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The problem of the vibration rotation spectrum of water
vapor is treated by means of the theory of semi-rigid poly-
atornic molecules developed by Wilson and Howard. The
potential energy is expanded as a power series in the normal
coordinates and involves three zeroth-order constants, six
first-order and six second-order constants. The positions of
the band centers are calculated and found to depend upon
ten quantities, X;, X;A;, and 7 which are functions of the
potential constants. A new feature of the treatment is the
recognition of a resonance interaction between certain of
the overtone bands which arises from the near equality of
v& and v3. Eighteen band centers are known experimentally.
These serve to determine the X;, X;q, y and furnish eight
self-consistency checks which are very adequately satisfied.
There exists no discrepancy between the Raman and infra-
red spectra as reported earlier. In order to obtain the geo-
metric displacements corresponding to each normal co-
ordinate it is necessary to examine the'spectrum of D20.
This not only furnishes the required information but also

allows two independent checks upon the theory both of
which turn out to be in nearly perfect accord. The inter-
action between vibration and rotation is considered and
the effective moments of inertia are calculated. These are
functions of the normal frequencies and of the first-order
potential constants. It is shown that A=Ig —Ig —Ig de-
pends only upon the normal frequencies and hence may be
computed at once. A comparison between the observed and
predicted 6 yields a very satisfactory agreement. The
analysis of the rotational structure made by Mecke is
supplemented by taking account of the rotation@1 stretch-
ing. The resulting molecular constants fix the valence angle
to be 104'31' and the 0—H distance to be 0.9580A. From
the effective moments of inertia the first-order potential
constants may be evaluated and these, together with X;I,
determine the second-order potential constants. It is now
possible to compute the interaction constant y and a
comparison with the observed y again results most satis-
factorily.

1. INTRoDUcTIQN

HE vibration rotation spectrum of water
vapor is a very extensive one and has been

the subject of a great many investigations. The
first strong line of the rotation series must occur
in the far infra-red at about 500@ and the
spectrum extends with very few gaps through the
near infra-red, where the -fundamental vibration
frequencies lie, up to about the middle of the
visible spectrum. It has been accurately mapped
from 135' to 5700A. The far infra-red lines, which
correspond to changes in the rotational energy
only, have been measured with great precision by
Randall, Dennison, Ginsburg and Weber' and
lead to a determination of the rotational energy
levels of the molecule.

It is well known that the water molecule, which
has the form of an isosceles triangle, possesses
three normal modes of vibration. These funda-
mental oscillations are shown in Fig. 1. Each of
them should be active both in the infra-red and in
the Raman spectrum. In point of fact, however,
only v2 and v3 have been observed' in the infra-

red. They lie near 1595 and 3755 cm ', re-
spectively. These bands are both extremely in-
tense and the third fundamental v& is probably
weaker and is masked by the absorption of v3.

The principal feature of the Raman spectrum'
is a strong line at about 3650 cm ' which can be
ascribed to vl. In addition to the three funda-
mentals, some fifteen harmonic and overtone
bands have been measured. These extend through
the near infra-red into the vidible region of the
spectrum where they are observed as atmospheric
absorption lines in the solar spectrum. The ac-
curacy with which these latter bands have been

mapped is very high indeed although not es-
sentially better than that attained in measuring
the far infra-red rotation lines.

The fine structure of each band, whether
fundamental or overtone, is quite extensive since
the moments of inertia of the molecule are small
and the rotational energies large. The structure
appears to be very irregular, as must be expected
since no two of the moments of inertia are equal
and the molecule belongs to the class of asym

~ H. M. Randall, D. M. Dennison, N. Ginsburg and L.
R. Weber, Phys. Rev. 52, 160 (1937). ' D. H. Rank, K. D. Larsen and E.R. Bordner, J. Chem.

~ E. K. Plyler and W. W. Sleator, Phys. Rev. 3'7, 1493 Phys. 2, 464 (1934); D. Bender, Phys. Rev. 4V, 252
(1931). (1935).
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metric rotators. Mecke4 and his co-workers have
made a careful study of the rotational structure
of all the known bands and have succeeded in
analyzing them in the light of the theory of the
asymmetric rotator. The results of their work
may be stated as follows. Neglecting a rotational
stretching effect which will be discussed later, the
rotational levels of the molecule in any particular
vibrational state may be organized by means of
three moments of inertia. These moments, which
will be called effective moments of inertia, vary
slightly with the vibrational state in question.
Mecke showed that they might be expressed as
constants plus small corrections which are ~inear
in the vibrational quantum numbers. By this
means he extrapolated to the moments of inertia
of the nonvibrating molecule and obtained the
molecular dimensions. He found the valence
angle to be 104' 36' and the 0—H distance to be
0.9558A. A characteristic feature of the effective
moments of inertia is that they do not satisfy the
relationship I~+Is =Ic which must be expected
to hold for any coplanar molecule. In a very
important contribution to the theory of semi-
rigid rotators Wilson and Howard' have shown
that the rotational energy levels of a molecule
should exhibit just the 'features observed by
Mecke, namely that they may be correlated by
means of effective moments of inertia which will
vary with the vibrational state.

An analysis of the positions of the centers of
the fundamental and overtone bands has been
made by Bonner' who used the conventional
expression for the vibrational energy,

W= Wo+ QX,n, +Q QX;an, nk,

where n&, n2 and n3 are the vibrational quantum
numbers. The nine constants X;, X;&, may be
determined from the eighteen observed bands
and thus allow nine self-consistency checks.
These checks are moderately good with one
important exception. The fundamental frequency
v~, measured as a Raman line, is predicted to lie
from forty to fifty wave numbers below its
observed position.

4 R. Mecke, W. Baumann and K. Freudenberg, Zeits. f,
Physik 81, 313, 445, 465 (1933).' E. B.Wilson and J. B.Howard, J. Chem. Phys. 4, 260
(1936).'L. G. Bonner, Phys. Rev. 45, 458 (1934).

't), 5650 cm '

'Pa 1595cm '

1)s = 5755 cm

FIG. 1. Fundamental oscillations of the water molecule.

The solution of this difficulty appears to lie in
the fact that the two fundamentals ~ j and v3 have
nearly the same value, thus paving the way for
resonance e8'ects. These effects are not of first
order, however, since v~ and v3 have different
symmetry characters and consequently may not
interact directly. It is well known that the
vibrational energy levels of the nonlinear, sym-
metrical molecule YX2 belong to either of two
symmetry classes. One of these is even upon
reflection in a plane perpendicular to the X—X
line and through the Y atom, and it is charac-
terized by n3 being equal to an even integer. The
other class is odd upon reflection and occurs
when n3 is an odd integer. In designating a level
it will be convenient to employ the symbo17

(n3,n~, n2). It is thus obvious that the levels
which may interact due to the near equality of
v& aud v~ will be of the type (na, nq, n2) and
(n&+2, n& —2,n&). The hypothesis that a reso-
nance of this sort constitutes an essential feature
of the analysis receives immediate confirmation
when, we examine the overtone bands which
occur with greatest intensity. A glance at Table I
shows that the strong overtone bands usually
appear in pairs, thus (120), (300); (121), (301);
(310), (130), etc. The members of these pairs
comprise just those levels which could interact
by resonance. An analysis of the positions of the

7 The order (n3, n1,n2) corresponds with the notation used
by Mecke which it seems wise to retain here.
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TABLE I. Observed and calculated values of W/hc.

(msmses)

(001)
(002)
(010)
(100)
(101)
(110)
(111)

(120)
(300)

(121)
(301)

(130)
(310)

(131)
(311)

(132)

(140)
(320)

Wjac(obs. )

1595.0
3151.0
3650
3755.41
5330.8
7251.0
8807.05

10613.12
11032.36

12151..22
12565.01

13830.92
14318.77

15347.91
15832.47

16821.61

16899.01
17495.48

8'/hc(calc. )

5330.6
7250.4
8805.52

12148.46
12567.74

15346.27
15834.12

16822.70

16894.25
17482.60

energy levels will require in addition to the nine
X; and X;A, of the usual theory, one further
constant y which measures the effect of the
resonance. It will be shown that, upon de-
termining the ten constants with ten of the
observed levels, the remaining eight levels are
satisfactorily predicted by the theory.

The general program which we hope to carry
out in the present paper is as follows: The
Hamiltonian function will be set down and the
potential developed as a power series in the
normal coordinates. The zeroth-order potential
contains three constants, namely, the normal
frequencies. The first-order potential consists of

cubic combinations of the coordinates and con-
tains six constants. The second-order potential
which involves quartic combinations possesses
also six arbitrary constants. A solution is made
which yields the energy values of the system and
is a function both of the vibrational and of the
rotational quantum numbers. The band centers
are obtained by setting the rotational numbers
equal to zero and in this way the ten constants
X;, X;& and p which were previously determined
from the observed band centers are found as
functions of the fifteen potential constants. To
proceed further we turn to the rotational energy
of the system and calculate the effective moments
of inertia of the molecule. These are found to
depend linearly upon the vibrational quaritum
numbers in agreement with Mecke's observations.
They are functions of the six cubic constants but
not of the quartic constants. The effective mo-
ments of inertia as determined experimentally
furnish us with nine data, the coefficients of
n~, n2 and n3 for each of the three moments, in
addition to the equilibrium values of the mo-
ments. These nine data fix the six cubic constants
and allow three independent checks of the theory,
which are made by comparing the observed and
predicted values of A=Ig —I~ —I~. The agree-
ment with the observations is most satisfactory.
We now possess sixteen data, the six cubic
constants from the effective moments of inertia
and the ten X;, X;~ and p with which to calculate
the fifteen potential constants. This implies the
existence of one further test of the self-consistency
of the theory and upon calculation it proves to be
adequately fulfilled.

2. THE HAMILTONIAN

In recent years a number of investigators have attacked the problem of finding the Hamiltonian
of a semi. -rigid, rotating polyatomic molecule. Of these, the formulation which seems to be most
convenient in application is that by Wilson and Howard. ' A second derivation of this Hamiltonian by
a somewhat shorter and more direct method has been made by one of us (B. T. D.) and will be
published shortly. The result of this calculation is to obtain a Hamiltonian which differs only slightly
and almost unessentially from the Wilson and Howard function, but which is Hermitian while it may
be shown that theirs is not.

Our Hamiltonian, when expressed in the Wilson and Howard notation, is:

II=lZI'(~. P-)I -s~ '(&—s Ps)~'+221—'Pv 'P»'+~
eP k



WATE R VAPOR MOLECULE

The I' are components of the total angular momentum and p are the components of the local
angular momentum in the rotating coordinate system defined by Wilson and Howard. p p are the
cofactors of a determinant p which contains the moments of inertia. These quantities depend upon the
normal coordinates and will be calculated in detail later. p& are the momenta conjugate to the normal
coordinates qy, .

In the case of the water molecule, some simplifications occur. It will be shown that, of the local
angular momenta, the only nonvanishing component will be perpendicular to the plane of the
molecule. We denote it by p3. The potential function U we develop as a power series in the normal
coordinates where the zeroth-order, first-order and second-order portions will contain terms which

are, respectively, quadratic, cubic and quartic in the normal coordinates. Since the molecule is
assumed to be symmetrical with respect to a plane perpendicular to the line joining the equilibrium

positions of the hydrogen atoms and passing through the oxygen, the potential must obviously be an
even function of q3, where q3 describes the antisymmetrical motion 58 (see Fig. 1). The Hamiltonian,
when written out, thus becomes:

3 3

FI=-2 Q P~~P. '+25512(P1P2+P2P1)+ 254 P8P38P 'P3y' —2(P34533+P38P3)P3+2 Q 54'P5P 'P514'

+ 2 (~lql +~2q2 +~8q3 ) + 2 (451ql +a 2q2 +453ql q2+454qlq2 +455qlq8 +456q2q3 )

+-2, (blql'+b2q2 +f 8q3 +64ql q2 +f15ql q8 +f16q2 q3 ) (f)

The constants ) &, ) 2, X3, a& . a6, b&. b6 constitute the fifteen arbitrary potential constants which

were mentioned in the Introduction. '

3. THE VIBRATIONAL ENERGY

In order to obtain an expression for the band centers we have merely to set the total angular
momenta components I' equal to zero and examine the remainder of the Hamiltonian. It will prove
convenient at this point to use, instead of the normal coordinates g;, the dimensionless variables x;.
The x; are the arguments of the Hermitian orthogonal functions describing the normal vibrations and
are related to q, as follows: x;= 2 lr[46;c/k]5q;. The 46; appearing here and throughout the remainder of
the paper are the normal frequencies expressed in waves per cm; c is the velocity of light. The po-
tential energy in these coordinates becomes:

i /fl& 2 (561+1 +462+2 +568+8 ) + (421+1 +422+2 +558+1 +2+424X1552 +425+1+3 +426552553 )

+ (P1551 +P2+2 +P8+3 +04551 +2 +P5+1 +8 +P6562 +3 ) ~

The relationship between the 42, , p, and the a;, fl; of the earlier formula may be easily obtained when
needed.

The solution of this part of the problem which describes the vibrating but nonrotating molecule

may be readily obtained by the usual perturbation methods. One finds

W/78C= WO/kC+X1851+X2252+X8118+X11881 +X2202 +X83258 +X12 1 235+28X13 1 253+852X3 482.423

' It should be pointed out that the. quartic part of the potential may contain three additional terms, namely g&g2g3',
q&q33;and qpg2. .These terms, since they are odd in at least one coordinate, will not contribute to the energy. They would,
however, have had a slight influence in transforming from the Hamiltonian for H20 to that for D20, since the normal
coordinates of the latter molecule are not exactly equal to those of the former.
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The constants X; and X,I, are the following functions of the potential constants:

WOjkC 2(%1+%2+%3)+4(Xll+X22+X88+X12+X18+X28)i

Xl ~1+X11+2(X12+X18)i

X2 L02+X22+2(X12+X23)i

X3="8+X88+2(X13+X23),

3 i5 A] A3 A3 A3
Xll ——K.E.P.+—P1—— +—

2 4 (01 2%2 8(2&1+~2) 8(2&1—~2)

3
X22=K E P +-P2—

2

3
X33=K.E.P.+—P8—

2

15A2 A4 A4 A4—+
4~2 2~1 8(2~2+~1) 8(2~2 ~1)

A 52 A62 A5 A

+ +
2(vl 2&F2 8(2~8+col) 8(2(o8 —col) 8(2&o8+(o2) 8(2(u8 —co2)

(2)

3Ayn4 3A2A3
X12——K.E.P.+P4—

A3 n4' A4 2

2(2(el+(o2) 2(2(ul —(o2) 2(2~2+(ul) 2(2co2 —&ul)

X13=K.E.P.+I'8—
3nqn5 A3A6 Ag

t

GP2 2(2(i08+(01) 2(2(08 Ml)

A63A2A6 A4A5 A6
X23——K.E P +P6 ——

cu2 &al 2(2co3+M2) 2(2a&8 —&o2)

A calculation similar to ours was first made by Bonner. ' Our results for that part of the Xg, which
depends upon the potential constants is in agreement with his when allowance is made for the
difference in notation.

The symbol K.E.P. which appears in the above formulas for the X;& represents the contribution
from the kinetic energy part of the Hamiltonian. An examination of the Hamiltonian Eq. (l), shows
that the K.E.P. may come from a number of terms, many of which turn out to be quite negligible.
Thus the difference between 2+plp8p '*p3p' and the zeroth-order expression 2+p82 yields nothing to
the order of approximation to which we are working. Similarly —,plp3p, 33@, &p3p4 may be replaced by
—,p33p3'. This latter quantity which involves the single nonvanishing internal angular momentum p3,
will in general contribute both to X~3 and X23. A calculation shows' that for the water molecule the
K.E.P. of X» is so small that it may be set equal to zero but that the K.E.P. of X» is +26.74 cm '.

The final step in discussing the formula for the positions of the band centers is to consider the
inhuence of the resonance interaction between levels of the type (n3nln2) and (n3+2,nl —2,n2). The
matrix elements in the Hamiltonian connecting these states are all off diagonal and they are all of
second order. Thus the calculation of the X A. will be unaffected, since these depend upon second-order
elements on the diagonal but only upon the first-order off-diagonal elements. A second way of stating
this is that none of the terms in X'2 contain the resonace denominator (col —cu3). The method of de-
ducing the final energy levels is now to diagonalize separately those portions of the Hamiltonian

' The calculation is easily made when p3 is explicitly determined as will be done in the next section. p.» may be given its
equilibrium value 1/I, . The physical reason why X» is so little affected is that in water vapor the motions of the hydrogen
atoms in the vibration v& are very nearly along the legs of the isosceles triangle. Thus the compound motion of v& and v3

together possesses almost no angular momentum. For this reason the K. E. P. of X» is just equal to the corresponding
contribution to X» in CO42 which has been calculated by steinberg and Eckart, J.Chem. Phys. 5, 517 (1937) and found to
be f h/8~'I, o jlcv3/(02+N2/N3 j.
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matrix which contain the elements in question. The oR'-diagonal terms of these portions of the
Hamiltonian consist of an interaction b. A short calculation shows that

where

b„'+, „',„',——-', yhc[n~(e~ —1)(63+1)(ma+2) $-'*,

0!5 CIAO!5

v=kP~- + -+
Qly 2Cdy 4(2GDy —(d2) 4(2(01+M2)

(3)

It is seen that p depends only upon the potential constants. There exists a contribution from the
kinetic energy part of the Hamiltonian but this turns out to be negligible in the case of the water
molecule.

As an example, let us consider the interacting levels (120) and (300). They will be given as the roots
of the determinant

Xg+2X2+Xgg+4X2p+2Xgg —W/hc g3y
V'3v 3Xi+9XIg —W/hc

The roots may be expressed as W/bc&-', [bo'+ 8P]'
where W/hc is the mean value of the levels, in
this case, 2X~+X~+5X~~+2X22+X~2, bo is the
separation of the levels without interaction,
namely —2X&+2X2—8X»+4X»+2XI2 and 8&

is the separation caused by the interaction alone,
in the present example 2+3'. The highest fre-
quency bands observed are (140) and (320).
These are evidently members of a triplet whose
third member is (500) and in this case the
determinant which fixes the energy levels is of
third order.

The observed positions of the band centers are
collected in the Table I. It will be noticed that
the numbers given for the bands lying in the near
infra-red differ slightly from the values usually
appearing in the literature. This arises from the
fact that we have corrected the wave-lengths to
vacuum. " Several measurements' have been
made of the frequency v& which appears in the
Raman spectrum and the values which have been
reported range from 3648 cm ' to 3654 cm '.
This discrepancy probably has its origin partly in
the broadness of the Raman line (about 5 cm ').
We have adopted the even value 3650 cm —'. In
order to calculate the ten constants X;, X I, and

p, we need ten data and these have been selected
as indicated in the third column of Table I. In
the case of (121), (301) and (131), (311) the
individual levels were not used but only their
sums and this is denoted by bracketing their
calculated values.

"M. Rusch, Ann. d. Physik '70, 373 (1923).

Since there are eighteen bands which have been
observed, there will occur eight checks upon the
theory. The agreement between the measured
and calculated values is very satisfactory and is
definitely much better than that obtained by
Bonner. We feel that the small differences which
do exist are due to the fact that we are ap-
proximating the potential function by a power
series development which is broken oR after the
quartic terms. This view is strengthened by the
circumstance that the agreement appears to
become poorer for the higher levels. The nu-
merical values of the constants in waves per cm
are as follows:

Xy =3693.89 Xyy = —43.89 Xy2 = —20.02
X2——1614.5 X22 ———19.5 Xpa

———155.06
X3——3801.78 X33———46.37 X23 ———19.81

74.46 cog
——3825.32

co2 = 1653.91
Wo/bc=4631. 25 co3——3935.59.

The zero-point energy Wo has been calculated
on the basis that the energy constant may be
developed as a power series in n;+-'„ thus

We are aware that the conventional second-order
perturbation theory does not quite give this
result as has been pointed out by King. " We
believe that this is due to the fact that the
perturbation method involves a development

"G.W. King, J. Chem. Phys. 5, 414 (1937).
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reduced mass 2m%/(2@i+M) and 2a is the
equilibrium distance between the X atoms.

The kinetic energy of the vibrating system may
be calculated in the usual manner and is

( pb') m
2T= I

~

1+
~

x'+pj'y q'. —
2ma'~ 2

Fro. 2.

which breaks off after a certain number of steps.
A similar situation occurs in the theory of the
diatomic molecule where the perturbation calcu-
lation yields an energy which is not exactly a
power series in (n+ ~~). In this case, however, it is

possible to obtain exact solutions for a number of
particular potential forms (i.e. , the Morse po-
tential) and in every instance the energy is
expressed as a function of n+-', .

It will prove necessary for the rotation vibra-
tion interaction which is to be treated in the next
section that we know the actual geometric
displacements corresponding to each of the
normal coordinates. The following geometric"
displacement coordinates will be used. Let us
consider the Cartesian axes x and y whose origin
lies at the center of gravity of the system and
whose x axis is parallel to the line joining the
equilibrium positions of the two X atoms. We
now choose the x component of the change
(increase) of distance between X atoms to be the
coordinate q. Let y be the y component of the
displacement of the Y atom with respect to the
center of gravity of the X atoms. The final
coordinate x is illustrated in Fig. 2 and is equal to
xl+b8, where xl is the x component of the dis-
placement of the Y atom against the center of
gravity of the X atoms, 0 is the angle between the
line joining the X atoms and the x axis, while b

is the equilibrium distance between the Y atom
and the line joining the X atoms. From the
conservation of angular momentum it is easily
shown that x=(1+yb'/2ma')x~. Here p is the

The general potential function will contain only
four constants (since it must be even in the
coordinate x) and may be written

2 U= aX2+ by2+ Cq2+ 2dyq.

The normal frequencies are given in terms of
the roots (X;= 4m-'raPc') of a determinant and may
be expressed as follows:

Xg) g
= 2(bc —d')/mp,

Xg+ Xg =b/p+ 2c/re,
X 3 a(1+——pb'/2ma') /p

The first minors of the determinant yield the
relationships between the displacement coordi-
nates and the normal coordinates ql, q2, g3.

~llgl+ ~12/2)

y = &21ql+ ~22q2,

x = 833q3,

where

8,„=d/[(-', m); —c)'p+-', md']l,
5g; ——(-,'mX; —c)/[(-,'mX, —c)'p+-,'md']l, (4)

where the index i=1', 2.

833 ——[1/g+b'/2ma']'.

The following relations exist between the 8;A. ,

@~21 + 2m~11 ~)

Pf)22 + 2m~12 ~)

2P ~21~22+~ I) 11~12 —0y

tI21~11+~22|I12

bll + ~12 2/mi
b21 +b22 1/Py

JM521' —-', mb12' ——0,
@522 —2PFl 511 —0.

It is clear that the three normal frequencies of
H20 will not serve to determine these relation-
ships, since there are four potential constants
involved. The normal frequencies of D20 will

supply the remaining datum.
The fundamental frequencies of D20 have been

measured" although with somewhat less accu-

'~ A geometric coordinate is one which defines the con-
figuration of the molecule without reference to the masses
of the atoms. The constants appearing in the potential
function are thus the same for any isotopic molecule.

"The frequency v1 appears in the Raman spectrum and
was reported by D. H. Rank, K. D. Larsen and E. R.
Bordner, J. Chem. Phys. 2, 464 (1934).The bands v2 and vs
were observed by E, F. Barker and %. %. Sleator, J.
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racy than the corresponding work for H20 and
have the values v~ ——2666, v2 ——1178.7, v3=2789 .

cm '. These frequencies are not the normal
frequencies co, but, as may be seen from Eq. (2),
are connected with them by the formulas,
~~ ——~~ —2X~~ —-', X~2 ——,'X~3, etc. We shall treat
the problem of obtaining the X;& by a method
similar to that used by Bonner. In the diatomic
molecule the coeffj.cient of n' varies as the square
of the frequency when changing from one
isotopic molecule to another. We shall accordingly
assume that X;; varies as co,2 and X I, as co;MI, . It
will turn out that all three normal frequencies
change by about the same factor and conse-
quently we feel that this method, while not
rigorously accurate, will lead to no serious errors.
A preliminary solution gives the variation of
each co. We find in this way that ~& ——2757.86 and
co2 ——1210.17.These numbers, which are derived
from the observed fundamentals, may be tested
by noticing that the ratio of ~&cu2 for H20 to
co&co2 for D20 must be equal to the square root of
the ratio of mp for D20 and H20, respectively. A
calculation based on H=1.00813, D=2.01.473,
and 0= 16.0000 shows that this relation is almost
perfectly ful fille; the observed ratio being
1.89566, while the predicted ratio is 1.89539. Such
an excellent agreement implies that our method
of obtaining the X;j, for D20 has been a valid one.
For purposes of computation ~& is increased by
0.20 cm ' and (u2 by 0.08 cm ' in order that the
theoretical ratio of cvlco2 for H~O and D20 shall be
exactly satisfied.

The third fundamental will be treated slightly
differently: co3 of D20 may be obtained by using
Bonner's values for the molecular dimensions,
a=0.75625A and b=0.58450A, together with the
ratio of masses. We find cu3 ——2883.79. From this,

Chem. Phys. 3, 660 (1935). Of these two fr'equencies v3
is the less accurately known and was determined as the
center of the zero branch associated with the band. We
believe that the published value of 2784 crn ' is subject
to the following corrections. In H20, the center of the
zero branch of v3 lies at about 3741 cm ' whereas the true
band center as revealed by the rotational analysis is at
3755.4 cm '. This difference of 14.4 cm ' is caused by a
type of convergence. . Now in, the case of the diatomic
molecule the convergence factor varies as the cube of
the normal frequency and consequently we believe that
the correction for the frequency u3 of 020 should be
approximately 5.7 cm '. A reduction to vacuum wave-
lengths yields the final result, n3 ——2789 cm '. Fortunately
the frequency v3 is not involved in the calculation of the
potential constants, although it does furnish a test of the
self-consistency of the theory.

together with the X;I,we calculate that v3 ——2787.7,
which is in very satisfactory accord with the
observed number 2789.

Collecting these results, we have for D20:

M y
——2758.06, Xy] ———22.81, Xy2 ———10.56,

or2 ——1210.25, Xg2 ———10.44, X)3———81.92,
G03 2883.79, X33——24.90, Xga ———10.62.

The zero-point energy of D20 is then 3385.74
cm —'.

The values of the potential constants and of
the 6;A, for H20 now follow readily.

0=10.672X10' dynesjcm c=3.1344,
b = 7.1810, d = 3.1588,

8~~
——+1.14678m ', 6~2=+0.82758m ',

Rgb
——+0.4391.0m, 82g ———0.60845m

633= 0.92828m ',

where m is the mass of a hydrogen atom, which
we will take to be 1.6734)&10 '4 g.

The sign of d is not determined directly but if
we assume that the force field must be nearly of
the valence type it follows that d is positive.
We wish to remark that the accuracy with which
the potential constants are known is certainly
not as high as would be indicated by the number
of significant figures given above. In making
calculations, however, it is wise to make sure
that no inconsistencies arise from rounding off
numbers prematurely.

4. THE VIBRATION ROTATION INTERACTION

The main objective of the present section is
to calculate the effective moments of inertia of
the molecule. In a very recent paper Shaffer
and Nielsen" have also undertaken to solve this
problem for the nonlinear symmetrical molecule
YX2. They begin, as we do, with the Wilson and
Howard Hamiltonian and carry through their
computation along lines which in a general way
parallel our work. Their final results for the
moments of inertia are partly in agreement with
ours but contain certain differences which appear
to us to be vitally important in a discussion of
the problem. Thus we find that the quantity
0 = I~—I~ —I~ is independent of the coefficients
of. the cubic terms in the potential, a result which

"K.H. Shaffer and H. H. Nielsen, Phys. Rev. 56, 188
(1939).
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is not attained by Shaffer and Nielsen. * We feel
justified in giving a brief account of our calcula-
tions, particularly since they appear to be very
simple and straightforward.

The moments and production of inertia in the
rotating coordinate system defined by Wilson
and Howard may be readily expressed as func-
tions of the displacement coordinates x, y and q
of the last section. Letting 1/f=(1+pb'/2ma2),
we find:

A = p.b'+ 2pby+ p2f 2b2x2/2ma2+ py',
8= 2 ma +22maq+-'2mq'+ pf'x',
C=A+8,
D = 2pbfx+ 2pfx(b-q/a+ 2y),
E= F=O.

The p„p which appear in the Hamiltonian
function are

P 11 . ) |(I22 9l2 =
AB —D' AB —D' AB —D'

P33=—
C—ZZ, 2

Pl3= @23=0.

The ZI, are obtained in the following manner.
The only component of the internal angular
momenta p which does not vanish is p3 and has
the value

It may readily be shown from the relations con-
necting the 8 p that Xl2+Z22=1. A substitution
yields the result that for H20,"Xl'=0.000019
and E22 =0.999981. The quantity Z& is the
coefficient of qI, in the formula for p3. Thus

p 8 pf (——xy xy)——(pfb/212) (xg —xq) .

This may be expressed as a function of the normal
coordinates by means of Eq. (3).

P3 = El(g8gl glg3) +%2(q3g2 g2q8) tr

where
Itl pf~33(b21 balll/2n')y

&2=pf833(822 —bb12/2a).

41 +lg 3) ~2 +2/3) ~ 3 +lgl +2/2.

The p ~ may now be expressed as functions of the normal coordinates. It is convenient to develop
them as power series in the q; and to retain no terms beyond the second.

pl 1 ——1/pb' 2(82lql—+f122q2)/pb'+ 3f'f133'q3'/2ma'b'+3 (621q1+822q2) /pb',

p22 = 1/2 ma' —(511ql+ b 12q2) /2m a'+ 3pf'5 33'q 3'/4m'u'+ 3 (61 lq 1+ f'1 12q2) '/Sma',

f4p2$ 4

p 33 pf'633'/2m——a' [(m—a—b11+pb6 21)ql+ (ma 812+pbbs 22) q2j+3f'p '6 38'(X2'ql'+-El'q2') /4m'a'
2m2a4

f p 833 XlÃ2qlq2/2m 6,
p 12 —fb 33q3/ma'b —3f633q3(621q1+ 622q2) /4mB tl 3f833q3(bllql+ 012q2)/4ma'b

A feature of these expressions which will later turn out to be important is that the linear part of

1/p33 is equal to the linear part of (1/ »p+1/p22). This arises directly from the fact that A+8 = C.
The Hamiltonian (Eq. (1)) may now be re-examined and each term evaluated to the desired order

of approximation. The method which is employed is to diagonalize the Hamiltonian with respect to
the vibrational part of the matrix elements. The resulting expression may then —in agreement with
Wilson and Howard's predictions —be put in the form

W =P12/2I~+I 22/2Is+ F82/2Ic+vibrational energy.

The I&, I& and I& are the effective amounts of inertia and are functions of the vibrational quantum

Note added in proof.—A re-examination of the article by Shaffer and Nielsen leads us to believe that the differ-
ences may well be due to several typographical errors and that our results are essentially in agreement.

' The physical meaning of this very unequal division is interesting. X& and X2 represent the contributions to the
internal angular momentum from the combined motion v1, v3 and s2, s3, respectively. In H20 the motion of the
hydrogen atoms (whose amplitude is so much larger than that of the oxygen) is nearly along the legs of the isosceles
triangle in both the motions v& and v3 but nearly perpendicular to the legs in v2. For this reason the combined
motion v&, ue will possess practically no internal angular momentum as compared with that of v&, v3.
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numbers. It must be stated that the above equation is true only to second-order approximation;
higher orders will bring in quartic combinations of the P .

The first part —',Pt4 P,' contains, in addition to the constant p "=1/I o, terms which are linear
in the q, and terms which are quadratic. These latter are immediately diagonalized, the q, yielding
h(n, +-,)/4~ cu;c while q;q& gives no contribution. The linear part of p, may be treated in either of
two ways which lead to the same results. The first method recognizes that the presence of a linear
term means that the centrifugal forces of rotation have displaced the equilibrium positions of the
atoms. We may shift to the new origin by balancing the centrifugal force against the Hookes' law
force. This process will eliminate the linear part of p and will bring in contributions from the cubic
part of the potential. The second method is that of the standard second-order perturbation theory;
the terms linear in the q, and those which are cubic in the q, combine to produce an addition to the
energy which may be readily calculated and which is equal to that obtained above.

The second quantity in the Hamiltonian, —,p&o(P&Po+P&P&), yields nothing in this order of approxi-
mation. It may likewise be shown that the final term

—
o (potJ oo+ p oops)Po

can be replaced by the simpler expression —@33p3P3.
Obviously —p»'p3P3 contains no elements which are diagonal in the vibrational quantum numbers

and therefore no first-order contribution to the energy. In second order it does, however, give an
important term which may be calculated from the usual form

(goo')'Po'Q'po). 'po /(Wo —Wro).

It should be mentioned that this term does contain a matrix element connecting the resonating
states (non&no) and (no+2, n& —2, n&) but that its magnitude for H&O is negligibly small and need not
be considered.

The methods which have just been outlined allow us to obtain the effective p . The effective
moments of inertia are found by inverting the p and are given by the following expressions. We
present them as functions of the potential constants n~ . uo rather than a~ ao. Let s'=h/~'b'c and
t' =h/4''a'c.

I~ = I~ [1 s(3s8—o~'/4&o~+3borrr~ joo, i+8oono/ooo'*) (n~+ o) —s(3sboo'/4coo+38ooao/coo'*+bo~cr4/co~**) (no+-,')

s(3spb'f'8o —o'/8ma'oo o+ booxn„/cu ~'+ 8 oooo/roo') (n o+ -', )],
Ir~ = Is'[1 t(3t5»'/4~—&+3b»cri/oo&*'+b»no/~o')(n&+-', ) t(3th»'/4ro—o+38»coo/ro&**+6»cr4/ro&') (no+-', )

—t(3tpf'boo'/2mroo+8»rro/oo&l+ b»cro/a»'*) (no+-', )],
A=Ic Iz —Is= [hX&—'too'/~'ca»(ooo' —~&')](n&+ o)+[hKo Coo /m-'ca)o(rdo' —ooo')](no+-', )

—[(hX r'ro g'/vr'coo o(oo o' —ro g') ) + (hKo'coo'/m'c(v o((so' —(o o') ) ](n,+ -', ) .

These formulas differ from those of Nielsen and Shaffer only in the parts containing the cubic
constants a~ a6. Our results, in contrast to theirs, show that A=I~ —I~ —Ig is independent of the
cubic constants. The reason why this comes about is easily understood. The cubic coeScients in the
effective moments of inertia arise only from the terms in p, p which are linear in the g;. These terms,
as has been pointed out, satisfy the relation that 1/tr» ——1/p»+1/tr» and consequently they can
contribute nothing to the A.

The quantity 6 plays an important role in the theory of the water vapor spectrum since it may be
calculated from a knowledge of the normal frequencies and the shape of the molecule only and hence
compared directly with the experimental data. Explicitly,

6= [0.1644(no+ ~o) —0.0122(no+ o)]X 10—4o



B. T. DARLI NG AND D. M. DENNISON

The coefficient of (n&+ —,) in the expression for 6 is practically zero since the numerical value of Zi
is so small.

It will prove convenient to substitute the numerical values for the normal frequencies of the
water molecule into the formulas for the effective moments of inertia in order to facilitate a correlation
with the experimental data. We thus obtain

(Ig —Ip") + 10"o= ( —0.0151—0.0001127ni+0.0001831a3)(ni+ ~~)+ (—0.0672+0 000.5493ng

0 0000376'&) (sg+ g) + ( 0 0149 0 0000376ct'. +0 0001831cx6) (%3+ 2)
(6)

(Ii& Ii&o) X—10"= ( —0.0290 —0.0002136«.i —0.00018070.3) (ni+ 2)+-(—0.0349 —0.0005421n2

—0.0000712o&) (n2+-', )+ (—0.0280 —0.0000712ah —0.000180706)(n3+-', ).

In the case of the water vapor molecule in which there exists a resonance between the states
(n3, ni, ng) and (F3+2,&ii —2,n~) there will occur a mixing of the effective moments of inertia for these
states. If I ' and I ' represent the moments of inertia as calculated from Eq. (6) and if I ' and I i'
are the actual moments of the resonating states, then it may readily be shown, that

I ' =I '(&+ ho)/2&+I. '(fi —&o)/2ii,

I "=I '(b hp)/2—fi+I '(8+Bp)/28,
(7)

where in these expressions 5O stands for the separation which would exist between the vibrational
levels if there were no resonance interaction and 6=[50'+bi']1 is the actual separation between
the levels.

5. CORRELATION WITII I' XPERIMENT

The final problem of this investigation will be
to compare the experimental fine structure of
the water bands with the theoretical formulas for
the effective moments of inertia and thereby to
obtain the molecular potential constants. Mecke'
has analyzed the fine structure lines of each
band and has shown that the rotational energy
levels are just those which are predicted by the
theory of the asymmetrical rotator. He thus
calculates the effective moments of inertia for
every particular vibrational state. We believe
that his values may be somewhat improved by .

taking into account the rotational stretching of
the molecule in the manner proposed by Wilson. "
It was stated in the last section that the applica-
tion of a higher order perturbation to the
Hamiltonian function would yield terms which
are quartic in the components of total angular
momenta P . The coefficients are functions of

TABLE II. Calculated values of —BW.

J 21 2P 2 1 11 10 1
—6 W(cm ') 0.331 0.032 0.045 0.015 0.006 0.047

E. B. Wilson, J. Chem. Phys. 4, 526 (1936).

the normal frequencies only and may be easily
evaluated. The final results of our calculation as
given in Table II for a limited number of rota-
tional states show that each level will be de-
creased by what amounts to a small correction. "

The eRective moments of inertia are then
obtained from the relations

h/2m'cI~ = (2i —1,),»+0.28,

fi/27r'cIs ——(20 —1o),„,+0.03,

k/2m''cI c (2 i 1i)0~&+0 03

and are shown in the second, fourth and sixth
columns of Table III in units of 10 '

g cm'.
(We take h=6.624&(10 ".)*

The observed values of A=Iq —I~ —I~ are
given in the seventh column, next to which
appear the 6 as calculated from Eq. (5). The
agreement is very satisfactory and is best for
those levels which lie in regions most favorable
for experimental determination. Thus the rota-

'7 The work of Randall, Dennison, Ginsburg and Weber
indicates that for the high levels the rotational stretching
may be very large (for the state 11» it is about 280 cm ');
in fact, so large that it could not be simply computed.

~ 1Vote added in proof.—The physical constants appearing
in this paper are taken from a private communication
kindly furnished by Professor R. T. Birge.



tional energy levels of the ground state (000) are
undoubtedly known with the greatest accuracy.
The strong bands (120) to (310) which appear
as atmospheric lines in the solar spectrum have
also been measured with high precision. The
weaker solar bands, as well as the near infra-red
bands, have not been as exactly determined. We
regard the agreement between Aobs. and hcalc. as
being a real and substantial test of the theory
Rnd Rs constltutlng onc of thc InoIc lmpoI'tRnt
points of this investigation.

The theory also predicts that the effective
moments of inertia should be linear functions of
the vibrational quantum numbers. A study of
the data reveals that this is essentially the case,
although small discrepancies exist which are
usually of the order of the experimental errors.
We have made the following treatment: The
seven most accurately observed bands (000) and
(120) to (310) are selected and their moments
of inertia are 6tted to a linear formula by
means of a least-square solution which is subject
to two supplementary conditions; erst that
Iqo=I~'+I~' and second that the 0 is just
equal to the calculated D. Of course here, as in
every ease involving the resonating levels, it is
necessary to take account of the mixing of the
effective moments of inertia caused by the
resonance. This is easily done by means of Eqs.
(7} and we arrive at the result,

Ig X 104' = 1.0229+ (0.0213)(ni+-', )
—(0.1010)(n, +-',)+ (0.0486) (ns+-', ),

Is X 10"=1.9207+ (0.0398)(ni+-,')
—(0.0249) (n +-', )+ (0.0077}(n +-', ),

IcX10"= 2.9436+ (0.0611)(ni+-,')
+ (0.0385) (n2+-', )+(0.0441) (ng+-', ).

Thc VRlucs for thc cRective moments of lncItlR
as calculated from the formula just written are
given in the third, 6fth and seventh columns of
Table III. The agreement with the observed
values is satisfactorily good and, as in the case
of the 6, is best for those bands which are most
accurately known experimentally. , thus leading
to the belief that the discrepancies may be due
to observational errors.

The equilibrium values for the moments of

TAsI.E III. Observed aed calculated values of the effective
moments of inertia and of A.

(n3ntng)

(000)
(001)
(100)
(101)
(110)
(111)
(120)
(300)
(121)
(301)
(180)
(810)
(181)
(182)'
(140)
(820)

Ig O&8. Ig CALC. Ig 038. Ig CA.LC. Ig 038. Ig CALC. 6 038. 6 CALC.

1.007
0.904
1.057
0.988
1.000
0.977
1,110
1.141
1.000
1.046
1.138-
1,161
1.030
0.961
1~ 107
1.188

1.007
0.906
1.056
0.955
1.076
0.976
1.105
1.147
1.008
1.046
1.136
1.158
1.034
0.935
1.224
1.281

1.929
1.899
1.928
1.928
1.995
1.896
2.014
1.969
1.978
1.940
2.040
2.006
2.008
1.998
2.056
2.006

1.982
1.907
1.989
1.915
1.979
1.954
2.012
1.962
1.987
1.947
2.040
2.014
2.015
1.990.
2.064
2.055

8.018
8.107
8.048
8.188
8.117
8,200
8.185
8.155
8.240
8.201
3.244
8.917
8.287
8.852
3.288
8.865

8.016 0.077
3.055 .804
8.059 .068
8.099 .222
8.120 .122
3.160,827
3.178 .061
8.151 .045
3.217 .262
3.190 .215
8.288 .071
8.219 .050
8.272 .254
3.810 .898
3.286 .120
3.282 .176

0.076
.241
.064.228
.064
.228
.061
.042
.226
.207
.057
.047.221
.886

' —.004—.006

incr tlR give the 0—H dls tancc to be 0.9580A
and the valence angle to be 104'3l'; 6gures
which differ only slightly from those obtained by
Mecke' and Bonner. ' A comparison of these
formulas with Eq. (6) allows us to determine
thc six cubic constRnts. We 6nd

cx4 = +216, o.6 = +160.

Knowing the cubic constants together with the
QulTlcrlcal values of thc six X;I„ lt ls of coulsc
possible to obtain the six quartic constants.

Pi ——+39 cm ', Ps ——+35, Pg=+212,

It is interesting to notice that the perturbing
terms in the potential which eonneet the levels

ni and e3, namely xix32 and xi2g32, appear to be
unusually large. This no doubt accounts both
for the resonance between the levels (nsnina),
(n3+2,ni —2,n2) and for the fact that they
appear to be the most intense overtones in the
spcctf ulTl.

Since we now possess all twelve of the anhar-
monie potential constants, together with the
normal frequencies, we may' calculate the inter-
action constant y by means of Eq. (3). We find
the value y«I. = —71.5 em ' which may be com-
pared with the experimental figure of
=74.46 cm '. Thc agreement, within about 4
percent, is remarkably good and argues strongly
for the essential correctness of our interpretation
of the water vapor spectrum.


