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On the Establishment of Grand Canonical Distributions
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It is shown, in accordance v ith the accepted principles of statistical mechanics, that the
establishment of a grand canonical distribution is to be expected in an ensemble which represents
the attainment of equilibrium in an "open" system, connected with appropriate reservoirs for
supplying the various kinds of molecules involved, and in thermal contact with a large heat
bath at a given temperature. This finding is of assistance, in placing on a sound and under-
standable basis the use which has been made of grand. canonical ensembles, for the representa-
tion of thermodynamic equilibrium in "open" systems.

$1. INTRODUCTION

' T is the task of the science of statistical me-
~ - chanics to give satisfactory treatment to the
properties and behavior of mechanical systems
in situations where the condition of the system
of interest is not sufficiently well determined to
provide a complete specification of its precise
mechanical state. ' This task is performed by cor-
relating the properties and behavior, to be
expected for the system of interest itself, with
the average properties and behavior for the
members of a representative ensemble of systems
of similar structure, which are appropriately
distributed over different possible precise states.
To obtain such an appropriate distribution, the
members of the representative ensemble, in

accordance with the fundamental postulate of
statistical mechanics as to a priori probabilities
and phases, are to be distributed with equal
probabilities and random phases among the
different possible precise states which agree
equally well with the actual condition of the
system of interest, insofar as that is determined.

In the case of systems, which from a microscopic
point of view are composed of many separate
molecules in molecular states that may be rapidly
changing, but which from a macroscopic point of
view are in a steady condition of equilibrium,

' This holds both for the classical statistical mechanics,
where the precise state of a system of f degrees of freedom
would be specified by the exact values of 2f dynamical
variables, and for the quantum-statistical mechanics,
where the precise state of a system of f degrees of freedom
would be specified by a probability amplitude for f
dynamical variables. The treatment of 'statistical mechanics
in this paper will be quantum-mechanical, since we can
regard classical mechanics as a special limiting case of
quantum mechanics.

three different kinds of representative ensemble
have proved of special importance. These three
kinds of ensemble are given the same names-
microcanonical, canonical, and grand canonical—in a modern quantum-mechanical treatment, as
were originally given to the analogous ensembles
in the classical development of statistical me-
chanics by Gibbs. ' Any ensemble of these three
kinds can itself be shown to be in a condition of
statistical equilibrium, and hence is thus in any
case made suitable for representing a system of
interest which for its part is in a condition of
macroscopic equilibrium. The three kinds of
ensemble differ from each other, however, with
regard to the energies and compositions assigned
to their component members, and are thus made
suitable for representing systems of interest
which have achieved equilibrium under different
conditions of contact or connection with their
surroundings.

In a microcanonical ensemble, each member of
the ensemble is taken as having the same values
for its external coordinates such as total volume,
and for the numbers of constituent molecules of
the various independent kinds present, as prevail
in the system of interest itself; and the members
are distributed over their different possible
energy eigenstates, with random phases and with
probabilities satisfying

P; =const. (8; in range 2 to F-+8F),
(1.1)

I'; =0 (8; not in range 8 to E+8E),

' For the original classical description of these ensembles
see Gibbs, Elementary Principles of Statistical Mechanics
(New Haven, 1903).For a quantum-mechanical description,
see for example, Tolman, The Principles of Statisti cal
Mechanics (Oxford, 1938).
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where P; is the probability for finding a member
of the ensemble in an eigenstate i corresponding
to the energy eigenvalue 8;, and B to 8+08
denotes a small energy range which has been
selected as of interest.

In agreement with the above-described char-
acter, a microcanonical ensemble may be re-
garded as representing a system which has been
set up with precisely specified external coor-
dinates such as total volume, with a precisely
specified molecular constitution, and with its
energy specified in a narrow range, and which

has then been allowed to come to equilibrium
under conditions of perfect isolation from the sur-

roundings such as to preserve its total energy
within the narrow range selected. ' lt will be
appreciated that these requirements as to energy
and isolation are not such as to make a micro-
canonical ensemble truly appropriate for the
representation of thermodynamic equilibrium,
since it would then be essential to regard the
system as having a specified temperature deter-
mined for example by interaction with a heat
bath, rather than to regard it as having a specified.

energy determined by the maintenance of perfect
isolation.

In a canonical ensemble, each member of the
ensemble is again taken as having the same
values for its external coordinates and for its
molecular constitution as prevail in the system
of interest itself; but the members are now taken
as distributed over their different possible energy
eigenstates, with random phases and with prob-
abilities satisfying

(1.2)

where P; is the probability for finding a member
of the ensemble in an eigenstate i corresponding
to the energy eigenvalue E;, and P and 0 are
adjustable parameters having the dimensions of
energy.

In agreement with the above-described char-
acter, a canonical ensemble may be regarded as
representing a system which has been set up

with precisely specified external coordinates and
molecular constitution, and which has then been
allowed to come to equilibrium under conditions
of interaction with its surroundings such as to
justify the probabilities for different energies
described by (1.2). As first shown for the classical
mechanics by Gibbs, ' this interaction could be
obtained by allowing the system to achieve
thermal equalization with a large heat bath at
tern perature T= 8/k, where interchange of
energy between the system and bath would

provide the Huctuations necessary to correspond
to the above probability distribution in energy.
Or, as shown more recently by the writer, ' this
interaction could also be obtained by leaving the
system in essential isolation, where interchange of

energy between the system and its containing
walls, or other immediate surroundings, would

provide the fiuctuations necessary to correspond
to the above probability distribution in energy,
at least over a range in the neighborhood of the
mean energy of the members of the ensemble,
and where the resulting temperature T=e/k
would be determined by the mean energy, which

in cases of essential isolation is taken as un-

changed by the interaction permitted. It will be
appreciated, as was first shown for the classical
mechanics by Gibbs, ' that the energy distribu-
tion in a canonical ensemble is such as to make it
strictly appropriate for representing equilibrium

in a "closed" thermodynamic system, where it
would be essential to regard the sys' tem as having

a precisely specified temperature rather than a
precisely specified energy.

Finally in a grand canonical ensemble, each
member of the ensemble is again taken as having
the same values for its external coordinates as
prevail in the system of interest itself; but the
members are now taken as distributed both over
different possible molecular constitutions, and
over their different possible energy eigenstates,
with random phases and with probabilities
satisfying

'For a classical discussion of the process by which the
representative ensemble for an isolated system, having a
closely specified energy, proceeds in the direction of micro-
canonical distribution, see Lorentz, A bhandlnngen ri ber
theoretische Physik (Teubner, 1907), f79, p. 289. For a
quantum-mechanical discussion, see Tolman, reference 2,
))109and 110.

' Gibbs, reference 2, p. 161.For the quantum-mechanical
treatment of the same phenomenon, see Tolman, reference
2, $)111,112 and 128.' See in particular Tolrnan, reference 2, $111d.

Gibbs, reference 2, Chap. 14. For the corresponding
quantum-mechanical discussion, see Tolman, reference 2,
Chap. 13.
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where P„,, „,...„„,; is the probability for finding a
member of the ensemble with n~, n2 ~ n~, mole-
cules of the k independent kinds present, and in
an eigenstate i corresponding to the energy
eigenvalue 2;, and where 0, 0, and p~- .p~ are
adjustable parameters, having the dimensions of
energy or of energy per molecule.

In agreement with the above-described char-
acter, a grand canonical ensemble may be re-
garded as representing a system which has been
set up with precisely specified external coor-
dinates such as total volume, and which has
then been allowed to come to equilibrium under
conditions of interconnection and interaction with
its surroundings such as to justify the prob-
abilities for different molecular constitutions
and for different energies described by (1.3). The
nature of the interconnection and interaction
which would lead to this result has not hitherto
been made the subject of direct investigation.

It is now the purpose of the present article to
show that the conditions leading to the establish-
ment of a grand canonical distribution are of
such a character that the ensemble can be taken
as representing a system of interest which has
been allowed to come to equilibrium with its
molecular constitution determined by intercon-
nection with suitable reservoirs for providing the
different kinds of molecules which it contains,
and with its temperature determined by inter-
action with a suitable heat bath. This result
will then be of assistance in placing on a sound
and understandable basis the use which has been
made of grand canonical ensembles, by Gibbs
and others, 7 for the representation of equilibrium
in so-called "open" thermodynamic systems.

$2. DISTRIBUTION IN TERMS OF SUM-OVER-

STATES FOR RESERVOIRS

In order to carry out the proposed demon-
stration, we shall wish to consider the equilibrium
of a combined system composed of connected
yarts S, R&, R&, ~ ~ R&. The part 5, which may
be called the system proper, will itself turn out
to be the "open" system of primary interest for
which we wish to derive the grand canonical

For the original classical application of grand canonical
distributions to this purpose, see Gibbs, reference 2, Chap.
15. For the corresponding quantum-mechanical applica-
tions, see Tolman, reference 2, (140.

distribution as representing equilibrium. It con-
tains a mixture of all the different independent
kinds of substance' 1, 2, ~ ~ ~ h that concern us.
The parts R&, R2, .R&, which may be called
reservoirs, are connected with S through semi-
permeable membranes each of which allows the
passage of a single kind of substance 1, 2, .h,
respectively. Each reservoir contains a supply of
the substance for which its membrane is per-
meable. The volumes of the system proper' and
of the reservoirs are to be taken as having con-
stant values, and for the purposes of the proposed
treatment we may assume that external coor-
dinates other than volume are not involved.

Let us now consider the equilibrium which
would be reached if the above combination of
system proper and reservoirs were allowed to
stand in thermal contact with a large heat bath
at temperature T. Since the combination as a
whole is itself a "closed" thermodynamic system,
its condition at equilibrium could be represented
by the canonical distribution

P.—e(4—E;)l~ '

(2.1)

where P, is the probability for finding a member
of the ensemble in a state i corresponding to an
eigenvalue of energy B; for the combined system,
where the parameter P has the necessary value
so that the total probability for different states
is normalized to unity, and where the parameter
8 has the value

(2.2)

with k as Boltzmann's constant and T the tem-
perature of the bath.

We may assume that the separation between
the different parts of the combined system is
suAiciently distinct, so that we can distinguish
with accuracy between the molecules present in
the system proper and those remaining in the
reservoirs, and may assume that the interaction
between the parts is sufficiently small so that
we can regard any energy eigenstate of the whole
system as a combination of energy eigenstates
for its parts and regard the eigenenergy of the
whole as the sum of the eigenenergies of its parts.
This will then permit us to rewrite the description

The different "component substances, " in the sense
used by Gibbs in his treatise "On the equilibrium of
homogeneous substances, " Trans. Conn. Acad. I II
(i875-78).
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of the distribution given by (2.1) in the more
explicit form

nq, ns, "~ng, s, T„rs, ~ ~ ~ rgP,
=exp [(P 8, —8,,——8,, — —2„„)/0], (2.3)

where we have replaced P, by the more explicit
symbol P,, „,, ...», s, r», r2, ~ ~ rI„ to denote the
probability for a state of the combined system
in which the system proper S contains n», n2,
~ . n~, molecu1es of the h kinds involved and is

an eigenstate s, and in which the reservoirs R»,
R2, ~ R~ containing the remaining molecules
are in eigenstates r», r2, ~ ~ ~ r~, and where we have
replaced 8; by the sum of the eigenenergies
B„E„„Z„„B„„for the parts of the whole
system.

By summing the above expression for the
probability of a state of the combined system
over all states r», r2, ~ ry, for the reservoirs,
which are compatible with their molecular con-
tents, we then obtain

I'„„...„,=e« s&"— Q exp [—(8,. +8„+ +Z, )/8]

=e&& & "(Q exp [ 8„/9—])(g exp L
—8,,/8) (P exp [—8,„/0]) (2.4)

0ni =ni ni (2.5)

as the value for the number of molecules in the
ith reservoir R;. Ror the sum-over-states of the
ith reservoir, we may then introduce the symbol

Z„,. =P exp [—B,,/8], (2.6)

where the subscript to Z indicates that the sum-

as an expression for the probability of a state of
the system proper, which is specified by its
molecular constitution n», n2, n& and by an
eigenstate s possible for that constitution. It
will be seen that this expression depends on the
so-called sum-over-states for the system of
reservoirs, and hence on the product of those
quantities for the separate reservoirs, where it
will be appreciated that the sum-over-states for
each reservoir will itself depend, not only on
volume and temperature which may be regarded
as fixed, but also on the number of molecules in
the reservoir, which will vary with the com-
position of the system proper.

To obtain a notation which indicates that the
value for the sum-over-states of each reservoir
is dependent on its molecular content, it will be
convenient to retain the symbol n; for the
number of molecules of the ith kind, i=1, 2,
~ ~ h in the system proper S, and to introduce
the new symbols n for the number of molecules
of the ith kind in the corresponding reservoir R;,
and n for the constant total number in the
combined system as a whole. This will give us

mation over possible states ri is to be evaluated
when the reservoir contains n molecules.

Substituting symbols of the above form into
(2.4), we can now write

as our expression for the probability of a state
of the system proper of the indicated composition
and energy. By studying the dependence of the
sums Z„, , Z„, , ~ ~ Z„„ for the reservoirs on the
numbers of molecules n»', n2', - n~' which they
contain, and hence in accordance with (2.5) on
the numbers of molecules n», n2, ~ ny, in the
system proper, it will then prove possible to
obtain the desired information as to the manner
in which the probability for a state of an "open"
thermodynamic system depends at equilibrium
on its composition as well as on its energy.

(3. LEMMA ON THE DEPENDENCE OF SUM-

OVER-STATES ON NUMBER OF MOLECULES

The precise evaluation of the sum-over-states
for a system of interacting molecules is in general
a complicated and dificult task which often has
to be solved by some method of approximation.
It will, however, be possible to obtain the needed
information as to the dependence of the sum-
over-states of a system on the number of mole-
cules which it contains by making use of the two
following known relations. In the first place,
when a system of n similar molecules, at a given
temperature T, is present in a large enough
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volume vo so that it assumes the properties of a
nondegenerate perfect gas, the corresponding
sum-over-states can be expressed in the known
form'

write

1 r «;(«io)
log Z„, „,r = log —

] P expn!4' kT )

1
Z„,, r =—(Q exp [—«;(vo)/kTj)", (3.1)

nI

1
pdv (3.3)

kT~ vo

8 log Z P

Bv kT
(3.2)

Combining these two expressions, we may now

where «;(vo) is an eigenvalue of energy for a single
molecule of the kind under consideration in the
volume vo, and we sum over all energy eigen-
states i. In the second place, when the system is
large enough so that it can be regarded as having
a well-defined macroscopic pressure p, the corre-
lation of thermodynamic with statistical-mechan-
ical quantities provided by representing the
thermodynamic equilibrium of a "closed" system
by a canonical ensemble, shows that the change
in sum-over-states with volume, holding com-
position and temperature constant, can be
written in the form"

as an expression for the sum-over-states corre-
sponding to a system of n similar molecules at
any desired volume v, and temperature T, where
vo is a large enough volume so that the system
then has the properties of a nondegenerate
perfect gas.

In applying this expression to the problem
outlined in the preceding section, we shall be
interested in the value for the sum-over-states
of a reservoir when the number of molecules
therein is regarded as resulting from a fluctuation
hn away from the mean number of molecules n
which the reservoir contains at equilibrium.
Setting up expressions of the form (3.3) for the
two cases when a system, at a given volume v

and temperature T, contains n and n+An
molecules, and subtracting one fron1 the other,
we readily obtain

nt rZn+6 n
log ——= log + log

~ P exp
Z„- (n+an)!

«;(&o) i o" 1
+—il p„-,o„d«i—

kT ) kTJ,.
V

po.dv
k2 ~va

(3.4)

as an expression for the ratio of the sum-over-states Z„-+&„ for a system of xi+an molecules at a
given volume and temperature to the sum-over-states Z& for the same system when it contains r~

molecules, where the volume vo appearing in the last three terms must be chosen large enough so that
the system would behave as a nondegenerate perfect gas when it contains either n+hn or n molecules
in that volume, and where the symbols p„-+o and p - in the last two terms denote the pressure of the
system when it contains n+An or n molecules, respectively.

We must now discuss the dependence of the right-hand side of (3.4) on the value of the fluctuation
An away from the mean molecular content n, and on the value of the ratio of those two quantities
5n/n. We shall be specially interested in the form of the right-hand side when the ratio hn/n ap-
proaches zero, and shall wish to carry out the discussion in such a manner as to include not only the
possibility of making this ratio small —with any given mean molecular content n—by restricting
attention to cases where the fluctuations d n are su%ciently small, but also the possibility of making
this ratio small —with any given value for the fluctuation An—by changing to a larger system
(reservoir) with its mean molecular content n and its volume «i increased in the same ratio.

'1'o examine the dependence of the first term on the right-hand side of (3.4) on the quantities of
interest we may rewrite it in the forms

9 See for example Tolman, reference 2, Eq. (134.10),"See for example Tol man, re ference 2, Fq. (133.3).
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nt
log — —-=log-

(n+ An) ! (n+ 1)(n+ 2) (n+An)

11 (= —log zz'" —log I
1+-- II 1+--

I I
1+—I

n) E n)

1 1(1)' 1(ll' 2 1(21' 1(2l'- --""'8n- — --I --
I +-I —

I
—— --I —

I
+-I —

I
~ ~ ~

n 2 En) 3(n) n En) 3(n)
An 1(hnq ' 1 (dna—--—-I —

I
+-I ~ ~ ~

n 2En) 34n) (3 5)

As An/n goes to zero, either because we restrict our attention to cases where An is itself sufficiently
small, or because we consider a large enough system to make sufficiently large, this expression
goes to

n!
log ———- = —Dn log n.

(n +en)!. (3.6)

The explicit formulation of (3.5) is made for the case An positive, but a similar formulation can be
made for the case hn negative, which leads to the same limiting result (3.6).

The second term on the right-hand side of (3.4) is already expressed in a form which indicates its
dependence on the quantities of interest, since it is seen to be the logarithm of a constant raised to
the power An. It will be appreciated, however, that the value of this constant would be subject to
alteration if we changed to a larger reservoir with a larger number of molecules, since we should then
in general have to choose a larger volume vo to secure the behavior of a nondegenerate perfect gas.

The last two terms on the right-hand side of (3.4) may be re-expressed, in a form to show their
dependence on the quantities of interest, by considering a Taylor's expansion for the value of the
pressure of the system P as a function of its molecular content n. In doing this we shall assume that
the substance in the system obeys an equation of state so that its pressure at a given temperature
may be taken as a function of its density. This will let us put

p(zz, v) =p(n/v) = p( p), (3.7)

where we introduce the niolecular density

p=n/v with rzp/On=1/v. (3.8)

With the help of (3.7) and (3.8), we may now re-express the last. two terms on the right. -hand side
of (3.4) in the forms

1 !'" 1 f'" 1 &v -1 gp 1 g'p (gn)' 1 cPp (zion)'
Pzz+s nd& ———

! I P id& =——-
I

——-An+ + + I ~ ~ (gP

kT 1zo kT~ yo kT~ 1zp p Bp p 9p 2! p' gp' 3!

An p& 1 BP 1 O'P An 1 O'P (An) '
+ + p I

—I+ ~p, (39)
kT" p, pBp 2zlp' n 6 Bp'4n)

where the derivatives of p with respect to p are to be taken when the system has the molecular
content n=n, and where the final form of expression has been obtained with the help of the substi-
tutions n/v= p and dv/v= —dp/p. The final form of expression in (3.9) has been chosen, in a form
depending on integration with respect to the density p, in order to make clear the consequences of
changing to a larger system (reservoir) with the same proportional increase in molecular content. n
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and in volume v. If such a change were made, it will be seen that the lower limit of integration po

would not need alteration since the properties of the substance could be taken as approaching those
of a non-degenerate perfect gas at that given density, and the upper limit of integration and the
functions of p appearing in the integrand would obviously not be altered. Hence as An/n goes to
zero, either because we restrict our attention to cases where An is itself suSciently small, or because
we consider a large enough system to make n suAiciently large, we see, in accordance with the finite
values to be expected for the derivatives of p with respect to p that occur in (3.9), that the last two
terms on the right-hand side of (3.4) can be taken as going to

] (p 1 I" An ('18p
Pn+~ ndp — P„-do —

I

—d p.
kT~., kT~., kT~ p0 p Bp

(3.10)

Substituting (3.6) and (3.10) in (3.4), we can now write

or

Zn+6 n
log

Z-

p;(sp)

Z„-+g„——AB—~",

ap

kT kT p, pBp
(3.11)

(3.12)

where A and B are constants, as expressing in general, for a system of similar molecules at a given
volume and temperature, the dependence of sum-over-states on Huctuations An in molecular content
which are small compared with a particular value n for the number of molecules in the system.

(4 1)

where A; and B; are constants, as a correct form
of expression for the sum-over-states of the ith
reservoir R;, when it contains any number of
molecules n which is near enough the mean
number n&' so that the ratio (n,' —n„')/n is
small. And by substituting the expression for n,'
given by (2.5) this can be rewritten in the form

Z, g .B.n, '—n, o+n,
ni' t t (4 2)

where n is the total number of molecules of the
kind i in the combined system and n; is the
number of that kind in the system proper S.

Substituting expressions of the form (4.2) into
our previous expression (2.7) for the probabilities
of states of the system proper, we obtain

h

p s(f—s, )/p II A .p, R, —n, +n; (4 3)
t=l

$4. DISTRIBUTION IN TERMS OF COMPOSITION

OF SYSTEM PROPER

We are now ready to return to our previous
expression (2.7) for the probability distribution
for states of the system proper 5, in terms of
expressions for the sum-over-states of each of
the reservoirs Rl, R2, ~ ~ -Rh. As a consequence
of (3.12), we can now write

And by introducing new symbols defined by
h

e"tP=e&" II A;8" ™''and e"'""P=B" (44)

where the quantities 0 and pi are constants, we

can then finally write

p„„...„„,=s«+pi~i+ps~m+ +u~~a ~'.&(p, (4.5)

as the desired expression for the probability of
any state s of the system proper, as determined

by its molecular contents nl, n2, ~ ~ nh, and
energy B„when in that state.

It will be noted that the above dependence on

composition and energy is that for a grand
canonical distribution. It will be seen, in accord-
ance with the derivation of (4.5), that this dis-
tribution can be taken as valid, in the neighbor-

hood of the mean molecular composition of the
system proper, for any Auctuation Ani in the
number of molecules of any kind present therein,
which can be regarded as vanishingly small com-

pared with the mean number n present in the
corresponding reservoir. It will also be seen,
moreover, that the range of validity can be
made as wide as desired by taking large enough
reservoirs with large enough mean molecular
contents n . Since the change to a larger reservoir

may be made by taking the same proportional
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increase in volume and in mean molecular
content, it will be appreciated that such a change
need involve no major alteration in the escaping
tendency for the molt cules in the reservoir or in
the character of the equilibrium in the system
proper.

The foregoing derivation has been carried out
for simplicity for the case when the system
proper S is taken as connected through a semi-
permeable membrane with a separate reservoir
for each of the different kinds of molecules
involved. Similar derivations can also be carried
out, however, for cases when the system is taken
as connected through suitable membranes with
reservoirs for more than a single substance, or
indeed as connected —without any membrane
being necessary —with a single reservoir for all
the component substances. In treating such
cases, the sum-over-states for a reservoir, con-
taining more than a single kind of molecule, can
now be obtained by starting with the known
expression for sum-over-states when a mixture
of molecules is present in a large enough volume
to act as a nondegenerate perfect gas, and then
adding as before the increase in sum-over-states
that occurs on compression to the volume of in-
interest. The dependence of the result on
molecular constitution can then be investigated,
much as before, the main difference lying in the
necessity of now introducing a Taylor's expan-
sion, which gives the pressure of the reservoir
contents as a function of changes in the numbers
of more than a single kind of molecules. The
range of validity for the grand canonical dis-
tribution is still found in such cases to be limited
only by the restriction to fluctuations, around
the mean number of molecules of any constituent
in the system proper, which are vanishingly
small compared with the mean number in the
appropriate reservoir. Hence, under such circum-
stances, we may now take the grand canonical
distribution as applying in general to the equi-
librium condition for a system proper which is
connected with one or more suitable reservoirs
for providing its constituent substances.

$5. CONCLUDING REMARKS

We may now make some concluding remarks,
as to the conditions leading to the establishment
of grand canonical distributions, and as to the

propriety of using grand canonical ensembles for
representing equilibrium in the case of "open"
thermodynamic systems.

In accordance with the previously known
results of statistical mechanics, we can represent
the establishmerit of equilibrium in a "closed"
system of molecules, left in thermal contact with
a large heat bath at temperature 1, by the
establishment of a canonical distribution with
8=kT in the corresponding representative en-
semble, and can then use the canonical ensemble
thus arising to represent the condition of equi-
librium in the "closed" system of interest. In
accordance with the results of the present article,
we have found that a canonical distribution in
the representative ensemble for a "closed"
system, consisting of a system proper connected
with a suitable reservoir or reservoirs for fur-
nishing the various kinds of molecules involved,
implies a grand canonical distribution, in that
part of the ensemble which represents the
system proper, for all fluctuations in molecular
contents which are vanishingly small compared
with the mean contents available in the reser-
voirs. Hence, introducing the usual term "open"
system to denote a system proper which is con-
nected with one or more reservoirs of large
enough capacity for the satisfactory accom-
modation of all fluctuations of interest, we can
now represent the establishment of equilibrium,
in an "open" system of molecules at temperature
T, by the establishment of a grand canonical
distribution in the corresponding representative
ensemble with O=kT, and can then use the grand
canonical ensemble thus arising to represent the
condition of equilibrium in the "open" system
under consideration.

In making such use of grand canonical en-
sembles to represent the condition of equilibrium,
in actual situations where a system of interest
is connected with one or more reservoirs, cases
may arise where the range of validity for the
grand canonical distribution is not wide enough
to cover all fluctuations in the composition of the
system which are of interest. This may occur
either because the reservoirs are so small as to
make the actual range of validity a very narrow
one, or because the character of the system is
such as to give a high probability for composi-
tions of the system differing widely from the
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mean, ' thus ITlaking thc 1ange of intel est ovcl
which we desire accuracy a wide one. In such
cases, we have the possibility of giving as accu-
rate a treatment of the probabilities for diRerent
compositions of the system as may be necessary,
by including higher order terms of the kind
An/n in equations such as (3.5) and (3.9). It is
to be emphasized, however, in the usual situ-
ations where we should wish to apply the grand
canonical distribution, that the typical cases
which arise are those where the numbers of
molecu1es available in the reservoirs are great
enough, and the probabilities for compositions
of the system widely different from the mean are
small enough, so that the grand canonical en-
semble gives an appropriate description of
equilibrium.

It shou1d be remarked that the circumstances,
which lead to the grand canonical rather than
the canonical distribution as the appropriate
description of equilibrium, are perhaps more
frequently present in nature than is usually
appreciated, owing to the frequency with which
we are interested in the behavior of a system of
molecu1es which in actuality forms part of, or
has been cut OR, from a larger system. From a
mathematical point of view, this is a fortunate
happening, since, in spite of its apparently
greater complexity of form, the grand canonical
distribution realIy proves easier to handle than
the canonical distribution, owing to the fact
that summations over diRerent possible states
can be carried out without any limitation on the
total number of molecules. Thus in the case of
degenerate Einstein-Bose and Fermi-Dirac gases
it is found, when the interaction between
molecules can be neglected, that the usual

~' A judgment as to the probabilities for compositions
differing from the mean can be obtained with the help of
the formula for the mean square fluctuations in composition
in a grand canonical ensemble, see Gibbs, reference 2, Eq.
(541); Tolman, reference 2, Eq. (141.42}.

expressions for the mean numbers of molecules
in diRerent molecular states can be simply Rnd
accurately derived for a grand canonica1 en-
semble, although holding only approximate1y in
a canonical ensemble. "

In conc1usion, it may be emphasized that the
foregoing demonstration of an actual tendency
toward the establishment of grand canonical
distributions in the ensembles by which we
represent the establishment of equilibrium in

open systems, 18 of Rsslstance ln plRclng on R

sound and understandable basis the use which
has been made of grand canonical ensembles for
the representation of thermodynamic equi1ib-
rium in "open" systems. Previous work' has
shown that this use of grand. canonica1 ensembles
provides consistent statistical-mechanical ana1ogs
for thermodynamic quantities, in particular
ana1ogs for the Gibbs' potentials which give a
statistical-mechanical explanation of the known
thermodynamic conditions for equilibrium to-
wards the transfer of component substances
between systems placed in connection, and an
analog for entropy which gives a statistica1-
mechanica1 explanation for the thermodynamic
principle of the precise additivity of entropies
when similar homogeneous systems are combined
thus solving the so-ca11ed Gibbs paradox. It has
not hitherto been apparent, however, that the
introduction of grand canonica1 ensembles to
represent the equilibrium of "open" thermo-
dynamic systems is not on1y suggested by the
consistency of the thermodynamic analogies
thus provided, but is also dictated by the actual
tendency for grand canonical distributions to be
established in the ensembles by which we must
represent the establishment of equilibrium in
"open" systems, if we app1y the accepted prin-
ciples of statistical mechanics.

"See Pauli, Zeits. f. Physik 41, 81 (1927); Tolman,
reference 2, )114.


