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A New Method for Calculating Wave Functions in Crystals

CONYERS HERRING*

Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received April 8, 1940)

For many problems in the electron theory of metals none of the methods hitherto used to
calculate the eigenfunctions and energy values of an electron in a crystal lattice is satisfactory.
It is here proposed that these wave functions and energies be calculated by solving a secular
equation with wave functions xz which are simply plane waves made orthogonal to the core
eigenfunctions. The rapidity of convergence to be expected for such a procedure is discussed.
Some methods for practical computation are suggested, and expressions are given for' the
matrix elements occurring in the secular equation,

1. INTRODUcrloN

HF problem of calculating explicitly the
eigenfunctions and energy values for an

electron in the periodic field of a crystal is one
which has not yet been satisfactorily solved.
The method of Kigner and Seitz' is simple and
gives good results for the lower states of the
valence electron band of a metal, but the
natural extension of this method to states of
higher energy' becomes rapidly more unreliable
as the energy increases. ' Another method, pro-
posed by Slater, 4 is better adapted to high energy
states, but has the disadvantage that the Auctua-
tions in potential in the outer region of each
atomic cell are disregarded. The method to be
described in the present paper, while not entirely
satisfactory, possesses advantages which make
it applicable to numbers of problems which
cannot be treated safely by the other methods.
The principal disadvantage of the procedure to
be described is that it is rather laborious. It is
nevertheless practicable, and some successful
applications to simple metals have already been
made. '

One of the earliest methods of approximating
to the electron energies in a crystal consisted in
starting from plane waves and treating the
periodic variation of potential as a perturbation. '
This method has been considered futile for
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accurate work, however. For if we set up the
matrix of the Hamiltonian relative to some
number n of plane waves, and solve the secu1ar
equation, we find that for small values of n the
lowest root approximates a valence electron
eigenvalue, but that as n~~ the lowest root
approaches the energy of the lowest state of an
atomic core, and it is only one .of the higher
roots which approaches a valence electron
eigenvalue. 7 And to get a good final approxima-
tion to the valence electron energy, we would
have to use a very large value of n, so that the
solution of the secular equation would be
prohibitively difficult. This corresponds to the
fact that in the Fourier expansion of a valence
electron eigenfunction there is a great contribu-
tion from waves of short wave-length. However,
if we set up instead the matrix of the Hamiltonian
relative to a set of n functions which are all
orthogonal to the eigenfunctions of the core
bands of the crystal, and solve the secular
equation for this matrix, the lowest root must
approach a valence electron eigenvalue as n —+ ~,
and it is more reasonable to expect that the
convergence will be rapid.

Two principles are involved in the procedure
to be described. The first is that the statement
at the end of the preceding paragraph is approxi-
mately true if we work with wave functions
which are orthogonal, not to the true core
eigenfunctions y,I„but to functions p;I,

' which
closely approximate the p;&. Let pI, be the wave
function obtained by orthogonalizing a plane
wave of wave vector k to all the functions p, I,

'

~ Cf. j.C. Slater, Rev. Mod. Phys. 6, 250—258 (1934).
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having the same reduced wave vector. ' Let pI,
'

be the wave function of lowest average energy
which can be constructed from the functions

x~+2 „where k is a given vector and g runs over
all vectors of the reciprocal lattice of the crystal.
The average energy B&' of p&' is of course the
limit, as n —+ ~, of the smallest root of the
secular equation constructed with the n func-
tions g of smallest wave vectors. This BI,' is

slightly less than the eigenvalue B& of the lowest
valence electron state with the same reduced
wave vector.

If we use the abbreviation

(0'ax~ p s) =
J Vsse pa dr

we may write

Pa =2 (Hsing &Pa ) Fsai
8

&a'= 2 I (v, a, v ~')
I
'&,~,

where the y,~ and Z,~ are the true eigenfunctions
and energies of all the core and valence electron
sta, tes with reduced wave vector k. Since qI,

' is
orthogonal to any p;I,

' we have by Bessel's
inequality

so
I (v. ~~') I'+

I (~"- v»'') I'& &,

&~—~~'= 2 I
(~.~, «')

I
'(&' —&.~)« I (~ ~, ~~') I'(&.—&;.) & 2 L&

—
I (~;~, ~;~') I'j(&.—»') (l)

S ~ core g core

This tells us how much we can allow q;I,
' to

deviate from the corresponding true eigenfunc-
tion q;p of the core band, when an allowable.
error (Rq —Zq') has been specified. Moreover,
p& can be obtained from qI„.

' by adding multiples
of the true core functions and renormalizing.
So if the right of (1) is suKciently small, it is
reasonable to expect that we can get a much
better approximation to yI„and hence to B&, by
adding to y&' a small multiple of each pg', i.e.,
we can treat the matrix elements of the Hamil-
tonian connecting yA,

' with the y, ~,
' as small

perturbations.
The second of the principles mentioned has

to do with the fact that in the troublesome
region near a nucleus, the solutions of the wave
equation do not depend very much on the
energy, because the negative potential is very
large. Thus for example the s part of a valence
electron eigenfunction yA, can be approximated
near a nucleus by an s solution of the wave
equation for a somewhat different energy, the P
part by a p solution for a diferent energy, etc.
So by subtracting off from y& a suitable multiple
of some s solution of the wave equation we can
obtain a function which no longer has a sharp
maximum at the nucleus, and which accordingly
can be much better represented by a few terms
of its Fourier series than could the original qp.

For the conception of "reduced wave vector" see Sorn-
merfeld and Bethe, reference 6, p. 394,

This suggests that it would be practical to try
to approximate pA, by a linear combination of a
few plane waves, plus a linear combination of a
few functions u; localized about each nucleus
and obeying wave equations of the form

V'u;+ (8;—V;)u; =0

(distances to be measured in Bohr units and
energies in rydbergs), where 2; and V; are
such that within a reasonable radius from the
nucleus

(8; V;) —(RA —U—)«(Rg —U),

U being the actual potential in the crystal. By
considering the case where U; is nearly the same
as U and the u, are atomic core functions it is
possible to show that the lowest root of the
secular equation mentioned in the preceding
paragraphs ought to converge fairly rapidly
toward EI,'. For definiteness let us suppose U,
to be spherically symmetrical, and the I; to be
1s, 2s, and 2p functions. Then near the nucleus
we can represent the s part of pI, fairly we11 by
a linear combination of the 1s and 2s functions
and the P part by a multiple of the 2p function.
The d part of y& will vary rather smoothly with
position near the nucleus, if the atomic number
is reasonably small. Thus we can choose coeffi-
cients o.;„so that

y~ —P n;„u;(r —R„)



varies much more gradually near each nuclear
position than does q~. The Fourier series for the
function (3) will then converge rapidly, and so

p& can be fairly well approximated by a linear
combination of a few plane waves plus the sum

P;„n;„«;(r R—,) Now if the V; resemble U
sufficiently closely, the Bloch waves' constructed
from the «;(r —R„) will be good approximations
to the core eigenfunctions p;~, and can be used
for the q;g' mentioned in the preceding para-
graph. In such case let us write

we have
V(r) = —2Z/r+u+br

(Z~ 6—Zg, )
«i. -1 &r+~ -—+ ~r'+ ",

while, to a high degree of accuracy,

there is only one core band, derived from the
is atomic levels. First assume the u~, to be the
is eigenfunction in a central field V which is
the spherical average of the true field U. If
near a nucleus

pk
——P n;„«;(r—R„)+Q —exp i(k+2~g) ~ r,

7v g Qs

where 0 is the volume of the crystal. Then from
the fact that p& is approximately orthogonal to
each u; we may conclude that

'Pk 2 PgXk+2+g~

where each x is simply a plane wave made
orthogonal to all the «;(r —R„). From what has
been said above this series will converge rapidly.
It is thus to be expected that the lowest root
of the secular equation formed using the first n
x's will converge rapidly toward E&' as n is
increased.

In many cases it will be sufficient to work
with a secular equation formed from the p's, and
Sections 2 and 3 will be concerned exclusively
with such cases. It should be.mentioned, how-

ever, that it may sometimes be desirable to use
one or more functions I; which do not resemble
core functions, and to set up a secular equation
using these u; together with y-functions which
are orthogonal to the other I;. Consider for
example a crystal (such as Li or Be) for which

(Z' n —Fel
s part of pq ~ 1 Zr+—

~

—+ I
'+" ~

)
Thus with properly chosen coefficients the s part
of the function (3) will vanish with its radial
derivative at each nucleus, and even the second
radial derivative will be small. The p part of
yj„on the other hand, has quite a large gradient
at a nucleus, whereas the p part of a sum of a
few x-functions (which is the same as the p part
of a sum of plane waves) cannot have a very
large gradient unless waves of short wave-length
are included. ' Thus if we use only a few x-
functions we can approximate the s part of p~
much more closely than the p part. The situation
could be improved by inventing a p function N~

obeying near the nucleus a wave equation
resembling that for the P part of y&, and dying
off smoothly to zero in the outer regions of an
atomic cell. A combination of a few g-functions
(or plane waves) with a suitable multiple of «„
should then give a much closer approximation
to the p part of pA, . Our final wave function need
not be even approximately orthogonal to u„,
however, since there is no p band in the core.

2. GENERAL THEORY

Consider a crystal of volume 0, containing E identical unit cells each of volume 00. For simplicity
assume that all atoms of the crystal are of the same kind, even though there may be more than one
atom per unit cell. Let U(r) be the potential energy of an electron at the point r. Let V(r) be a
more or less arbitrary spherically symmetric potential field, chosen, however, so as to resemble U
as closely as possible in the region near. a nucleus. When calculations are made for several values of
the lattice constant or of other parameters, U will be a different function in each case, whereas V
is best kept fixed to avoid repetition of the labor of computing core functions and quantities which
depend on them. Let one or more real functions «„~ be core eigenfunctions in the field V(r), with

' See Sommerfeld and Bethe, reference 6, p. 394.
"Cf.Fig. 4 of the following paper.
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energies I"„I, . The Bloch waves formed from these "atomic" functions will play the part of the
functions which were called y;I,

' in the preceding section.
In the following it will be assumed that energies are measured in rydbergs and distances in units

of the Bohr radius. The functions x& we shall use will be defined by

exp (ik r)
Nlxi„. (r) = — —Q P exp (ik R„)A,„((k)u„(; g(r —R,),

(Qo)& v nt

where v runs over all atoi»s of the crystal, u„&; & is the function un«when the axis to which sn refers
is chosen in the direction of k, and where

f exp (ik r)
A,.((k) =

~~
——u„(; k(lr

(flo) *'

It is easily verified that each xk is orthogonal to all the u~f~(r R„) if—one neglects the fact that core
functions about different atoms may overlap and thus fail to be exactly orthogonal to one another.

Before writing down the accurate expressions for the matrix elements of the Hamiltonian between
the functions (4), which are rather lengthy. it may be worth while to see what they look like if one

makes the approximations that; the u~$pg(r —R„) are true eigenfunctions in the crystal Cield and that
the functions on different atoms do not overlap. Noting that.

J
u i; 1„.(r)u t; I„. (r)dr =Pi(cos gi„.k ),

where Of,.k' is the angle between k and k', we have in the approximation mentioned

coll

(xa, xk ) =&I k
—P A„i(k)A ~(k')P&(cos Oiq ) P exp Li(k' —k) R,j,

nL

(6)

if (k —k ) is 2~ times a vector of the reciprocal lattice, and =0 otherwise. The sutnmation in (6)
is over all atoms v in a single unit cell. Also, since in our present approximation the Hamiltonian II
applied to each u„&; & merely multiples it by F„~,

cell

(xk, IIX~ ) =k'61~, + Ut k' —k]—P F.„~A „~(k)A„&(k')P~(cos Okl„) Q exp Li(k' —k) R„],
nl

(7)

if (k' —k) is 2~ times a vector of the reciprocal lat. tice, and =0 otherwise. Here

ULK]=— exp (iK r) U(r)dr
~O ~no

is a E'ourier coefficient of the potential.
Numerical calculations have shown that solution of a secular equation obtained fronl a few

x-functions from (6) and (7) gives a fair approximation to the energy of a valence electron eigen-

function for a metal, such as an alkali, for which the u & are confined quite closely around the
nuclei. However, the derivatives of energy with respect to lattice constant, as obtained from (6)
and (7), approximate the true derivatives very poorly. This is not surprising, for a small change

in lattice constant has a large effect on the validity of the assumption that U and V are identical,

and of the assumption that core functions on diR'erent atoms do not overlap. We therefore need

exact expressions for (xq, x~„) and (xk, Ik-„). When (k' —k) is 2~ times a vector of the reciprocal
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1 t exp ( /—k r).
(xp Hxl.„)=k'bye +ULk' —kj ——Q Q ~

— —exp (ik' R )A ((k')Hu g p (r —R )
»t 4a (14)&

exp (ik' r)+—
{1/0)'*

exp ( ik—R, }A ~(k)Hu ~; k(r R—„) dr

+—Q Q i
exp ( ik R„+ik' R„)A,, I(k)A ') (/. ')u„g; 1(.r R„)IIu—„g;g. (r —R„)dr. (9)

„r nl nally Qg

In (9) we may put H= L
—P+ V(r —R„)j+LU(r) —V(r —R„)j.To simplify the resulting expression,

three new symbols will be introduced:

r exp [ik (r —R„)j
I„~(k;k', v}= ~ ——

t U(r) —V(r R,—)]u g; I„. (r R„)dr,—
(00) '

5(n/kv& n l k v ) = )~u»~; 1(r—R&)u»&~&; p &(r —R»&)dr,

F(nlkv, n'l'k'v') =)~ u„(;g(r —R„)I U(r) —V(r —R, )ju. (', g'(r R, )dr— {12)

Inserting (10), (11),and (12} into (9) gives finally
cell

(xl., Hxl. ) =k'bag'+ ULk' —k]—Q F..A.)(k)A.({/.*')PE(co.s 8p& ) Q exp 1/(k' —k) R j
cell.

—2 E L(&.~(&')» ~*(k; k'; v)+&.i(&}I„i(k',k; v) j exp [/(k' —k) R„]

+ Q A.)(k)A. I (k') Q F(nlkv, n'l'k'v) exp Li(k' —k) R„]

+ Q A.((k)A. i (0') Q Q [F..(S(n/kv, n /k 'v ')''
+F(n/kv, n'l'k'v')$ exp L

—ik R„+ik'R„.j, (13}

if (k —k ) is 2m times a vector of the reciprocal lattice, and =0 otherwise. Similarly
cell

(xg. , xg') =Rgb —P A.)(k)A.)(k')P){ c8oksg ) P exp L/(k' —k) R„]

+ P &.&(k)A. i (/') P gs(n/kv, n'/'k'")exp (—~k R,+.k' R„,),
nln'f'

if (k —k) is 2m times a vector of the reciprocal lattice, and =0 otherwise. When there are core
functions with /&0, the 5 integrals and the F integrals for v/ v' become very difficult to evaluate,
so in such cases it will. be convenient to choose core functions which become zero at a value of r
less than half the distance between neighboring atoms. If this is done the last terms of (13) and
(14) disappear.

The matrix elements (13) and (14) determine the wave function q~' ——Psa.,x~+~„mentioned in
Section I, whose average energy L&.'I„. is less than, but nearly equal to, the eigenvalue F&.I„. we are
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seeking. If the correction bounded by (1) is sufficiently small, it will be a good approximation to set

~
[pl.', {H—ZI, 'Iu„)„(r—R„)]~'

&a=&a'+ 2
nlmv

(15)

For brevity only matrix elements of the form [xz, FA„~;& (r —R„)]will be given here; the summation
on m in (15) is easily expressed in terms of these when /=0 or 1:

exp (ik' R„)N*'[xa, IIu ~; L(r —R„)]=I ~ (k'; k; v) —g A & (k') F(n'l'k'v, nlkv)
nf l~

—P A ~ (k') Q [Z„|S(n'1'k'v', nlkv)+F(n'l'k'v', nlkv)] exp [ik' (R,—R„)]
n'/' v'g v

exp (ik' R„)El[xq, u„,~; ~(r —R„)]= —P A „~ (k) P S(n'l'k'v', nlkv) exp [ik' (R„—R„)].

(16)

(17)
n'l' V gV

When core functions on different atoms are so constructed that they do not overlap, (17) and the
last term of (16) vanish.

3. REMARKs AND DIscUssIoN

(1) Choice of U and evaluation of U[K]. In metallic crystals it is convenient and accurate to
assume that U is a summation of potentials v(r —R„) due to the different ions, plus the potential
due to a homogeneous free electron distribution. In such case U[K] can be reduced for KWO to

1-u 1 ( 2X r" 2X
U[K]=—{

—Q exp (iK R„) {{ — —
I r v(r)+ sin Krdr {.

Xr, 'En .
)z

(18)

where n is the number of atoms in a unit cell and X is the number of valence electrons per atom,
so that v(r) —2X/r for large r. The most convenient choice for the zero of U is that made by
Wigner and Seitz: the average value of U over a unit cell is defined to equal the average over an
s sphere of the potential due to the ion at its center and an amount of negative charge sufficient to
neutralize it, uniformly distributed throughout the s sphere. Thus

2.4 3
U[0 I

= +—
~

r'v(r)dr,
3 Jra ra p

provided v(r) = —2X/r for r ~& r,
(2) Choice of U. The perturbation in (15) due to the core states can be made quite small by choos-

ing a U which resembles U very closely; for the above choice of U we might use

3X Xr'
U=v(r)+ ——for r& ro,

rp rp

=0 for r& rp.

(20)

Thus for r &~rp, V coincides with the spherical average of U" when r, has the value rp. The disad-
vantage of such a choice is that the u„& extend to infinity, so that the overlap integrals (10), (11),
and (12) are difficult to evaluate. When the only core functions are the 1s, it is not hard to evaluate
the S integrals exactly, and rough approximations can be obtained to the other integrals which
are adequate for many purposes (see below). But when there are core functions with /) 0, or when
the s functions are too spread out for these rough values to suAice, the evaluation of the overlap

"This is strictly true only if the small correction of Appendix II, reference 1, is neglected.
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integrals seems hopelessly dificult. In such cases it will probably be best to construct u & functions
which vanish at less than half the distance between neighboring atoms; this of course means that
V must become infinite.

If we require u & (r&, &l, y) =0, it is desirable that &1u & /Br vanish at r =rq also, since we want the
Fourier expansion of (3) to converge rapidly. At the same time the right of (1) must be kept small.
If u„& &'& are the eigenfunctions in the field (20), the Bloch waves constructed from them will re-

semble the true core eigenfunctions much more closely than those constructed from the present u„& .
So remembering that u„~ ~" and u ~ are assumed normalized we have, for the average over the
(2l+1) bands arising from the atomic states of given rc and l,

where
p„,„(r)y', „(0, &)

+num =—

00 ~ &N

(P„&'" P„&)'d—r )'P „&'"'-dr, (21)
0 11

~~ P &'dr=1, etc.
0

If P» is defined to be a multiple of P &&o& for r &~r&, and a simple analytic function of r (e.g. , a polyno-
mial) for r2&~r~&r~, so chosen that P~& and P„&' are continuous at r2 and vanish at r~, the left of

(21) will usually come out of the order of 3 or 4 times the integral

P„&&"'dr;
F1

from this and (1) one can estimate in advance whether or not (15) will suffice for the core perturbation.
(3) Evaluation of the S integrals. If the field (20) is used, we may write

Pgg(r) = (4vr) 'ru'&, (r) =8 exp [—(—E) &,1r]—&(r), (22)

where y(r) vanishes for r&~ ro. The average of (1/r) exp [—(—E)q, '*r] over the surface of a sphere
of radius p whose center is at a distance d from the origin is

exp [—(—E)q, ~d] sinh ( —Eq, )lp

d( —E~.) '*

From this and by neglecting the overlapping of p's on different atoms the S integral can be reduced
to an expression containing a single radial integral:

exp [—( —E)&,
l

~

R„—R„~]
S(v, v')—:S(1skv, 1sk'v') =- +2

2( —E)g, '
28

y(r) sinh [(—E)~,lr]dr .
fR„—R„ i~p

(23)

(4) The I„& and F integrals. If the field (20) is used, and the field U is as described above, the
contributions to I„& and to the F integrals for I = I may be divided into two parts: that from inside
a radius ro and that from outside ro. The first of these is the more important when r, differs appreci-
ably from ro. This suggests that we may approximate U by v(r)+3X/r, Xr'/r, ', which is it—s
spherical average" for r &~ r„and approximately its spherical average for somewhat greater values
of r. This approximation should be very good indeed for the F integral with v= v, less so for the I„&.

"This is strictly true only if the small correction of Appendix II, reference 1, is neglected.
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If this is inserted in (10) we have, for a 1s function

pexp(ik r) (1 1y f'1 1y
I„(k)=—I„(k;k', ~)= ~ »~(y) 3XI I

Xy-
(Q.)& (y. y, & Ey.

The first integral in (24) is

exp (pk r) 2X 3X Xyp-
&i.(y) — + ——d r (24)

& r&ro (Qp)' y yp yp

t'1 11 /47rl l (1 1 y 1" sin ky
3X/ ———[A g,.(k) —X] —

[ ]
———

[
I yP P, (y)dy.

Ey, yp& 0 Qp& Ey,,' yp'& ~p k
(25)

The second integral is small and varies less Similarly if we set Pr, =2b yer' (the form for a
rapidly with y, : for k=0 it may be reduced by hydrogenic eigenfunction) we have
using (22) to

(4p q
l Pi, (yp) 1—1+—

& Qp& ( Eg,) &y—p' yp( —Fg,.) &

(26)

f'4p ) t 4b""
A, .(k) =

]
—

f

E Qp& (k'+b'-')'

This gives

jf y o(y)+
0

21K
sin Ir:rdy = —————. (28)

K'+ 0-'

The Ji integrals with vg v' are much less impor-
tant than the other overlap integrals, and may
for many purposes be neglected. Finally, when
core functions are used which go to zero at
r=rj, as described above, the I ~ and I" integrals
with v = v' can be calculated with any desired pre-
cision by expanding exp (fk r) and (U —V)u„&;&

in spherical harmonics; if this is done they
reduce to a number of radial integrals to be
calculated numerically.

(5) Interpolation in the calculation of U[K]
and A „q(k). When calculations are made for
several values of the lattice constant, the integral
occurring in (18) is needed for a great many
values of 3:;an integral of similar form is needed
also for A ~(k). The values of the integral are
most conveniently found by interpolation be-
tween directly calculated values for a few values
of X. In making interpolations or extrapolations
of this sort use can often be made of an analytic
function which fits the directly calculated points
fairly well and has the correct asymptotic
behavior. Such a function can be obtained, for
example, by setting a "screened potential"

2X —2Z exp ( —or)
~(y) =-- —in (1.8). (27)

(6) Simplification for eigenfunctions of certain
symmetry types. It often happens that eigen-
functions occur, in or near the occupied portion
of the valence electron band, which belong to
symmetry types which do not occur in the core
bands. For example a number of eigenfunctions

p& occur for lithium slightly above the Fermi
surface, which are odd under the operation of
inversion about any nucleus. Since all functions
of the corresponding reduced wave vector in the
1s band are even under inversion, each such el„-

is orthogonal to the core by virtue of its sym-

metry alone. Any linear combination of plane
waves having the given symmetry type will

thus be orthogonal to the true core functions,
and also to the approximate core functions
constructed from the I ~ . So all we need to do
is to set up a secular equation relative to combi-

nations of plane waves belonging to this sym-

metry type; this secular equation will be the
same as if the corresponding linear combination
of x functions had been used instead of plane
waves, because the contributions from all terms
in (13) beyond the first two, and from all terms
in (14) beyond the first, would add up to zero.
Thus to calculate energies of eigenfunctions of
such symmetry types only the Fourier coe%-
cients U[K] are needed. In most cases it will

suAice. to use the second-order Schrodinger
perturbation, and it can be shown that the
second-order per turbations due to successive
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plane wave combinations of the given symmetry
will decrease rapidly. This is most easily seen

by considering a particular example. Suppose
that x~ ——(2/0)' sin k x is a plane wave combi-
nation of the given symmetry type (this occurs
for some of the lithium eigenfunctions mentioned
above). The matrix element of II connecting x~
with (1/Q)l exp Li(k+K) r] will be the differ-
ence of two Fourier coefficients of the potential;
for very large X it will be of order I/K', since
U[Kj is of order 1/K', and even for smaller
E's it will be much less than either Fourier
coefficient alone. The second-order perturbation
series will thus converge extremely rapidly.
This in itself is of course no guarantee that this
series gives a good approximation to the eigen-
value: if we were to consider functions of the

symmetry type of x&+= (2/0)*'cosk r, the second-
order perturbation series would converge —less
rapidly than above, but still fairly rapidly-
to an energy value far below that of the valence
electron eigenfunction of the same symmetry
type (because x&+ is not orthogonal to the core
functions of the Is band). However, it is likely
that when we are working with functions of the
symmetry type of p& the off-diagonal matrix
elements in the secular determinant will decrease
so rapidly to zero that we can set a very small

upper bound to the difference between the true
eigenvalue and the energy yielded by the
second-order per turbations.

In conclusion I wish to thank Professors J. C.
Slater and E. P. Wigner for reading and dis-
cussing this manuscript.
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A»Iagneto-optic effect discovered by W. R. Grove in 1845 is suggested as explaining, in

part; at least, peculiarities of ferromagnetic colloid patterns on ferromagnetic crystal surfaces.

1
W. HEAPS' has recently investigated the~ optical transparency of a suspension of

magnetite in oil, as modified by magnetic fields

applied parallel to the light path or at right
angles thereto. He explains the eff'ects as due to
changes in the area obstructed by rectilinear
rows of particles, magnetically linked, when
these are turned from random directions so as
to lie parallel with the applied field. A field

intensity of only a few oersteds produced nearly
maximal effect.

The increase in transparency of a suspension
of magnetite in water when a magnetic field is
applied parallel to the light path was first

' C. W. Heaps, Phys. Rev. 57, 528—531 (1940). See also
Q. Majorana, Accad. Lincei, Rendiconti L6aj 29, 11—14
(1939) January; Ricerca Scient. 10, 783—789 (1939),
September.

demonstrated by W. R. Grove at a social meeting
of the Royal Institution, in London, on January
8, 1845. Since the report is short, relatively
inaccessible, and ignored for so long a time, it is
quoted in full. '

"Jan. 8, 1845.—Prof. Grove communicated to
the proprietors at this their first soiree for the
season, some of the leading discoveries in physical
science during the past year. Of electrical sub-
jects, M. Matteucci's researches were described;
with experimerital illustrations; as also the mag-
netic note. In reference to the latter, Mr. Grove
detailed a curious experiment that had occurred
to him, and which bore greatly on the subject.
A glass tube open at the ends, but protected
along its length with a copper jacket, was filled

' C. V. Walker, Elec, Mag. 1, 601 (1845), April.


