j+1)]R(0),
J'N' u' J—1).

(a -', )[(J~M) (j~M —1)(J~M —2) (JAM+1)]' R'(+2),
J' Nu' J—1)-', (J+. 2M+1)[(JWM)(JWM —1)]lI(+1), (3)
J:N', u' J—1)M[2(j—M)(j+M)]l +(0)
J:N:u' J—2)-', [(JWM)(j+M —1)(JWM —2)(JTM —3)]' g(~2),
J'N": ' J—2)(~)[(j—M)(j+M)(j+M —1)(J~M—2)]*' g(+1),
j:.¹u'J—2)[-', (J—M)(J+M)(J —1 —M)(J—1+M)]'* R(0).

Here the R(6M) represent the dyadics

Q(&2) = -,'[ii—jj&i(ij+ji)], 9'(&1)= -', [ki+ik&i(kj+jk)], Q(0) = g-', [Ak —', ii -',jj]. (4)-—
The factors (aj':N:a'J') are expressible in terms of the factors (uJ'. r; a'J') employed in the dipole
discussion (TAS, pp. 63, 95) as linear combinations of quantities of the type

namely

P P(aJ r„a"J")(u"J".'r; a'J') =D(J,J",J'),
i a"

(aJ:N."a'J) =D(J,J,J) D(J,J 1,J)—D—(J,J+1,—j);
(aJEN a'J 1) =D(J—, J,J 1)+D(J,J 1,J—1);- —

(aJ N'a'J 2) =D(J,J 1—,J—2). —
(6)

' See E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Camb. Univ. E'ress, 1935), to which we shall refer
by the letters TAS.

6 TAS, p. 93 et seg. ; E. C. Kemble, Quantum Mechanics (McGraw-Hill, 1937), p. 469, p. 462 (footnote).
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The factors (nJ:N.". u J ) form a IZermitian matrix which transforms like the matrix of an observable:

(PJ':¹P'J')= P (PJ[nJ)(nJ,'N n'J')(n'J'[P'J')
a, ot'

(7)

This may be easily demonstrated from the known transformation properties (TAS 9'12, p. 64) of
the separate factors of (5).

The SLMSMI scheme

Computations in Russell-Saunders coupling are frequently simplified by using states characterized
by the quantum numbers 3f83III. in place of JUL For example, one can obtain the dependence of
the matrix components of 5' on MsMc much more simply than on JM. They are diagonal in S
and Me, and by exactly the arguments used in the computation of (3), we see that the dependence
on 351, is

(ySLMsMc[%'[y'SL'MsMr. ') = (pSL:N p'SL') X'tactor given by (3) with JM replaced by LMc. (8)

The elements (ySL'N. y'SL') are given by (5) and (6) with u and J replaced by yS and L (cf. 11'9,
p. 70 TAS). From this Eq. (8) we see at once that the selection rules forbidding transitions J=0~0,
—,
'—&-', , 0 1, which are embodied in (3), apply also to L; transitions L=0~0, 0 1, i e S.—.+, S and
S P are forbidden

The SLJM scheme

The matrix components of 9t' in this scheme should be expressible in terms of the same elements
as occur on the right of (8). This may be done by using 11'8, p. 69 TAS to express the factors (6)
in terms of (ySL N:y'SL') This rather .tedious calculation was carried out by Rubinowicz; we
give a typical formula:

(yS L J:¹y'SI. 1J+1)= ——(yS L.'N:y'S L 1)—
P(S+L J)(S+L J —1)(J+S —L+—1)(J+—S L+2)]**—

X [J(I+1)—S(S+1)+ (I+I )(I +1)]. (9)
2J(J+1)(J+2)[(21+1)(2J+3)]l

Sum rules, line and. multiple strengths

From (3) we easily evaluate the sums corresponding to 13'1, TAS, which we need for the line
strength formulas and the proof of the J-file 'sum rule:

Q( JMu[%'[ J'nM'): (n'J'M'[%'[n" J"M")= 8 gg 8M~ (nJ'Nu'J') (n'J".N:n"J)EE(J,J'), (10)
M'

where II(J,J) = —',J(J+1)(2J—1)(2J+3),
H(J,J—1) = —',J(J+1)(J—1)(2J—1), EI(J,J+1)= —,'J(J+1)(J+2)(2J+3),
Ei(JJ—2) =J(J—1)(2J—1)(2J—3), H(J J+2) =(J+1)(J+2)(2J+3)(2J+5).

These are not symmetric in J and J', but become so when multiplied by 2J+1 to accomplish the
summation over 2IL This gives the formula for the line strength:

S,(uJu'J') = Q [(n JM[92'[
' n'JM)[2=(2J+1) II(J J')[(nJ!Nin'J')[2

M, M'
(12)

By exact analogy with the simple transformation argument used to obtain the similar dipole sum
on p. 72 TAS we may write the value of the sum over J' in the SLEE scheme:

2 (ySLJMI& lv'SL'J'M'): (v'SL'J'M'[5'[y "SL"J"M")
J'M'

=3JJ b~~"etc (ySL.'N:y'SL')(y'SL';:N'. y"SI) H(L, L'). (13)
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Since the right member is independent of J and M, dropping the double primes and multiplying
by 2J+1 to accomplish the summation over M gives us the ordinary J sum rule which holds within
a multiplet. If instead we multiply by (2S+1)(2L+1) to sum over J and M, we get the total multi
P/et strength

S,(ySL,y'SL') = Q S,(pSLJ,p'SL'J') =(2S+1)(2L+1)H(L, L')~(ySL'. N:y'SL')~'. (14)

The strengths of the individual lines of the multiplet are to be obtained by substituting in (12)
the formulas of the type (9) to obtain, e.g.

5~(75 L J, y'5 I, 1J+1)—
(S+L I)(5—+L J 1)(I—+S—I-+1)—(J+5 I +2)—5J(J+1)—S(S+1)+(J+L)(L+1)]'=(—)'

SJ(J+1)(J+2)

or in general
&& i(yS L' N' y'5 I..—. 1)i', (15a)

5,(ySLJy'SL' J') = (2J+1) H(J,J')
~
(ySLJ'.N'p'SL' J') ~' =f~(SLJ SL'J')

~
(ySL.'N'p'SL')

~

'. (15b)

In this notation the value off, (SLJ,SL'J') is —,', the coePcient of G', H', or I2in the table of p Z53, T.AS. '

Multiplet strengths in a transition array. Two different configurations. Coupled, groups

We now turn to the question of the relative strengths of the diR'erent multiplets in a transition
array in LS coupling. The transition array must either connect two different configurations, differing
in regard to the nl value of one electron, or be entirely within the same configuration. For two
different configurations all the arguments of $3', p. 244 TAS may be repeated in the quadrupole
case. If the configurations are expressible in the forms I+II and I+IV, respectively, ' we may reduce
the strengths to those connecting II and IV. The parent term p'S'L cannot change. Only the
part, %"', of %' which refers to the electrons jumping from II to IV enters the consideration. This
part commutes with L' and from the known properties of the dipole components we see that the
factor' (y'5'L' y "5"I.",SL'Nn. y'5'L', y' 5"I', SI') which enters (14) and (15) is independent
of 5 and is the same function of L'L"L, L'L' L' as (ySLJ' N' y'SL'J') is .of. SLJ, SL'J', cf. (9).
With this knowledge, a comparison of (14) with (15b) gives us the formula

(~ISILr ~IISIILII SL.~ISILI ~IvSIILIv SLI)

(25+.1)f (I ILIII I II IvI I)
~

(+IISIILII:NII:+IvSIII Iv)
~

2 (]6)

That the last factor is independent of p'S'L' is shown by the fact that the matrix components

( 'SiL'M 'M ' "5"L"M "M "i%
i

'5'L'M '3II ' ' 5"L' M "M ' )

which are given by formulas like (3) in terms of the same factors, are independent of y'5'L' (see
the discussion in $1' TAS of vector coupling in antisymmetric states). If we sum (16) over all values
of I and L' consistent with the given values of I', L", and I'v, we obtain, in analogy with (14)

There is one error in this table, in the ninth row, for the entry given explicitly in (15a), the —sign before J(L+1)
in the bracket should be changed to +.

For example, I+II might be p~ sd, I+IV, p'd'. The invariant part p may be considered as the parent configuration
to which the groups sd and d' are added. It is necessary that none of the electrons in either II or IV be equivalent to any
in I.' The functional dependence follows clearly from the definition of this factor and the discussion of $11', p. 67 TAS. The
argument of TAS (top of p. 70, bottom of p. 237) for the independence of S is, however, not clear. That in this case any
matrix component of 9l in the SLMzMz, scheme, and hence (cf. 8) the factor in question, is independent of S may be
shown at once by transformation to a scheme employing quantum numbers S~S&&M&&M&&I, where the components are
known to be independent of Mz& and M8&& by a standard theorem (TAS 338, p. 49).
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and (15), for the total strength of all multiplets of spin 5 built on 5'I.' by the addition of 5"I,'I
and 5"I.'~ the value

(~ISILI ~IISIII Ix S.~ISILI ~IVSIII Iv 5)
—{25+1)(2Lx+ 1)(2LII+1) H(I IILIv)

~

(~IISIII II:+II'~ivSIII Iv)
~

8 (1 7)

But the last two factors here are those in terms of which the multiplet strengths in the transition
II—+IV are expressed by (14). Hence we may set (17)

(25+1)(2I I+1)
(~IISIXLII ~IVSIILIV)

25"+1
(17')

This completes the reduction of the strengths to those of II—+IV. In particular it is interesting to
note that in the case in which I involves only closed shells, so that 5~=L~=0, 5=5~~, I =I~~,
L' =L, 'V, (17') reduces to an equation which says that the closed shells do not influence the strengths.

Mdition of an electron to an ion

For the case in which the jumping electron is not equivalent to any in the ion in either the initial
or the final configuration, the total strength of a supermultiplet is given by (17) and the strengths
of the multiplets in a supermultiplet by (16). We let yxSILI represent the parent term of the ion,

=Nl and y I'~=.n'I', the n/ values of the jumping electron in the initial and 6nal states
(nlgn'1'), and 5"= -', . The multiplet strength is

5 (7'5'I I nl SI.yxSILI n'1' SI ') = (25+1)f~(LIIL Ixl'I, ')
~

(nl'¹n'1') ~'. (18)

The relative strengths of the multiPlets in a suPermultx'Piet are thus the same functions of L'1L, L'1'L'
as the relative strengths of the lines in a multiplet are of SIJ; SI.'J'. To obtain absolute strengths
we need to evaluate the last factor of (18), which is just the factor which arises in connection with
intensities in one-electron spectra. This is easily done by expressing one of the 9 components of
the dyadic —err in terms of this factor by (8) and then expressing this component as an integral.
In this way we 6nd

(nl:'¹n'1) = r'R( ln) R(n'1) dr=s, (n l,n'1),
(21—1)(21+3)"o

(n 1'¹n'1—1)=0

(n I:E:n'1—2) = — ' r'R(n 1) R(n'1 —2) dr=s~(n l,n'1 —2).(»-1)5(»-3)(»+ 1)1».
The short s~-notation for these components is in practice convenient.

Two-electron con6gurations. Transitions involving an electron jump

If neither initial nor final con6guration is composed of equivalent electrons, the multiplet strengths
are given at once by (18). If the two electrons of one of the configurations are equivalent, Eq. 6'17,
p. 232 TAS, shows that the strengths of the allowed multiplets have just twice the values given by
(18).The numerical values for np n'p np n"p and np n'p np' are given in Table II.

For transitions involving an electron jump, the jumping electron not equivalent to any in the ion
{but see the previous paragraph), the computation of the line strengths in terms of s~ (19) involves
successive application of the following three formulas, which are very convenient as soon as tables
of I",(SLJ,SL'J') are available:
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Line strength in terms of multiplet strength, from (14) and (15)

f,(SLJ,SL'J')
S~(ySLJy SL~JI): Sq(ySL y SL) Fq(SLJSL J) S,(ySL y SL) (20)

(2S+1)(2I.+1)H(I, L')

Multiplet strength in terms of supermultiplet strength, from (17) and (18)

f,(L'1L,L'1'L')
5 (y S L nl SI. y 5'I. n'1' SI.') = Sq(y SiL nl 5 y S'L n'1' 5)

(2I.'+ 1)(21+1) H(l, 1')

= F (L'lL, L'1'L') 5 (y'5'L' nl S,p'5'L' n'1' S). (21)

Strength of supermulti piet, from (17)

5 (y'5'L' nl 5 y'5'L' n'P S) = (2S+1)(2L'+1)(21+1) H(l, l') s~2(nl, n'1') (22)

Spectroscoyic stability method. Any transition array

For any transition array we may obtain the relative strengths of the multiplets by a method,
based on the principle of spectroscopic stability, similar to that sketched in f4, p. 249 TAS. This
method, while quick and convenient, has the disadvantage of giving only the amplitudes and not
the phases in the matrix of 9l'. Hence it is of no value for departures from LS coupling. For this
reason we do not give detailed formulas. Roughly, in this method, one first computes the absolute
squares of all matrix components of %' in the nl m, mi orbital scheme in terms of the s~'s, making
use of (8) for the one-electron components. Then the quantities ((ySLMeMlt9t'~y'5'L'Ms'ML, ')~'
are expressed in terms of ~(ySL:N y'5'L') ~' by (8). Applying the principle of spectroscopic stability
to each MeMI, partition then gives equations to determine t(ySL:N'y'5'L') ~', and hence from (14)
the multiplet strengths, in terms of the sq's.

Eigenfunction method. Any transition array

This method is the only one available in cases not falling in the categories covered by the matrix
methods when it is desired to relate the phases of the strengths (see definition later) to those of the
eigenfunctions. It requires writing just one eigenfunction in the SLMeMI. scheme for each term

of the initial and final configuration. From these eigenfunctions we may calculate one component
of 9l' in the SLMeMI, scheme for each multiplet, employing the standard techniques for reducing
the matrix components of an observable of this type to one-electron components and evaluating
these from (8) in terms of s~. This same matrix component is, on the other hand, directly expressible
by (8) in terms of (ySL:N' y'SL'). This enab. les us to obtain this last quantity in terms of the s~'s
with proper phase for the particular choice of eigenfunctions. The multiplet strengths and line
strengths are then obtained from this by (14) and (20).

The methods of the previous two paragraphs are applicable in cases of transition between two
terms of the same configuration as well as in cases in which an electron jumps. Before considering
matrix. methods available for such cases, it will be desirable to consider the transformation to inter-
mediate coupling.

Intermediate coupling. Computation of line strengths

In any coupling, the strength of a line nJ, n'J' is given in terms of (nJ:¹n'J') by (12). The
transformation properties of (nJ N".n' J') are known from (7). If we introduce a quantity S~'(n J,n' J')
defined as the square root of the line strength taken with the sign of the matnx component ( n: JN'

n)J, '

we obtain the transformation formula

S,l(PJ,P'J') = Q (11J~nJ) 5, '*(nJ,n'J')(n'J'~P'J')
a,a'

(23)
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This enables us, in particular, to obtain the line strengths in intermediate coupling in terms of
those in /5 coupling if the intermediate-coupling eigenfunctions are known in terms of the JS-
coupling functions and the values of S~& are known for the same Russell-Saunders functions with

the same phases.
For the matrix computation summarized above, the phases of S„&(ySLJ,y'SL'J') are given,

in terms of the standard system of eigenfunction phases employed in TAS, by (20), (21), (22) if in

taking the roots we use for the phases of f~& or of F~& those in the table of p. 253 of TAS. These
phases are those in the column marked "Sign" multiplied by the sign of the quantity in the bracket
which occurs squared in some of the elements.

Intermediate coupling. Sum rules

The J gron-p sum rule of course holds because of the principle of spectroscopic stability. This
sum rule says that the sum of the strengths of the lines connecting all the levels of a given J in the
initial configuration with all the levels of a given J' in the final configuration is independent of
coupling. For the case in which the initial and final configuration are identical, it is clear that in

those groups with J=J' we must include the strengths of the "lines" connecting a level with itself
and must double the strength of all other lines.

In case the initial and final configuration are different, the J-fi/e sum rule obtains. A Jfi/ ies the
set of all lines connecting a single given level of one configuration with all levels of the other con-
figuration. The sum rule states that for any cogp/ing, the strengths of the Jfi/es referring to the levels

of the initial (final) configuratio are proportional to 2J+1 provided that the jumping electron is not

ejuiva/ent to any other in thefina/ (initia/) configgration. The proof parallels exactly that for the dipole
case on pp. 279—281 of TAS since the sum relations (10) and (13) are similar to the corresponding
dipole sums. In particular, if the nl electron which jumps is equivalent to k —4 other nl electrons
in the configuration to which the J files refer, and jumps to an n'l' orbit, the invariant strengths
of the J files are

h (2J+1) H(l, P) s,'(nl, n'l'). (24)

Matrix calculation for transitions between states of the same configuration (no-electron jumps)

For a configuration I+II consisting of inequivalent coupled groups, the strengths may be reduced
to those within configuration I and II separately by methods similar to those used for the spin-
orbit interaction in $1"p. 266 TAS. The procedure will be clear from the discussion of the important
two-electron case, to which we proceed at once.

In the case of transition nl n'l' —&n/ nV the roots of the multiplet strengths are (cf. 14)

5 (nl n'l' SL, nl nV SL,') =L(25+1)(2L+1)H(I. ,L,')]& (nl nV L..'N' nl nV I.'), . (25)

5, ( /inn'l' SL,nl n'l' SL,') = (25+1)'Lf,&(/PL, /PL') s,(nV, nV)+( —1)z+z' f~&(/'/L, P/L') s, (n/, n/)], (26)

in terms of which the root line strength with the standard phase choice is given by (20).
In this case the J-file sum rule does not hold unless either s~(n/, n/) or s~(nV, nV) vanishes.

the last factor being independent of 5 because 5' commutes with the spins of both electrons. The
arguments of pp. 216, 232 TAS show that the last factor may be evaluated by ordinary vector-
coupling methods, writing N=N~+¹, giving the first electron the quantum numbers nI, the
second the quantum numbers n'l', and ignoring considerations of antisymmetry. Thesis true whether

Or not nl and n'l' are equivalent.

The part (nl nV I 'Nn' nl nV I,') of this .factor is the same function of //'I, /PI' as (ySLJ:'.N".y'SLJ')
is of SLJ, SIJ'. Hence its contribution to S~& is, cf. (15b), (25+1)& f~&(/PL, lPL') s~(nV, nV).
The factor (nl nV L.".¹'n/ nV I') is th. e same function of PK, P/I' as (ySLJ'..N'. y'SLJ') is of SLJ,
SIJ', except for phase. The reversal of the roles of the added vectors makes a phase change of

(—1) '+' z+'+' z'= (—1)z+z' (cf. 14'7, p. 78 TAS). In this way we 6nd for the total root multiplet
strength



232 G. H. SHORTLEY
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TABLE I. Fq(SLJ, SL'J'), which gives
the relaA've strengths of the lines in a
quadrupole multiplet, and the relative
strengths of the multiPlets in a suPer-
multi piet. The sign of Fq& is indicated.

TABLE II. Line strengths in quadrupole transition arrays.
(The sign of g&q is indicated. ) The array labeled np n'p
~~np n"p is applicable to arrays of the following four
types, according to the choice of 0, and p:

np n'p~np n"p
n p —sq (n p2 n p)p

p n'p:-np'
n= p =2sq'(n'p, np) for allowed lines;

np n'p np n'p t cf (27)j
& = (sq'+sq) i P = (sq' sq) 2

np~~np'
0.=4sq~(np, np) for allowed lines.

I I
So ~/

/Sp 0 0
P/ 0
02 +a age

I02
+ex
9P
74K

0 0 D/ 2 3
3Po 0 Zo

PI 2/' 5 Z8

'P2 S SSS6

0 0 0I 2
8/3S 4
35 Z540
4 40 go

npnp~npn p0I
I

/80 2
03

I
JOO

~P ~S &P 3g ap 3O

P 0 0 0 0', /OOa 3OOp' 0
SI 0 i 0 0 ZWOa, I 0 400a, &QOa

I I 0 ' 0 TSCX 4OSP ~ 225Ck' 75P ' 4ZOP

D] 0 ' 240(x 4'OS/ l4'Tof ' /35p 245a ' Z8 0( gyp
Pz /00a', 0 225a /35p I /75a 52$p', 8&Op

02 300p,'400ot' 75p Z45n ' 525p /7Sa' , 280a
Oz 0,560a OZOp 28'n, 840p 280N', 6TZa

Transition arrays np n'p~np n'p and np'~np'

In these cases the fq's occurring in (26) are
given by the entries of Table I for 'P~'P and
the relation f, (3Ps,3Pq ) = 15 F,('P~, 'Pq ). If we
write s~ for s~(np, np) and s2' for s, (n'p, n'p),
(s~'+s, )2=n, (s, ' —s,)'=P, we find for the mul-

tiplet strengths of np n'p~np n'P:
8~Jppg
I 3 3 8 ISoPo RP2~2

Sp0000/6Po00040
Pq04970
D8/60 0 028

np ~np~
2 2 2' 2

S%+lz P~~z Ogi

Ps/z O', 0 0', 6 /4 ~q

Ds~ o', 4 /4,'0 0

S ('S'S) =S ('S'P) =0,
(1S D) = (+) V3(s I+S ) = (+) Y352

S ('P 'P) =(—)' Y4(s,'+sq)'=( —)' N,
(IP 1D) = ( )2 1/54(s I s )2 = ( )2 15/4P

(1D 1D) (+)2 3/5&2(s +s )2 —(+)2 35/&212

s.(s's) =s.(s'p) =0,
S,('S,'D) = (+)' 5(s,'+s,)'= (+)' Sn,

(P P)=( )2 /4(s &+S ) =( ) 144K

S.('»'D) = ( —)"~4(s.' —s.)' = (—)"&4&,

S.('D, 'D) = (+)' '&4(sa'+s. )'= (+)' '~4~

The strengths of the multiplets actually occur-

ring in np'~np' are given by these same formulas
with s, =s,'= s, (np, np); n= 4 s,'(np, np)

From (27), (20), and Table I we immediately
obtain the line strengths given in Table II. The

strengths of the lines connecting a level to itself are of course of no interest in pure LS coupling,
but play an important role in Eq. (23) in transformations to intermediate coupling.

Transition array np'~np'

This transition cannot be handled by these matrix methods. The multiplet strengths are found

very simply, however, by the eigenfunction method given above, using the eigenfunctions of 4 6j,
p. 224 TAS. It turns out that there is only one nonvanishing multiplet, ' namely 'P-'D, for which
('P'N D) = —3 '*s,(np, np) and S ('P 'D) = ( —)' 30 s '(np, np) This, w. ith the F, ( Pq 'D~ ) of

Table I, gives the line strengths of Table II.

"That the strengths of the "diagonal" multiplets of p' vanish is analogous to the vanishing of the Lande intervals,
and follows from the almost-closed-shell considerations given below in the following way: When we consider p as starting
to fill the shell we denote it by 9; when we consider it as three electrons missing from a closed shell we denote it by 5.
The considerations of almost-closed shells shows that (PP:N:PP) = —(g'P:cV:g'P) (P'D:¹P~D)= —(g'D:N:g'D).
Now from the way the correlation of the states of 9 and 5 are made, it is not necessary that O'P and 5'P, PD and
Q D be identical; but because they really represent the same physical state we must. have P'P= +Q'P (in our case
actually —), 9'D = +5'D (actually +).From this it follows at once that the above diagonal elements vanish. Such general
arguments give no information about the value of the nondiagonal element (g'P:N:9'D), which equals —(9t P:N:PPD).
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Transition arrays involving almost-closed shells. The array np'~np'

When we investigate the relation between transition arrays involving almost-closed shells and
the corresponding simpler arrays, we find just as in the dipole case (p. 316 TAS) that if the transition
is between two different configurations containing the same almost-closed shell the strengths are
the same as for the simpler array in which the almost-closed shell is replaced by the missing electrons.
But for quadrupole radiation we have another case to consider, the case of no-electron jumps. Here
we find, by an examination of the corresponding matrix components in the rn, m&-orbital scheme
that the strengths are the same for a pure almost closed-shell array (such as p'~p') and for the comple
mentary array (such as p'~p'). The matrix components of 9V and hence the phases of S,& are of
opposite sign in the two cases. Hence the strengths are not the same in an array such as p4d~p4d
and in the corresponding array p'd~p'd. Rather, the one set of strengths will be obtained from the
other by reversing the sign of s, (p,p). This is analogous to the rule which holds for spin-orbit
interaction.

jj coupling

It is clear from the similarity of the above formulation to that for the dipole case that the methods
used in the latter to obtain strengths in jj coupling (see TAS p. 264) are directly available here.

II. MAGNETIc-DIPQLE RADIATIQN

The strength S (nj, n' j') of a magnetic-dipole line, in terms of which the probability of spon-
taneous transition from the upper level o.J to the lower level a'J' has the value

1 64m.40'
A (uj, n' j') =

2J+1 3k
s (aj, n'j'), (28)

is defined by

e
(~I, ~'I ) =S (a' I', aI) = P ~(aJIrI~M~~ j'~')~2, where llf = — (/+ 2S).

M, M' 2pc
(29)

In IS coupling, magnetic dipole trans-itions occur only between two levels of the same term It does.
not seem to have been generally realized" that simple closed formulas can be obtained" for these
strengths in I.S coupling, and that these strengths can be used in transformations to intermediate
coupling. By the same procedure as in the electric-dipole case (p. 99 TAS) we can write

(30)

The last factor can be evaluated from 10'2 pp. 64, 66 TAS to give

"For example, by Condon, reference 4.
~2 These formulas, at least for the nondiagonal elements, are given by Brinkman, reference 3. They are of considerable

direct interest in connection with the excitation of the ground term in rarefied atmospheres. For example, Dunham,
Nature 139, 246 (1937), found four interstellar absorption lines from the lowest level 'F, l2 of Ti II and none from the
next level 4F512 in spite of its low excitation potential of only 0.012 volt. The reason for the absence of absorption by
Fflq is its short mean life for magnetic-dipole radiation of 7.6 hours, as determined from (28) and (31), whereas collisions

occur much less frequently. This mean life was computed by Houston from Brinkman's formula and reported by Dunham,
but with a numerical error of a factor of 10', as Houston has kindly verified.
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(J S—+I+1)(J'+S—L+1)(J+S+L+2)(S+L J) —( ek ) ~

S (SL J,SI.J+1)= [+j'
4(J+1) 2~c)

'

S (SL J,SL J)
eA)'

= [g(SLJ)3' J(J+1)(2J+1)~—
E 2pc)

(31)

where g is the LandC factor for the Zeeman elfect. If we define S &(nJ, n'J') as the root of S taken
with the sign of (nJ'M a'J') when measured in units (—eA/2pc), the transformation of coupling is
eA'ected exactly as in (23). In LS coupling, the sign of S '* is the sign of the quantity in square
brackets in (31), which is + except in rare instances.

The magnetic-dipole strengths do not satisfy the ordinary J sum rule within a multiplet. Instead,
one obtains the formula

QS (SLJ, SLJ') =[2J(J+1)+2S(S+1)—L(L+1)](2J+1). (32.)

In intermediate coupling, only the J-group sum rule is obeyed.
It is interesting to note that while one easily obtains the simple closed formulas (31) for the

magnetic-dipole strengths in LS coupling, the strengths in jj coupling are relatively dificult to
obtain; for many configurations the last factor of (30) cannot be evaluated by matrix methods
and recourse must be had to the eigenfunctions or to transformation from LS coupling.


