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purifications, the Sc(OH)~ was dissolved in dilute HC1.
Finally the solution was neutralized and the scandium

'
precipitated as oxalate.

The filtrate from the first precipitation of Sc(OH)3 was
purified by adding traces of inactive ScC13 and precipitating
the scandium as hydroxide with NH4OH. Sc(OH)3 was
removed three times in this manner, and it was assumed
that the solution was thus freed of active scandium.
Calcium was then extracted as follows: The solution was
heated on a water bath and the calcium precipitated as
oxalate by adding ammonium oxalate in excess. The cal-
cium oxalate was filtered off and after washing was redis-
solved in HC1. Inactive NaCl and KC1 were added to the
solution which was then neutralized. The calcium was
reprecipitated as oxalate, filtered and v ashed. It was as-
sumed to be free of Sc, Na and K.

The residual solution was heated and oxalate removed by
adding inactive calcium chloride in excess. The insoluble
calcium oxalate was removed and the solution thus purified

of calcium. Excess calcium was then carefully removed by
adding small amounts of ammonium oxalate and filtering.
After four such treatments, it was assumed that the solu-
tion was free of calcium.

After removing the calcium, the filtrate was evaporated
to dryness to drive off NH3 and the residue was dissolved
in water. From this potassium was precipitated as per-
chlorate by the addition of perchloric acid and ethyl
alcohol.

The residual solution was finally acidified with concen-
trated HNO3 and the perchloric and nitric acids distilled
off. The small residue containing the sodium was dissolved
in water and evaporated to dryness.

It was found that the scandium and potassium precipi-
tates were completely inactive as determined with a thin-
walled counter. Most of the activity was found in the
calcium oxalate which was observed to emit the soft elec-
trons of Ca" and y-rays, but some activity remained in the
sodium residue and could not be separated from it.
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'l hc»emotion of an electron in a periodic potential field, and accelerated by a uniform field,
t.;in be obtained by treating the time-dependent Schroedinger equation. The result shows
that tlie wave vector increases linearly with the time within the bounds of a single Brillouin
zone. At the boundaries of the zones transitions to other zones may take place if the accelerating
field is large enough.

'HL motion of an electron in a periodic po-
tential field has been studied extensively in

connection with the theory of solid bodies. The
energy characteristic functions are known to
have the form

P&(r, t) =u&(r) exp (ik r) exp [—iE~t/5], (1)

where k is called the wave vector, and the func-
tion uk(r) is periodic in r with the period of the
potential energy. When no boundary conditions
are imposed, k can take on any value, and, except
along certain surfaces which are boundaries of the
Brillouin zones, Nk and Ei, are continuous func-
tions of k. It is frequently convenient to use,
instead of k, the reduced wave vector. This
differs from k by a vector of the reciproca1
lattice, and lies in the first Brillouin zone.

The motion of the electrons when a uniform

electric field is superimposed on the periodic field
has presented a little diAiculty, because of the
fact that the potential of such a field becomes
infinite, and the position of its zero value has no
physical significance. If boundaries are put on
the field there appear boundary effects that are
believed to be of no significance in treating the
behavior of electrons in crystals. If such bound-
aries are not used, the integrals involved diverge.
Bloch' originally handled the problem by con-
structing a wave packet out of functions of the
form (1).The motion of such a packet led to the
conclusion that the wave vector k changes at a
uniform rate under the inHuence of an external
field, but the method of proof was such as to be
valid only when k was far from the edge of a
Bri1louin zone. No indication was given of the

' F. Bloch, Zeits, f. Physik 52, 555 (1928).
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behavior at the zone boundary. This question
was considered later by Jones and Zener' and by
Zener. ' Zener showed that with a sufficiently
large field some electrons will jump from one
band of energy levels to the next, and he evalu-
ated the probability of such a transition. Al-
though Zener's work leads to a correct under-
standing of the process, it may be worth while
to consider a more direct method of derivation.

The result of the wave packet treatment sug-
gests the study of the function

p(r, t) =uk+k, (r) exp [i(k+Xt) r]
t

Xexp —(i/5) t Ek~k,dr, (2)

with X=ee/k. This function satisfies the Schroe-
dinger equation,

—(It'/2m)V'/+I V(r) —ee r}P=

(5/i) ap/at—, (3)

except for the quantity

—(I't/i) I 2 gradkuk+k&} exp [i(k+Xt) r]
t

Xexp —(i/k) J~ Ek+k,dr . (4)

The remainder is zero in case 2 =0, when no field
is present, and also in case gradk Nk

——0, the free
electron case. In the case of free electrons Eq. (2)
reduces to the solution given by Darwin. 4 It is to
be emphasized that there is no question of at-
tempting to define energy characteristic states,
but rather of solving the whole Schroedinger
equation for the time dependence of the wave
functions.

In case neither 2 nor gradk NI, is zero, but their
product is very small, the function (2) will be an

approximate solution of the differential equation.
For small values of the electric field it will be a
good solution for a general periodic potential,
except when k+Xt approaches the edge of a
zone. Here, even though ~ is small, gradk NI, is
large or undefined, so that other considerations
must be invoked. Qualitatively one ca,n see that
the whole function P will be identical with the
function corresponding to a point on the op-
posite side of the zone, so that the electron may
be said to suAer a Bragg reflection. The end of
the vector @+at then starts again to move
across the Brillouin zone in the direction of the
field. A very weak field (3 ~0) will not cause an
electron to jump from one zone to another, but
will only cause the energy and the wave vector
to move among the possible values in a single
zone. This is a case to which the adiabatic
principle of Ehrenfest is applicable.

To treat the above case more precisely, and
to include the case in which 2 is not vanishingly
small, the remainder (4) must be taken into
account. A general solution can be written as
the infinite sum

p= Qnn(t)uk+2 n+k((r) exp [i(k+2nn+Xt) r]
t

Xexp —(i/h)
Jr

Ek+2~nyk, dr
y (&)

where the n are the vectors of the reciprocal
lattice associated with the periodic potential
energy. That such an expansion is adequate is
due to the fact that for any value of k+X$,
the functions uk~g n~k~(1) exp [i(k+2n.n+Xt) r]
form a complete orthogonal set. This solution
is of the form usual in the method of variation of
constants, and the problem is to determine the
time variation of the coefficients. Substitution of
(5) in (2) leads to the set of equations

dnn/dt 2tts Jtu k+2 n+kik grad uk+&, +k& eXp [2ni(S —n) r]
S

t

Xexp —(i/It) Jt (Ek+2ms+kr Ek+2+n+k )dT (Sa)

Since both s and n are vectors of the reciprocal
H. Jones and C. Zener, Proc. Roy. Soc. 144, 101

(1934).' C. Zener, Proc. Roy. Soc. 145, 523 (1934).
4 C. G. Darwin, Proc. Roy. Soc. 154, 61 (1936).

lattice, the integral over the volume has the
periodicity of the potential energy, and need be
taken only over one cell, if the normalization is
based on a single cell. From the differential
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equation for uk it follows that

~I u*k+2«+k, X gradk uk+k„+k~exp [2vi(s —n) r]dv

=(ik'/m) I u*k+&«+kg. grad, uk+&.,+k, exp [2vi(s —n) r]dv /(Ek+2«+At Ekgkmsikt)&
~J

whence

dG~—=(5'/im) p, u*k+k „1k&&grad, uk+&, +&&ex,p [2vi(s —n) r]dv /(Ek+2, +k&
—Ek+~„+k,) a,

dt syn I

t

Xexp (i/5) (Ek+2«+k, ) Ek~ R1Ck+Xg)d'r (6)

In the case of overlapping bands of energy values,

(Ek+k«ykg Ek+2 s+k[) may become zero. In
this case transitions between different bands
will take place for any value of X. However,
even in case the energy bands do not overlap,
and (Ek+k a+kg Ek+k k+k~) does not become zero,
a transition from one band to the next can occur
if 2 is sufficiently large.

An idea of the magnitude of the probability of
transition from one Brillouin zone to another
can be obtained by considering the case of almost
free electrons in one dimension. In this case the
wave vector has only one component, and the
values between —v./d and +v-/d constitute the
first zone. d is the period of the potential energy.
Consider an electron whose wave vector is in the
neighborhood of + v./d. The only other state to
which there is an appreciable probability of
transition is that one whose wave vector is in the

neighborhood of v/d —2v./d= —s./d. If it is

assumed that at the time t=0 the coeScient
ao=i, and a ~

——0, the coe%cient a I will in-

crease in accordance with Eq. (6). If the prob-

ability of transition is small enough so that ao

does not diminish appreciably in the time
necessary for (%+at) to pass the point v./d, the
total probability of transition for the passage
over this zone boundary turns out to be

where n=m Vo'd/eel', and 2VO is the discon-

tinuity in the energy. This is very similar to the
result of Zener. It is vanishingly small for large

values of at but increases rapidly as n decreases

toward one. This rapid increase suggests the

application to the breakdown of insulating

crystals which was pointed out by Zener.


