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the components of £,” all vanish for #>2m. If one wishes to
avoid this, one must give up (29) and (30).

§6

Enough has been given to show that there are
advantages from the formal point of view in
introducing the Euclidean v, into the general
relativity theory. It imparts tensor character to
quantities which otherwise do not have it, and
allows additional conditions to be imposed on
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the field so as to restrict the form of the solution
for a given physical situation.

In conclusion, it is necessary to point out that,
having once introduced v,, into the theory, one
has a great number of new tensors and scalars at
one'’s disposal. One can, therefore, set up other
field equations than (2). It is possible that some
of these may be more satisfactory for the descrip-
tion of nature. Further investigation is here
required.
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The possibility is considered of interpreting the formalism of the general theory of relativity
in terms of flat space, the fundamental tensor g,, being regarded-as describing the gravitational
field but having no direct connection with geometry. The resulting theory in general leads
to the same predictions as the Einstein theory, but there are cases where the predictions
differ. The present theory may explain the principal results obtained by D. C. Miller in his
“ether-drift’’ experiments. The implications of the theory for cosmology are briefly touched

upon.

§1

N a previous paper! (hereafter referred to as I)
it was shown that it is useful to introduce
into the general theory of relativity the concept
of the existence at each point of space-time of a
Euclidean metric tensor v, in addition to the
usual Riemannian metric tensor g.,. From the
standpoint of the general theory of relativity, one
must look upon %,, as a fiction introduced for
mathematical convenience. However, the ques-
tion arises whether it may not be possible to
adopt a different point of view, one in which
the metric tensor 7v,, is given a real physical
significance as describing the geometrical proper-
ties of space, which is therefore taken to be flat,
whereas the tensor g, is to be regarded as

describing the gravitational field.?
It has been pointed out in I that the introduc-
tion of v,, leads to the possibility of other laws

I N. Rosen, Phys. Rev. 57, 146 (1940).
2 In some respects this resembles the theory of gravita-
tion proposed by Nordstrom (cf. report by M. v. Laue,

Jahrbuch {. Rad. u. El. 14, 263 (1917)). It will be seen that
there are important differences, however.

than those adopted in general relativity. In the
present paper, however, no attempt will be made
to change the laws of the latter, since they form"
a self-consistent system and have proved to be
quite satisfactory for the description of large
scale phenomena, at any rate.

§2

As far as the field equations are concerned, it
is immaterial what interpretation one gives to
the variables involved. This is not the case with
the equations of motion. Let us therefore consider
the law of motion for a particle in the field.
The latter is given in the general theory of
relativity by the equation of the geodesic?

d?x+ u \dxx dxP
— T, (1)
ds? a B)ds ds

where ds is the line element, defined in terms of
the tensor g, (I (1)). Let us now introduce as
independent variable the Euclidean line element

3 A. Einstein, Ann. d. Physik 49, 769 (1916).
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do, defined in terms of the tensor y., (I (6)),
instead of ds. After canceling out a factor d¢/ds,
the equation can be written

d sdo dx* u )dx® dxP do
() === @
do\ds do la 8) do do ds
This can be rewritten
d2xr dx* dxf  dx* dx® dx?
Tty = A — Mgy, (3)
do do do do do do

dQS
where /*— ———/( ) (4)
do’2
and T, and A*,4 are given by I, (7) and (8).

If we multiply (3) by v.,dx”/ds, the left-hand
member vanishes as a consequence of the defini-
tion of do. Hence it is necessary that

dx> dxf dx’

o (5)

N=77A"
do do do’

which gives the relation between s and o. If this
expression for \ is substituted into (3), one gets
an equation from which s has been completely
eliminated.

We can get the equation in a more familiar
form if we go back to (2), multiply it through by
a constant mo, and write

m=modo/ds, (6)

where 7 will be considered as the ‘“proper mass’’
of the particle. Then the equation can be

written as

d dx" dx® dxf dx® dxP

— ) Fmlg — ——= —mAtg—— ——. (7)
do do do o do

On the left we have the absolute derivative
with respect to o of

w~wﬁ(1m—), (8)

which is the energy-momentum vector. Hence the
right-hand member is to be interpreted as the
gravitational force. We see from (7) that,
although inertial and gravitational mass are
equal, they are not necessarily constant.
If we define the scalar
dx* dx¥

W= gy — )
" do da
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then (6) can be written
(10)

as the law of dependence of proper mass on the
gravitational field.

Conversely, if we start from (7), multiply by
gwdx”/de and make use of I (7), we get

imdw?/do = —widm/do,

m=mo/w

(11)

which is equivalent to (10).

Thus we see that, from the standpoint of flat
space, one can put the equations of motion of a
particle into the Newtonian form (generalized to
four dimensions) if we assign to the particle a
variable mass. In a coordinate system in which
the particle is at rest the dependence of mass on
the field is given by

M=mo(’)’44/g44)%- (12)

In a weak gravitational field this can be written
in first approximation*

m=mo(1—¢), (13)

where ¢ is the gravitational potential.

In the case of a light ray we have the addi-
tional condition (in the presence of a gravita-
tional field)

w=0. (14)

We therefore let mo vanish also, but take m, as
given by (10), to be finite and constant. This
allows one to cancel out the m's in (7). That (14)
is consistent with (7) is to be seen from (11).

§3

To see the connection between Eq. (7) and
the gravitational field equations, (I (3)), let us
suppose we have a stream of particles each of
which moves according to (7). Let n, be the
proper particle density and let us assume that all
quantities that we may need are smooth functions
of the coordinates. We write (7) in the form

dx+ dxe dx* dxb
(mﬂ) ——= —MmAtp—— ——
do do o do

and multlply through by #,. On the left we have

dx+ dx> dxt dx"‘
(mno-— ———) —m—
do do/ 4 do da «
4 Since it is shown, reference 3, that for a weak field
g4s=1+2¢ in Galilean coordinates.

(15)
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The scalar (no(dx*/ds)), « can be evaluated in a
Galilean coordinate system. Thus

dx® dt dx~ dx*
(nO‘_—) - ( "do —A_) - (n»—_) ' (16)
do / . do dt /] . dt / 4

where ¢ is the time coordinate and

n=mnodt/do=mn,/(1—12)% 17

is the particle density in a reference frame with
respect to which the particles at the point in
question have a velocity v, the velocity of light
being taken as unity. Hence

d(nv,)

dx on 9o(mv,) d(nv,)
(110*_) =—-+- (18)

ot ox Jdy dz

do

and this vanishes (equation of continuity) if the
number of particles is conserved, which we shall
assume. If we set as the proper mass density

pPo=MmMmny, (19)
(14) becomes
( dx+ dx“) dx® dxf 20)
po—— = — polag— —.
de do) . " Vdo do

Taking as the energy-momentum density
tensor

dx* dx

T'w = pp——,

do do

(21)

where the prime has the same significance as in
I (20), one readily verifies that I (5) and hence
I (21) are satisfied. In this way we see that the
equations of motion and the field equations are
consistent with one another.

§4

The preceding calculations show that the
standpoint of flat space at any rate does not
lead to internal contradictions. Let us now com-
pare the theory based on this standpoint with
the Einstein general relativity theory.

First of all, insofar as the three crucial .tests®
are concerned the two theories lead to the same
predictions. Since the equations of motion have
been taken the same, except for the independent
variables, it is clear that relations among the

5 A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge, 1924).
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coordinates, giving the motion of a particle or
the path of a light ray, will also be the same in
both theories. But more than that, the gravita-
tional red shift will be the same in the two
theories, although this is not quite as obvious.

The gravitational red shift in the general
relativity theory is usually derived from the
assumption that the interval ds connected with
the period of oscillation of an atom df remains
unchanged if the atom is put into a gravitational
field, together with the relation

ds?= g44d52

to which I (1) reduces if the space coordinates
of the atom are fixed. It is clear, however, that
this change in the period of oscillation must also
be a consequence of the equations of motion of
the particles constituting the atom. These equa-
tions being the same in the two theories, the
predicted red shift will also be the same. (It
should be mentioned that the equations of
motion referred to will involve the electromag-
netic field and may be of a quantum-theoretical
nature.)

One way of describing the situation is to say
that all the formal relations involving ds are
taken over into the present theory but'ds is not
regarded as the geometrical interval. Putting the
matter in this way makes the comparison of the
two theories almost trivial. Thus one sees, for
example, that the principle of equivalence is
valid here as long as we deal with coordinates
and not with intervals.

Indeed it appears at first sight as if the differ-
ences between the theories were only questions
of conventions.

For example, if a small measuring rod is moved from
one place to another in a gravitational field, the interval
ds between its end points will remain constant, but the
corresponding do may change.® One may say that the
length of the rod does or does not change, depending on the
point of view. As far as the changes in the coordinate-
differences of the end points are concerned, however, no
disagreement exists. Incidentally, there is some analogy
here to the change in length of a measuring rod with
temperature. If all substances had the same temperature
coefficients of expansion, one could assume that the length
of the measuring rod is independent of the temperature and
no contradictions would arise. This corresponds to the
point of view of the Einstein theory.

¢ Reference 3, p. 818.
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A similar example involving time is to be found in the
case of the gravitational red shift.

Actually it turns out that there are other,
more important, differences between the two
theories. They are based upon the fact that,
after all, the fundamental ideas of the two
theories are different. The present theory involves
less relativity. This may be seen from the follow-
ing example:

Let us take for the moment the flat-space
point of view. Suppose that in a given frame of
reference, we have a static gravitational field
described by g,,. Then the velocity of light will,
in general, be different from that in field-free
space. The space containing the field can there-
fore be looked upon as a medium with an index
of refraction different from unity. From the
standpoint of special relativity one can expect
that such a medium will exert a ‘‘drag’” upon
light, as in the case of the well-known experiment
of Fizeau. If we go over to a second frame of
reference moving uniformly with respect to the
first (Lorentz transformation), it will be possible,
by measurements carried out on light in this
system, to determine its motion relative to the
other system. Thus the static gravitational field
determines an ‘‘absolute” frame of reference.
This will be true whenever the velocity of light
differs from its special-relativity value, even in
the limiting case when the components g,, are
constant in a part of space, so that there is no
gravitational force (but the gravitational poten-
tial differs from zero).

Such a’situation may account for the principal
results of the “ether-drift’”” experiments of D. C.
Miller.” A discussion of this question will be
‘presented in a separate paper, since it involves
some considerations which would lead us too far
afield here.

If we consider the same situation from the
point of view of the Einstein theory, we arrive
at entirely different conclusions.® We cannot
carry out a Lorentz transformation in the
presence of a gravitational field but must first
get rid of the latter by going over to a suitably
accelerated frame of reference. Having obtained
a coordinate system in which the components g,,

7 D. C. Miller, Rev. Mod. Phys. 5, 203 (1933).
81 am indebted to Professor Einstein for a helpful
discussion of this question.
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are constant (at least for a small portion of
space), we can always make a further coordinate
transformation so as to give them their special
relativity values. But then no light-drag or
“ether-drift” can be observed.

§5

The question of viewpoint being discussed
here has a bearing on the application of rela-
tivity theory to cosmology. Thus, if one takes
seriously the interpretation in terms of flat
space, one must give up the A-term in the
cosmological field equations,® since this prevents
the g,, from going over into the v, at large
distances from matter. Of course, any solution
of the equations corresponding to an ‘‘expanding
universe’”’ must be interpreted as representing
the expansion of a distribution of matter and
radiation in a flat space. There appears to be no
necessity for imposing the condition of homo-
geneity, as is usually done.

§6

In the FEinstein general relativity theory
gravitation is explained in terms of geometry.
In the theory suggested here based on flat space,
this geometrization of gravitation has been given
up. Perhaps this may be regarded by some as a
step backward. It should be noted, however, that
the geometrization referred to has never been ex-
tended satisfactorily to other branches of physics,
so that gravitation is treated differently from
other phenomena. It is therefore not unreason-
able to wonder whether it may not be better to
give up the geometrical approach to gravitation
for the sake of obtaining a more uniform treat-
ment for all the various fields of force that are
to be found in nature.

It might be remarked that the theory, as
presented here, was obtained by a reinterpreta-
tion of the Einstein general relativity theory.
This amounts to using the formalism of the
latter as a means for obtaining a consistent set
of equations. Such a procedure is not entirely
satisfactory. It ought to be possible to build up
the theory independently from suitable postu-
lates. This will be attempted in the near future.

9 A. Einstein, Berl. Ber, p. 142 (1917). As a matter of
fact the existence of the nebular red-shift weakens the
chief argument advanced there for introducing the A-term.



