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Further work with the theory of the positive column,
previously reported by the authors, has made possible its
extension to include convection in the power loss. The
convection heat loss function employed in this extended
theory was developed empirically subject to certain re-
strictions imposed by dimensional analysis, and subject
to the need for describing accurately existing experimental
data on the arc itself. These restrictions have proved to be
sufficiently rigid to limit greatly the choice in form for the
heat loss function. Hence the authors feel some confidence
in the view that the ultimate theoretical solution of the
convection heat loss problem must yield a heat loss func-
tion very nearly identical with the one developed here.
The inclusion of convection makes it possible to satisfy the
customary boundary conditions in the differential equa-
tion governing the positive column, thus removing the

necessity for employing any artifice such as the assumption
of extreme power dissipation in the solution of the arc
problem. The theory yields values of the power dissipation
per unit length, over the range from one to ten amperes,
and values of the arc temperature, which are in good agree-
ment with existing experimental data. Values of the visual
arc radius, for comparison with those obtained experi-
mentally, are not available from the theory because of lack
of detailed knowledge concerning the distribution of radia-
tion in the arc. An average radius is computed, however,
which should, and does, show the same general trends as
those exhibited by the visual arc radius as determined from
experiment. The present theory provides a satisfactory
solution of the arc problem so long as the power loss by
radiation constitutes a negligible fraction of the whole.

INTRODUCTION

N a paper by the authors,! a theory of the
positive column of the nitrogen arc at at-
mospheric pressure was presented in which con-
vection was not included in the differential
equation for the positive column, and was
considered only insofar as it affected the bound-
ary conditions for the integration. This earlier
theory is applicable, therefore, only to cases in
which the convection term remains negligible
sufficiently far out from .the center of the arc to
include all volume elements contributing ap-
preciably to the power generation. The present
paper concerns itself with an extension of this
earlier work designed to include convection as
one of the mechanisms by means of which power
is lost from the arc. The results of this investiga-
tion are applicable, therefore, to all cases except
those in which radiation accounts for an ap-
preciable fraction of the total power loss. Further-
more, the inclusion of a specific convection term
makes it possible to satisfy the outer boundary
condition, i.e., that the temperature gradient
must go to zero at ambient temperature. If this
were not so, one would continue to have conduc-
tion heat loss out to infinity.

1E. S. Lamar, A. M. Stone and K. T. Compton, Phys.

Rev. 55, 1235 (1939); A. M. Stone, E. S. Lamar and K. T.
Compton, Phys. Rev. 55, 1145(A) (1939).

A resumé of most of the experimental work
on the nitrogen arc at high pressure was pre-
sented in the earlier paper,! together with argu-
ments supporting the use of the Saha equation for
determining the electron concentration. Sub-
sequently two experimental papers by Suits® 3
have appeared, and two theoretical papers by
Elenbaas* and by Suits and Poritsky,® respec-
tively. Discussion of these articles will be deferred
to a later section. There is some experimental
information not included in the earlier resumé,
nor in the papers listed above, which is of im-
portance here and which will now be presented.

Although radiation and sound velocity meas-
urements in the positive column of the arc fail
to show a variation of arc temperature over the
range of arc current from one to ten amperes,
there is experimental  evidence for expecting a
variation with arc current within the accuracy of
these measurements. As was mentioned in the
earlier paper, it has been found® that the product
of the visual cross-sectional area, the electric
intensity, and the current density per unit
potential gradient at the measured tempera-
ture equals the measured current. The assump-

2 C. G. Suits, Phys. Rev. 55, 561 (1939).

3 C. G. Suits, Phys. Rev. 55, 198 (1939).

4W. Elenbaas, Phys. Rev. 55, 294 (1939).

5 C. G. Suits and H. Poritsky, Phys. Rev. 55, 1184 (1939).
6 L.S. Ornstein and H. Brinkmann, Physica 1, 797 (1934).
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tion that this relationship holds exactly provides
a means of determining the arc temperature
from measurements of current, gradient, and
cross-sectional area. Dr. C. G. Suits, in a private
communication, has kindly supplied the authors
with values of the arc temperature determined
in this way. Without inquiry into the absolute
accuracy of these temperatures, the measure-
ments from which they are derived are such as
to make them self-consistent to within much
narrower limits than the experimental error in
the more direct measurements of temperature.
These later determinations of Suits’ give tem-
peratures varying from 5950°K at one ampere
to 6400°K at ten amperes for an arc in nitrogen
at atmospheric pressure.

It was kindly pointed out to the authors by
.Dr. Joseph Slepian that the dimensional argu-
ments employed in the earlier paper practically
imposed the necessity for some variation in arc
temperature with arc current. It will be seen
later in the present paper that this variation in
temperature appears as a result of the theory.

THEORY

The differential equation governing the posi-
tive column of the arc may be written as

d ar
aW=— 27r~(r®—)dr+27rro—dr= 2w E2Frdr. (1)
dr dr

This equation differs from that developed in the
earlier paper to which reference has been made
only in the inclusion of convection. In this equa-
tion W is the power generation per unit length,
r the radial distance out from the center of the
arc, © the generalized thermal conductivity, E
the potential gradient, T the temperature, F the
current density per unit potential gradient, and
o is the power loss per unit volume by convection.
As was pointed out in the earlier paper, the
power loss by radiation represents less than five
percent of the total for arcs at one atmosphere
pressure with currents below 30 amperes. The
present theory is designed to cover the range
from one to ten amperes, and thus the neglect of
radiation is justifiable.
A single integration of Eq. (1) leads to

ar

1 pr ’
——-=—~—{fE2Frdr—f<rrdr§, (2)
dr r@J, 0
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where dT/dr has been set equal to zero at »=0.
The other boundary condition to be satisfied
by the second-order differential equation (Eq.
(1)) is simply that d7/dr must vanish when
T=T\,, the ambient temperature.

Since the publication of the previous paper,
certain minor revisions have been made in the
functions F and 0, as reported therein. Dr. C. G.
Suits, of the General Electric Company Re-
search Laboratory, has very kindly suggested the
following possible revisions in the constants
entering into the calculation of the functions.
He points out that a later and probably more
reliable value of the ionization potential of
molecular nitrogen is 15.8 volts instead of the
16.5 volts used previously, and the dissociation
energy is more likely 7.34 volts than the 7.9
volts recorded by Lozier. Both these later values
are to be found in Gasentladungstabellen by
Knoll, Ollendorf and Rompe. The use of the

‘new value for the dissociation energy together

with the value of the free energies of both
molecular and atomic nitrogen as given by
Giauque and Clayton” yield values of the equi-
librium constant which differ from those reported
by these authors, and which can be expressed
with sufficient accuracy by

K =1.46(107)¢=8-90200%/T atmos,

3)

The change in the ionization potential affects the
Saha equation for the molecule, Eq. (8) of the
previous paper. The current density per unit
voltage gradient becomes with no further
change

2.17(10%) 7314
= (P e—169300/T

+8(P_Pa)e-—184500/T} 3

X {14+0.183P,/P} amp./volt-cm, (4)

where P,, the partial pressure of the atoms, is
given by

P,=3K{(1+4P/K)¥*—1} atmos. (5)

and P is the total pressure, both expressed in
atmospheres. Values of P,, F, and #, the electron
concentration, are given in Table I. It will be

7W. F. Giauque and J. D. Clayton, J. Am. Chem. Soc.
55, 4887 (1933).
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TABLE 1. Values of the current density per unit potential gradient F(T) ; electron concentration n ; atomic nitrogen pressure Po;

generalized conductivity © ; and the two functions a(T) and B(T") occurring in the convection heat loss function o.

F

T AMP./CM? n Pa a 8

°K PER VOLT/CM PER CM3 ATMOSPHERE JOULE/SEC. cM° JOULE/CMf PER CM3
6500 4.04010! 5.907 X101 9.456 1071 43721073 885.6 25.38
6300 2.586 3.856 9.205 “ 5.019 905.7 27.66
6100 1.603 “ 2.443 ¢ 8.835 “ 5.902 920.0 30.49
5900 9.540X10~2 1.491 “ 8.310 ** 7.003 “ 924.9 34.08
5700 5.434 ¢ 8.737X1012 7.600 * 8.163 “ 916.7 38.66
5500 2940 ¢ 4.883 6.705 9.119 ¢ 892.9 44.41
5300 1.502 ¢ 2.586 5.666 9.585 853.6 51.41
5100 7.198 X103 1.289 4.565 9.398 ¢ 802.4 59.57
4900 3.241 ¢ 6.017 X101 3.497 ¢ 8.607 ¢ 745.0 68.74
4700 1.356 ¢ 2.614 2.544 7415 ¢ 687.9 78.74
4500 5.272X107* 1.053 “ 1.774 ¢ 6.078 ¢ 638.3 89.37
4300 1.878 3.879x1010 1.149 ¢ 4.796 594.2 100.9
4100 6.112X107% 1.303 7.102X10°2 3.762 562.2 113.3
3900 1.791  “ 3.935X10° 4.135 ¢ 2,771 ¢ 540.4 126.8
3700 4.647X10° 1.052 “ 2.253 “ 2.223 ¢ 527.6 141.9
3500 1.047 ¢ 2.440X108 1.139 ¢ 1.810 “ 522.0 159.0
3300 1.998 1077 4.805 %107 5.288 1073 1.541 ¢ 521.7 179.0
3100 3.086X10°8 7.661 %108 2.218 ¢ 1.343 ¢ 525.1 202.6
2900 1.226 ¢ 530.5 230.9
2700 1.164 ¢ 537.2 265.7 .
2500 1.112 ¢ 545.0 308.7
2300 1.058 552.4 362.9
2100 1.001 ¢ 559.0 423.6
1900 9.406 <10~ 564.4 524.4
1700 8.762 567.4 648.5
1500 8.072 - ¢ 566.8 821.8
1300 7.327 ¢ 559.7 1073
1100 6.514 541.6 1456

900 5.628 ¢ 502.7 2071

700 4,669 422.6 3112

500 3.642 ¢ 253.3 4726

300 2.500 0 0

noticed that differences between these functions
and those recorded previously become more ap-
parent as the temperature decreases. At 4000°K
the change introduced in F corresponds to 100°
change in temperature; at 7000°K the old and
the new functions are practically identical.

The generalized thermal conductivity, ©, re-
quires alteration because of the changes made in
the equilibrium constant and in the value used
for the dissociation energy of the molecule.
Furthermore, a reexamination of the entire
function seems advisable at this point.

Riewe and Rompe?® include in their calculation
of the generalized thermal conductivity the
contribution of charged particles to the diffusion
term. It is easy to show that this contribution is
negligible here, and hence is omitted. The second
point which needs clarification is the use of the
Sutherland equation rather than that due to

8 K. H. Riewe and R. Rompe, Zeits, f. Physik 105, 478
(1937).

Hassé and Cook? for computing the viscosity,
which enters into the calculation of the ordinary
conductivity. With respect to molecular nitrogen,
the existing data on the viscosity are hardly
adequate as a basis for decision between the use
of the Sutherland equation and that of Hassé and
Cook. However, Hassé and Cook state in their
paper that the experimental points for air (which
is not far different from molecular nitrogen) lie
distinctly below their theoretical curve. It is
undoubtedly true that the actual values lie
somewhere between those predicted by the two
equations. In view of these uncertainties, it
seems hardly justifiable to employ an equation
involving any more refinements than those
possessed by the Sutherland equation. However,
it seems wise, wherever possible, to compensate
in other factors for the possibly low values of
viscosity obtained from the Sutherland equation.

9 H. R. Hassé and W. R. Cook, Proc. Roy. Soc. A125,
196 (1929).
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_In introducing the correction to take care of
the contribution of the atomic gas to the ordi-
nary conductivity, it is found that, if one uses
actual values of the various quantities entering
into the kinetic theory ratio of atomic to molecu-
lar conductivities, rather than purely kinetic
theory values, this ratio is 1.1 instead of the 1.3
reported previously. For an afomic gas, the ex-
perience of Kenty'® with mercury vapor indi-
cates that the use of the Hassé and Cook formula
is to be preferred. The constants for use in the
Hassé and Cook formula for atomic nitrogen
are not available, but the ratio of the viscosities
obtained by the two formulas for molecular
nitrogen are 1.31 and 1.55 at 3000°K and
7000°K, respectively. The ratios for atomic
nitrogen should not be far different. Since specific
information with which to perform the calcula-
tions using the formula of Hassé and Cook for
atomic nitrogen is lacking, the conductivity of
the atomic gas is obtained, certainly within the
accuracy justified here, by increasing the ratio
of molecular to atomic conductivity to 1.5.
This same factor was employed without discus-
sion in the earlier paper.

Concerning the diffusion term entering into
the generalized conductivity, there are again
two possible formulas for calculating the diffu-
sion coefficient, one a Sutherland-like equation,
the other an equation by Hassé and Cook.l
Here again, the formula of Hassé and Cook pre-
dicts higher values than does that of Sutherland,
but in view of the uncertainties involved in the
long extrapolation from existing experimental
data the Sutherland-type equation is employed
here. Thermal diffusion is opposite in direction
to concentration diffusion. An estimate of the
magnitude of the thermal diffusion term was
obtained using the formula developed by Furry,
Jones, and Onsager.!? Their formula predicts for
the present case a thermal diffusion term amount-
ing to about one percent of the term representing
concentration diffusion over the range of tem-
peratures employed here. This contribution is
neglected.

The alterations in the diffusion term are con-
fined, therefore, to changes in ‘the concentration

1°C Kenty, J. App. Phys. 9, 53 (1938).

1 H,R.Hasséand W. R. Cook Phil. Mag. 12, 554 (1931).

12W. H. Furry, R. C. Jones and L. Onsager, Phys. Rev.
55, 1083 (1939).
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gradient introduced by the previously mentioned
change in the value of the equilibrium constant,
and by the above-mentioned improvement in
the value of the dissociation energy of the
molecule. The latter value is, of course, that for
absolute zero, but the change in going from 0°K
to 7000°K is only three percent, and is in a
direction such as to reduce the heat loss by
diffusion. The neglect of this change and the
neglect of thermal diffusion both tend to increase
the total heat loss by diffusion and hence to
make its wvalue intermediate between that
predicted by the Sutherland equation and that
predicted by the equation of Hassé and Cook.

Values of the generalized thermal conductivity
including the above-mentioned alterations are
presented in Table I.

CONVECTION

The fact that there is no adequate theory for
free convection, even though the problem has
merited the attention of many able investigators
in the past,® presents unique difficulties in the
determination of the free convection function o.
This is in sharp contrast with the preceding
discussion where adequate theories were avail-
able for the other functions involved in the
problem. Even with the artificial assumption of
laminar flow of the fluid, the resulting equations
for convection heat loss become prohibitively
difficult of solution. Hence we were led to develop
an empirical equation for ¢ which satisfies the
requirements both of dimensional analysis and
those imposed by the electric arc itself. As a
guide in developing the heat loss function o,
recourse is had to information concerning total
heat loss from solid cylinders. This has been
dealt with in the past in two ways, the dimen-
sional analysis originated by Rayleigh and
developed further by many others, and the
“stationary layer’’ theory developed by Lang-
muir. Of the two, the dimensional analysis has
proved more useful for our present purposes,
since no stationary sheath exists in the arc.

Dimensional analysis applied to the data on
total heat loss from solid cylinders leads to the
conclusion that

H/K=M(gadp*d®/*) - N(nCp/K),  (6)

18 See W. J. King, Mech. Engin. May (1932) for a general
list of references.
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where H is the total heat loss per unit length
per unit temperature excess over surroundings,
K is the thermal conductivity, g the acceleration
due to gravity, « the temperature coefficient of
expansion at constant pressure, § the tempera-
ture excess, p and 7 the density and viscosity,
respectively, C, the specific heat, and d is the
cylinder diameter. The function N is certainly
independent of the particular gas for diatomic
molecules and might be expected to vary but
little for monatomic or polyatomic molecules.
Dimensional plots of H/K wvs. gafd®e?/n* for
solid cylinders have been made using measured
values of the various quantities involved, for
cases in which the temperature excess 6 is small
in comparison with the absolute temperature of
the cylinder. For these cases the various quanti-
ties involved have been evaluated at the mean
temperature. The points so plotted lie on a sur-
prisingly smooth curve, even though the range of
values for the abscissa is extremely large. This
dimensional method has been used successfully
by Suits and his collaborators® for correlating arc
data. Here the temperature excess 4 is no longer
negligible in comparison with the absolute tem-
perature at the visual arc edge. He has found
empirically that, instead of evaluating the
quantities at the mean temperature, he must
make the correlation using « evaluated at am-
bient temperature and the other quantities at the
temperature of the arc edge. Here the quantity d
is, of course, taken to be the arc diameter as
determined either visually or photographically.
It is important for our purpose to notice that,
if @ is evaluated at ambient temperature,

—palf=po—p,

where po is the density at ambient temperature.
Hence the relationship used by Suits can be re-
written in the form

H/K =M (g(po—p) pd®/n*). ()

On the basis of Suits’ analysis, any form selected
for the function ¢ must be such that, when inte-
grated to find the total heat loss, the integral will
satisfy Eq. (7).

A number of different empirical functions,
each satisfying Eq. (7), were tried until the
function employed in this work was finally
determined.

STONE AND E.

S. LAMAR

The first empirical function tested was the
simplest, namely
o=Aa(T)r, (8)
where

a(T)=g(po—p)Q/n )

and Q is the heat content per unit volume (to be
discussed later). A is a constant and the other
quantities are as defined previously. The rapidity
with which the function «(T") approaches zero in
the vicinity of ambient temperature prevents
the function o from becoming large at large
values of 7, and causes it to vanish at ambient
temperature. A few trial integrations with this
function soon showed that, if A4 was made
sufficiently large to ensure adequate power loss
for small values of 7, the temperature gradient
changed sign long before room temperature
was reached, which led to an infinite total power
dissipation. It was thus apparent that, to avoid

‘such catastrophes, a factor was needed to reduce

the value of the function ¢ for large values of the
radius while preserving its initial value. The
dimensional restrictions imposed limit one to
terms which are functions of g(po—p)pr?/n% This
function must have a form such that it will
decrease rapidly with increasing values of the
argument. Many such functions were tried, and
those of exponential form were the most satis-
factory. After careful examination of the various
possible exponentials, the one finally adopted

was
e~ Boloo—p) prdint

(10)
where B is a constant; and hence, the next stage
in the development of the heat loss function is

o=Aa(T)re BHD (11)

where B(T") is written for g(po—p)po/7%

If one uses experimental values for the center
temperature of the arc as initial conditions for the
integration, this heat loss function is perfectly
satisfactory out to radii such that beyond there
is no further contribution to the electrical power
generated. It was not possible, however, with
any selection of the constants A and B to account
for the observed power and at the same time
satisfy the boundary conditions at room tempera-
ture. It might be expected that, as room tem-
perature is approached, the heat loss func-
tion should reduce to a simpler form and thus
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a constant term was added to the exponential
factor. The heat loss function finally arrived at,
therefore, is

o=Aa(T)r[e- B8O 1 (] (12)

which, of course, reduces to the simple form
(Eq. (9)) as the argument is increased. With this
final function it is possible to account for the
observed power loss per unit length and at the
same time satisfy the outer boundary conditions.

It now remains to discuss the various quanti-
ties entering into the function ¢. The first of
these is the density, p. Perfect gas laws can, of
course, be assumed for both atomic and molecu-
lar gases, and, hence, given their partial pres-
sures, the expression for the density becomes

3.431(10—1)[
po

P,
(P—P.) +—2—] g/emd. (13)

The heat capacity per unit volume, Q, is
given by

T T ’
QZ(P—Pa)f Cde‘!‘Pa[f CpldT+g]v (14)
300 300

where 2q is the dissociation energy of the molecule
in joules per gram, 300°K is the ambient tempera-
ture employed in the calculations, C,, and C,,
are the specific heats for atoms and molecules,
respectively, and p, is the partial density of
atoms.

The calculation of the viscosity n for the
molecule has been discussed earlier in this paper.
The viscosity of the mixture may be closely
approximated by taking the weighted average of
the viscosities for the molecular and atomic
gases. The viscosity of the atoms should be given
more nearly by the equation of Hassé¢ and Cook
than by that of Sutherland. However, not only
are the constants for use with the Hassé and
Cook equation lacking, but the accuracy to be
expected in the results hardly justifies the labor
involved in the use of this formula. It is possible,
however, from a critical examination of the situa-
tion, to accomplish the same purpose much more
simply to well within the accuracy justified by
these calculations. The ratio of the viscosities
of the molecules as computed by the two equa-
tions has the value of 1.55 at 7000°K and 1.31 at
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3000°K. This ratio should not be far different for
the atomic gas. The ratio of atomic to molecular
viscosities as given by kinetic theory is 0.84.
Thus, if it is assumed that the viscosity of the
mixture is the viscosity of a molecular gas as
computed by the Sutherland equation, the result-
ing values of the viscosity for the mixture will be
intermediate between those predicted by the
Sutherland equation and those predicted by the
equation of Hassé and Cook, approaching values
predicted by the former at low temperatures and
those predicted by the latter as the temperature
is increased. This is believed to yield viscosity
values for the mixture that approximate the
true viscosities as closely as present knowledge
warrants. Any residual errors remaining as a
result of these assumptions will be taken care of,
to a large extent, by the empirical selection of the
constants in the function ¢.

Values of the functions «(7") and B(T") com-
puted by the method outlined above are pre-
sented in Table I. ’

The solution of the complete arc equation,
Eq. (2), was obtained by the method of numerical
integration described in the earlier paper. This
method, as was pointed out there, is equivalent
to a three-term Taylor expansion about each
selected value of 7. Linear interpolation was used
with the functions presented in Table I. The
accuracy of the integration procedure was tested
by halving the intervals in # for a particular
case and again carrying out the integration.
The two solutions gave temperature distribu-
tions agreeing at every point to considerably
less than one percent and hence the procedure
was considered entirely adequate.

The three arbitrary constants appearing in
the convection heat loss function ¢ were de-
termined in the following way. The function &
splits up naturally into two parts. Within radii
beyond which there is no appreciable contribu-
tion to the power generation, the constant C is
negligible in comparison with the exponential.
Hence pairs of values of the constants 4 and B
were chosen and the integration of Eq. (2) per-
formed for various values of E, using in each case
experimental values for the center temperature
and carrying out the integration sufficiently
far to ensure complete power generation. From
this, a single pair of values for the constants 4
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F16. 1. Arc temperatures as a function of arc current.

and B was chosen which gave the best values for
the power loss over the entire range. This condi-
tion, together with the restriction that d7T/dr
must not change sign, was sufficiently stringent
to keep all possible pairs of values for 4 and B
within small limits, and to demand that each
separately be determined to at least two sig-
nificant figures. After setting these two constants,
the constant C was determined by ensuring that
dT/dr vanish at ambient temperature for the
ten-ampere point. Both the temperature dis-
tribution and power loss were slightly better
using a center temperature at the ten-ampere
point of 6350°K instead of the 6400°K deter-
mined by Suits in the manner described pre-
viously. This requirement was sufficiently rigid
to fix C to at least two significant figures.

The constants thus determined are: 4 =0.21;
B=0.127; C=0.0044.

Thereafter, without changing the values of 4,
B, or C, a value of center temperature, for each
value of E selected, was sought which would
satisfy only the outer boundary conditions.
Such values, after considerable laborious com-
putation, were found, and, as formerly, in each
case

21rf E*Frdyr,
0

obtained in the course of the calculations, repre-
sents the total power generation per unit length.

STONE AND E. S.

LAMAR

In our previous paper, it was not possible to
use the boundary condition that d7/dr vanish
at ambient temperature because of lack of
detailed knowledge concerning convection. As a
substitute for this boundary condition, recourse
was had to a maximum condition imposed on
the total power. This, of course, was simply an
artifice by means of which a reasonable solution
of the arc problem could be obtained applying
only to low currents. The authors now believe
that the success which resulted from the use of
this maximum condition was due to the existence
of a sharp maximum in the generalized conduc-
tivity tending to tie the arc temperature to a
particular value. We do not believe that any
general maximum principle, other than that
imposed by the peculiar nature of the conduc-
tivity, applies to this problem. To anticipate a
little, the more extended theory presented in
this paper is more satisfactory than was that of
the previous paper not only because of its more
extensive application, but because of the fact
that it predicts decreasing temperature with
decreasing current.

REsULTs AND CONCLUSIONS

The arc temperature as a function of arc cur-
rent is presented in Fig. 1. The solid line repre-
sents the center temperature as determined
from the theory. The dashed line is a plot of
temperature determined by Suits* on the as-
sumption that the product of the visual cross-
sectional area, the electric intensity, and the
current density per unit gradient at that tempera-
ture equals the measured current. The dotted
line represents ‘‘average’’ temperatures ob-
tained from the theory in the following manner.
In the previous paper, an ‘‘average’’ cross section
was calculated and the temperature appropriate
for that cross section was used as the average
temperature of the arc. Slightly better agree-
ment is attained, if one calculates from the
theory an ‘‘average” radius rather than an
“average’’ cross section, and defines the tempera-
ture appropriate for this radius as the ‘“‘average”
temperature. The ‘‘average’ radius, so defined,
is given by

7"=f Frzdr/f Frdr
0 0

14 C. G. Suits, J. App. Phys. 10, 728 (1939).

(15)
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and the “‘average” temperature, 7T, is determined
by

m[FPEF(T)=1, (16)

where I is the current.

As can be seen from the diagram, the experi-
mental measurements of Suits, the center tem-
peratures and ‘‘average” temperatures deter-
mined from theory all agree over the current
range from one to ten amperes within the un-
certainties inherent in the experiments and in
the definitions of the various temperatures.
The temperatures obtained from the theory
decrease in a manner to be expected with de-
creasing current from ten to one ampere.

Computations below one ampere, however,
show that with the constants selected it is im-
possible to find a center temperature for the arc
such that the outer boundary condition is
satisfied. Mr. J. J. Hopkins, working in this
laboratory, was unable to maintain arcs of
sufficient length to ensure a uniform and well-
defined positive column of the type postulated
in the theory for currents below one ampere.
It is to be noticed also that in the published work
of Suits no data is presented for currents below
one ampere at atmospheric pressure. Hence this
theory predicts the impossibility of maintaining
well-defined and steady positive columns in arcs
running below one ampere. Since this prediction
refers to a phenomenon entirely distinct from
those which we set out to explain, it provides an
independent justification for the theory.
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F1G. 2. Power dissipation per unit length as a function of
arc current.
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F16. 3. Temperature distribution as a function of radius for
three values of arc current.

There is no ambiguity in terminology in dis-
cussing power loss per unit length.. It can be
measured experimentally and can be determined
from theory. The results of both are presented
in Fig. 2, where the solid curve is that obtained
from theory, and the dotted curve was plotted
using the equation given by Suits? as the best
representation of his experimental data. In his
paper, the actual experimental points are pre-
sented. These are not reproduced in Fig. 2,
but do lie on both sides of the theoretical curve
over the entire current range. Values of the
power loss obtained by Hopkins in this labora-
tory are included in this plot as vertical lines,
the length of each line giving the uncertainty in
the measurement. Both Suits’ and Hopkins’ arcs
were believed to be metal-vapor-free. The agree-
ment among these three sets of determinations
is well within experimental limitations. A re-
examination of the simple theory presented in
the earlier paper in the light of the changes made
in the various functions yields a value for the
power loss per unit length which is included as a
horizontal line in the diagram. The new center
temperature determined from the simple theory
is 6000°K, a value remarkably close to that ob-
served at the bottom of the experimental cur-
rent range. This value is shown as a solid line
in Fig. 1.

As a matter of interest, the temperature dis-
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tribution curves for three values of current are
presented in Fig. 3. There are, of course, no
published reliable measurements of temperature
distribution in the free-burning arc for compari-
son with theory. The two arc radii are presented
in Fig. 4. The lower curve represents the visual
arc radius as determined by Suits, and the upper
curve, the “average” arc radius as determined
from theory. As was mentioned earlier, because
of lack of knowledge concerning the dependence

Lo+
08— Ave. radius -theo.
°
g
061 &
b
&
4 - 3
o4 - § Visual radlus -Suits-exp.
'
0z~
Current (amperes)
| | |
0 2 4 6 85 10

F16G. 4. Arc radii as a function of arc current.

of radiation on temperature, the visual arc
radius could not be determined from theory.
The visual arc radius and the ‘‘average’ arc
radius need not necessarily coincide for the
reason that they are defined in different ways.
However, they should, and do, show the same
general trend, so that, although Fig. 4 cannot
be used for quantitative comparison between
theory and experiment, the agreement in general
behavior between the two curves does provide
further confirmation of the theory. It is to be
noticed in Fig. 3 that the temperature variation
over the visual arc radius amounts in most cases
to less than 500° a result in general agreement
with the opinion held by Suits from a critical
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examination of the photographs used in his
sound velocity measurements.

Suits’ measurements of luminous efficiencies
in arcs® indicate that radiation is still negligible
at ten atmospheres. Hence some preliminary
calculations have been carried out for the ten
atmosphere arc using the values of the constants
A4, B, and C determined at atmospheric pressure
in the ten atmosphere convection heat loss func-

- tion.. The results obtained were in surprisingly

good agreement with experiment both in tem-
perature and power. The extension of the em-
pirical heat loss function from one to ten at-
mospheres involves considerable extrapolation,
since the gas density occurs essentially squared.
The resulting agreement between theory and
experiment, therefore, provides additional and
almost conclusive evidence for the belief that the
heat loss function determined empirically in this
work cannot differ greatly from the actual heat
loss function.
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