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The nucleus is described by an absorption coefficient 0.

which gives the probability per unit time that an incident
particle becomes amalgamated with the nucleus (Eq. (1)).
This absorption coefficient appears as an imaginary
potential in the Schrodinger equation. It is shown that a
gradual decrease of o. at the nuclear boundary is essential
for achieving agreement with experiments ((2). This
model gives automatically unit sticking probability for
fast neutrons, a cross section proportional to 1/v for slow

neutrons, and no one-particle resonances for particles
which have to penetrate a potential barrier ($3). Quanti-
tative calculations are made with 0 varying as e &" ~&l'"

outside the nucleus. For neutrons of zero orbital momen-

turn, the formation probability of the compound nucleus

is found to be &=1—e ' ~~ where k is the wave number.
It is significant that t depends on the diffuseness b of the
nuclear boundary rather than on the nuclear radius R.
On the other hand, the factor 2~ ensures that f is close
to unity already for energies of about 1 Mev ()4). The
total cross section in the region of overlapping levels, and
the average level width in the region of separated levels
are expressed in terms of the formation probability g.
The relation with the elastic scattering is discussed ((5).
The case of slow neutrons is treated in detail. With an
average spacing D of 10 volts between levels of the same

J, the average neutron width is about 2X10 '8& for a
neutron energy 8, in rough agreement with the meager
experimental data. With these assumptions, the neutron

width will become larger than the radiation width already
for.8=10' ev; experiments on the capture of "medium
fast" neutrons (=2)&105 ev) can be interpreted roughly
on this basis. The elastic potential scattering of slow

neutrons is shown to be equivalent to the scattering from

a hard sphere whose radius R' is defined by the condition
that g(R') =(Pi/2mb')e 2~ wher'e C is Euler's constant
0.577 ~ ~ ~ ()6). The case of particles which move in a
non-nuclear potential V (electrostatic or centrifugal) is
treated in $4, 7, 8 for various relations between the energy
B of the incident particle and the height V(R') of the
potential barrier. If 8—V(R') is more than about 1 Mev,
the formation probability is close'to one, as for a fast
neutron ($4). If 8 is about equal to V(R'), g is still of the
order of unity ($8). For 8&V(R'), t contains the well-

known penetrability of the potential barrier, e '~, aside
from other factors which increase slowly with

~

Z& —VlR'l
~

(f7). The magnitude of 0. inside the nucleus is derived for
the case of extremely high energies from the. Born approxi-
mation and the variation of 0. with energy is shown to be
slight in this case. Although quantitative conclusions on
the case of moderate energies cannot be drawn, it seems

likely that n is at least 20-40 Mev in that case (P).
Finally, it is shown that no appreciable change of results
is caused by an attractive or repulsive nuclear potential
added to the nuclear absorption potential ((10). In the
main part of the paper, it has been assumed that the
average interaction between nucleus and particle is zero.

eli. INTRoDUcTIQN spacing. On the other hand, it is of course not

necessary to use dispersion theory in the region
of overlapping levels because the cross section
then no longer depends on the individual energy
levels. It is instead permissible to treat the

energy levels statistically which means a great
simplification of the formalism. ' ' Bohr, Peierls
and Placzek have shown that the statistical and
the dispersion method . give the same cross
section for the formation of the compound
nucleus and have investigated which quantities
in dispersion theory correspond to the quantities
used in the statistical treatment.

In either case, quantitative results can only
be obtained when certain assumptions are made

'HE treatment of the compound nucleus
has in the past been based mostly on

dispersion theory. ' ' This treatment is eminently
well suited for the resonance phenomena ob-
served with slow neutrons and protons for
which it was originally devised by Breit and
signer. ' Moreover, Bohr, Peierls and Placzeks
have shown that the dispersion theory (in the
form of Peierls and Kapur4) can also be applied
in the region of dense levels, i.e. when the width
of the compound levels is greater than their

' G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).' H. A. Bethe and G. Placzek, Phys. Rev. 51, 450 (1937).
'N. Bohr and F. Kalckar, Kgl. Dansk. Vid. Selsk. ,

Math. -fys. Med. 14, 10 (1937).
4 P. L. Kapur and R. Peierls, Proc. Roy. Soc. 166, 27

(1938).' N. Bohr, R. Peierls and G. Placzek, to appear shortly
I am indebted to Dr. Placzek for the opportunity to se
the manuscript before publication.

7 ' L. Landau, Physik. Zeits. Sowjetunion 11, 556 (1937).' U. F. Weisskopf, Phys. Rev. 52, 295 (1937).
e 8 V. F. Weisskopf and D. H. Ewing, Phys. Rev. 5'7, . 472

(1940).
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about the physical quantities entering the theory.
In the statistical theory it is shown that the
total cross section can be expressed in terms of
the sticking probability $, i.e., the probability
that an incident particle hitting the nucleus will

stick to it and thus form a compound nucleus.
It is usually assumed that this sticking proba-
bility is unity for high energy particles and
proportional to the velocity for slow particles,
but it has not been possible thus far to give a
general theory comprising both limiting cases
and permitting an interpolation between them,
or even to say which energies are to be considered
as "high" and "low."

In this paper, we shall attempt to give a
theory of the sticking probability. For this
purpose, we shall consider the case of dense
levels and shall try to develop a continuum
theory of the compound nucleus, disregarding
all effects of the individual levels. This theory
will be related to the dispersion theory as the
classical theory of a solid —describing it by
phenomenological constants like conductivity or
elasticity —is related to a quantum theory which
would take into account each (electronic and
vibrational) quantum state of the crystal.

In our continuum theory, we shall start from
the basic idea underlying the theory of the
compound nucleus, vis. that there is a strong
interaction between a nucleus and any nuclear
particle incident upon it which leads to an
amalgamation of the two. This means that there
is a large probability for a "free" nuclear particle
inside a nucleus to become absorbed and lose its
individuality. We shall therefore describe a
nucleus by a large absorption coegcient for nuclear
particles. For reasons to be explained later
(below Eq. (2a)), we shall refer to this absorption
coefficient as "absorption potential. "

An incident particle can then either be ab-
sorbed by the initial nucleus or elastically
reAected. Our aim will be to calculate the relative
probabilities of these two processes (in other
words, the sticking probability) in terms of the
absorption potential and of the velocity of the
incident particle. The absorption of the particle
is, of course, equivalent to the formation of the
compound nucleus, and therefore the absorption

' N. Bohr, Nature 137, 344 (1936).

probability gives the total cross section for all
possible reactions. How this cross section is
distributed over the various possible reactions
is another matter; according to the original
hypothesis of the compound nucleus, its disinte-
gration is independent of the manner of its
formation, and, if this is true, the relative
probabilities of various modes of disintegration
can be calculated by statistical arguments from
the probabilities of the inverse processes. '

$2. DEFINITION OF THE ABSORPTION POTENTIAL

We have proposed in the preceding section to
describe the nucleus by an absorption coefficient.
We shall assume that the number of particles
absorbed per unit time at a given point in the
nucleus is proportional to the density of particles
at that point. Then we have the continuity
equation

Bp/Bt+div j = —2o.(r)p/fi, (1)

where j is the current density, p the density of
particles and r the "absorption potential. " The
function 0. is defined so as to have the dimension
of an energy; it will in general depend on the
position r in the nucleus.

Equation (1) contains the assumption that the
absorption depends only on the density of the
particles but not on their kinetic energy, direc-
tion of motion, spin, etc. This assumption cannot
be justified from first principles. However, it
seems reasonable to assume that the dependence
on spin and direction is slight, and that the
dependence on the energy E is only appreciable
if B changes at least by an amount of the order
of a nuclear binding energy ( 10 Mev). That
the dependence on B is slight for very high
energies Z, will be shown in $9. Then, for our
purposes, 0 may be considered as a function of
r only.

If we use the wave-mechanical definition of
density p and current density j, we can show

easily that (1) is equivalent to the Schrodinger
equation

(2)

where E is the energy of the incident particle and
U its ordinary (real) potential energy. In order
to show that (2) is equivalent to (1), we multiply
(2) by It* and subtract from the product its
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complex conjugate; remembering then the defi-
nitions of density and current density, vis. ,

p=P*P, j=(k/2im)(/* grad P —P grad P*), (2a)

N 1' (n —1)'+ k'—

N+1 (n+ 1)'+ k'
(3)

"R. F.Bacher, Phys. Rev. 55, 679 (1939);57, 352 (1940)."T.Wakatuki and S. Kikuchi, Proc. Phys. -Math. Soc.
Japan 21, 656 (1939)." G. Placzek and H. A. Bethe, Phys. Rev. 57, 1075A
(1940).

we obtain Eq. (1) after a simple transformation.
In Eq. (2), o appears as the imaginary part of
the potential. This justifies our use of the term
"absorption potential, " in preference to the
colorless term "absorption coefficient. "

The absorption potential 0- may be assumed
to be a function only of the distance r from the
center of the nucleus. Inside the nucleus (r (R)o

will be of the order of the nuclear interaction
forces, i.e. , perhaps 30 Mev (cf. f9). At the
nuclear boundary 0. will drop to zero. We shall
show presently that the results for the sticking
probability will depend most sensitively on the
way in which o- goes to zero, i.e. , whether this
happens suddenly or. gradually. On the other
hand, the results will be practically independent
of the absolute magnitude of 0- inside the
nucleus. ($3, 9).

If our theory is to agree with experimental
results, it must give a sticking probability very
close to unity for fast neutrons (» 1 Mev).
This follows from experiments of Bacher" on
the scattering of fast neutrons by Cu and Pb.
These experiments show that practically all the
scattering is inelastic; what little elastic scatter-
ing there is, goes mainly in the forward di-
rection' " and is readily explained by shadow
diffraction. ' " Therefore experimentally the
nucleus behaves like a blackbody to incident fast
neutrons; it absorbs practically all of the incident
particles and reflects only very few elastically.

In order to find out how 0. must behave in

order to give blackbody properties to the nucleus
it is convenient to remember the electrodynamic
analog. Consider a medium of complex refractive
index N =n+ik with a sharp plane boundary.
If light falls normally on the boundary from
the vacuum, the reHection coefficient is

All the light which is not reflected is absorbed
~ if the medium is sufficiently thick; the fraction
absorbed is equivalent to the sticking probability
in nuclear physics and (for infinite thickness)
is given by

I = 1 —R = 4n/L(n+1)'+k']. (3a)

From this formula it is seen that a large absorp-
tion coefficient k is by no means favorable for a
large sticking probability; on the contrary, the
only case when f becomes nearly 1 is for. N =n

+ik nearly 1, i.e. when the medium is very
similar to vacuum. We know, however, that the
complex refractive index N is by no means close
to unity in the nuclear case; in fact, ~N' 1~—
=

~

—V+io ~/& is in general large compared
with unity. Therefore, if the nucleus had .a
sharp boundary, we would obtain a large
reflectivity and small sticking probability.

The result is quite different if 0. and V change
gradlalky at the nuclear boundary. If the varia-
tion of U=E —V+io- over one wave-length is
small compared with U itself, we can use the
WKB method. As is well known, this method
is equivalent to classical mechanics; therefore a
stream of particles incident upon the nucleus
will proceed towards the nucleus without being
reflected, until they arrive in the regions where

they are absorbed. Therefore a model in which

the complex potential V—io. changes gradually
at the nuclear boundary will, for fast incident
particles (small wave-length), give nearly unit

sticking probability.
A gradual variation of V and 0. is very plau-

sible. Both these quantities are connected with
the forces between nuclear particles. Therefore,
even if the nucleus had a sharp boundary, V
and o- would extend beyond the geometrical
boundary over a distance of the order of the
range of the nuclear forces, i.e. , about 10 " cm.
Actually, the boundary of the nucleus itself will

not be sharp, because of the zero-point oscillation
of the nuclear particles, which constitutes a
further reason for a gradual change of V and 0..
We shall use the term "diffuseness of the nuclear
boundary, "

b, for the distance over which the
absorption potential o (and also V) fall to, say,
1/e of their value inside the nucleus. According
to the foregoing, there are two contributions to
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b, probably of about equal importance, one being
the diffuseness of the region actually occupied
by the particles in the nucleus and the other
the range of the nuclear forces.

We thus see that very plausible assumptions
lead to unit sticking probability for fast neutrons.
The same assumptions will also eliminate one-
particle resonances without the artificial intro-
duction of a repulsive potential. ' As we shall see
in )3, our absorption theory will give the "1/v
law" for slow neutrons and Weisskopf's formula'
for charged particle reactions.

function (6) decreases towards the interior of
the nucleus because the nucleus absorbs particles
coming from the outside but does not emit any.
This means that the real part of 4» must be
positive. Now the imaginary part of C (cf. (Sa))
is negative; therefore C' must lie in the fourth
quadrant of the complex plane (real part positive,
imaginary part negative). As cr and V decrease,
C becomes real and negative; and, since 4 s stays
all the time in the fourth quadrant, it will

become purely negative imaginary far outside
the nucleus. Therefore (6) goes over automati-
cally into

f3. GENERAL CALCULATION
u. =cC I exp ( —i(2mW)lr/5) (6a)

Many results can be obtained without special
assumptions about the potential V and the
absorption potential 0.. The potential V will in

general contain one part, V„, which arises from
nuclear forces, and another part, V, ~, which is
not of nuclear origin and contains the Coulomb
and the centrifugal force. Since the diffuseness
of the nuclear boundary (cf. end of f2) is small,
we can for most purposes consider the slowly
varying part V, & as constant over the interesting
region, i.e. over the region outside the nucleus
in which U„'and o are still appreciable (cf.,
however, $8). We shall introduce

W= B U,„,(R), — (4)

i.e. , the kinetic energy of the incident particle
at the surface of the nucleus (A =nuclear radius)
disregarding nuclear forces. Then the radial
Schrodinger equation is

O'Q 2m
+ (W—V„+so)u = 0,

dr'

where u is r times the radial factor of P. We
shall frequently use the abbreviation

C = (2m/5') (—W+ U„)M—(Sa)

u=cC lexp (J Cidr),

where c is a constant. The square root of C has
to be chosen in such a way that the wave

A. High energy

If 8' is large and positive, the WKB method
will be applicable for all values of r. Then

or, for still larger distances, into

u = cC —I exp I
—f (2m) '5 'J'(8 —V„„,) idr}, (6b)

in other words, into an incident wave without
any outgoing part. Therefore, for high energy,
the nucleus does not reflect any particles; the
sticking probability is

(6c)

Any deviation from this result is due to the
inaccuracy of the WKB.

B. Small energy

For slow neutrons of zero orbital momentum,
we have V, &

——0, and t/V=A small. Then the
WKB method is valid only inside the nucleus,
i.e. , as long as

~

V I'o
}

is sufficiently—large.
Let R be the value of r for which the WKB
method just ceases to be valid. Then at r=R
we have approximately, according to (6):

(1 du) 2m
=C'(&) = (U- —~ ) (7)

Eu dr ) „.. p 5'

The condition for validity of the WKB method
is that the change of 4 over one wave-length be
small compared to C itself, " one wave-length
being equal to }C l}. At the limit of validity,
then,

~

C I} will be approximately equal to the

"Actually, the quantity neglected in the WKB is only
the second derivative of C ', rather than of C. Therefore
the limit of validity may be given by the point where the
wave-length }C }

& is equal to 4b rather than to b. This
would increase the result (11) for g by another factor 4.
(With the exponential potential of $4, f comes out about
2.2 times the value given in (11).)
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distance over which C changes by its own

amount, i.e. , of the order of the diffuseness of
the nuclear boundary, b. Thus we have

with
(d log n/dr) J4

——(1/b) e
—l'4'

tan p=(o./U„)r4.

(7a)

(7b)

Immediately outside R, there will be a small
region in which V„and 0. are still important but
the effect of this region on d log u/dr is slight.
We can therefore join the wave function at
r=R immediately to that of a free particle of
energy E, vis.

with
u=sin (kr+8)

k = (2mB) '*/k. (Sa)

Since k and 8 are small, we can write for r of the
order R:

u=kr+8,

(1 dui k

Eu dry' g kR+8

(Sb)

(Sc)

Equating (8c) and (7a), we find

b = —kR+kbe''i&.

This expression consists of an incident wave and
a reflected wave, the ratio of their amplitudes
being e"'. The reflection coefficient is then

8= ~e4"
~

=Re (1+4ib), (10a)

where terms of order b' have been neglected and
Re denotes the real part. The sticking probability
is then (cf. (9))

f =1 P= 1m (48) =4kb sin -,'—y.

According to (7b), sin 2p will be of the order
unity if 0. is comparable to V at the limit of
validity of the WKB. Therefore g is of the
order of 4kb.

This shows that g decreases as k Es for slow
neutrons. g has been defined here as the ratio

The term kR gives a potential scattering with a
cross section 4xR'. From the other term we may
obtain the sticking probability (besides an
additional contribution to the scattering). For
this purpose, we re-write (8) in the form

(10)

of the number of particles absorbed to the
number of incident particles with /=0. The latter
number is x./k' for unit total incident current;
therefore the absorption cross section is

4r = (7r/k') f =47rb/k, (12)

i.e. , the well-known 1/s law. Our theory does of
course not describe the resonance phenomena
(cf. (6).

It must be pointed out that our definition of g
differs from the usual definition" of the sticking
probability &. The latter was made so as to make

& close to unity for any case, including slow
neutrons and particles going through a potential
barrier. Our definition of ( is very much simpler,
but of course we cannot, in general, expect it
to be unity. In order to avoid confusion, we

propose to call g the "formation probability, "
i.e. , the probability of formation of the compound
nucleus.

According to (11), the formation probability
will become of the order unity when X = 1/k =4b.
This solves a question of old standing, vis.
whether it is sufficient to make the wave-length
X smaller than the nuclear radius R in order to
make the formation probability almost unity, or
whether it is necessary to make 'A smaller than
the diffuseness b of the nuclear boundary. We see
that b rather than R is important which is very
plausible because, for an imaginary nucleus of
very large dimensions, the size can obviously
not be important for its physical properties. On
the other hand, b is multiplied by the numerical
factor 4 which arises from the e"' in Eq. (10a) for
the reflection coefficient; this means that already
for rather large values of X (rather small energies)
the formation probability becomes unity, in
agreement with experiment. " It was mainly in
view of the experimental results that it had
been believed" that R was the critical value for X

below which p = i. A more quantitative dis-
cussion will be given in (4.

C. Negative energy

If W is negative (potential barrier), Ci will
become positive real outside the nucleus (cf.
case A). This means that the wave function will
be much smaller at the nuclear boundary than

"H. A. Bethe, Rev. Mocl. Phys. 9, 69 (1937), (cf. p. 96).
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$4. QUANTITATIVE CALCULATION FOR EXPO-
NENTIAI ABSORPTION COEFI ICIENT

For the purpose of a more detailed discussion,
we shall assume that o. depends exponentially on
r, vis.

0 = (g'/2mb')e —&"—»&z. (13)

b is the "diffuseness of the nuclear boundary. "
The factor Il'/2mb' is chosen for convenience in
the calculations. Eq. (13) contains a definition
of the nuclear radius R, vis. , R is that value of r
for which 0 has the value lz'/2mb'. If we take for
b simply the range of the nuclear forces (cf. )2),
and if we determine this range from the theory
of the triton, "we obtain b =0.86 X 10 "cm, and
pzz/2mb' = 28 Mev, i.e. rather large. The ex-
pression (13) becomes very large inside the
nucleus (r(R) whereas we should expect &r to
reach a constant value of perhaps 30 Mev. This
does not affect the results perceptibly because
the inside value of 0. is large enough to make the
WKB valid for the transition from the inside to
the boundary region, and therefore the behavior
of the wave function in the boundary region
depends only on the value of 0 in that region and
is independent of the behavior of o- inside the
nucleus.

We shall further assume that V„ is zero. This
assumption is probably a good approximation
because, as far as we know, nuclear forces are
sometimes repulsive, sometimes attractive ac-

'4 W. Rarita and R. D. Present, Phys. Rev. 51, 788
(1937).

farther out so that our theory leads auto-
matically to the ordinary result of small penetra-
tion through the potential barrier, and also to
the usual expressions for the penetrability.
Furthermore, the increase of the wave function
outwards is obtained quite generally which shows
that there are no one-particle resonances. The
only condition is that the WKB method is
applicable everywhere near the nuclear bound-
ary. This means that zf the nuclear potential V„
is attractive and becomes greater than

~
W~ at

a certain point ro, then 0(ro) should be large
enough to insure the validity of the WKB
near rp. This will be the case if 0. is of the same
order as V or larger which is to be expected on
general grounds.

cording to the relative orientation of the spins of
the interacting particles, their relative orbital
momentum, their charge, etc. The interaction of
a complicated nucleus, containing many par-
ticles of different spin, etc. , with another particle
will be very close to zero, at least on the average
over the surface of the nucleus. We shall show
in )10 that finite V„gives essentially the same
results as V =0.

The radial Schrodinger equation becomes now

d'u i
&--(r—R) Ib

dr' b2
(14)

2m ( Zse'& l(l+1)
iz' &. R i R' (14b)

where / is the orbital momentum of the incident
particle, se its charge, Ze the charge and R the
radius of the nucleus.

Equation (14) may be solved by introducing
the independent variable

x g
—(r—R)/2b (15)

Then (14) becomes

d'u 1 de (k'b'-'
+- —+4i +z )u=O,

dx' xdx E x'
(15a)

whose solution is

z&=cHz«&&" (2zIx) =cHz;&&," (&2(1+z)x). (16)

The Hankel function H('), rather than any
other type of Bessel function, must be chosen
in order to make u, zero rather than infinite for
large x, i.e. inside the nucleus. c is a constant.

We want to know the asymptotic behavior of
zz far outside the nucleus (r))R). According to
(15), this corresponds to sma/l values of x.
Neglecting all higher powers of s, we have for
small z and any p"

z
H &'&(»)=

~

e ""——
~. (16a)

sin zrp ( p! ( —p)!)
15 Cf. Jahnke-Emde, Table of Functions, second edition,

p. 200 and 194.

Here k is the wave number of the inciden t
particle near the nucleus, vis [cf. E. q. (4)]

k' = 2m W/lI' = (2m/11') (8—V, &(R)) (14a)
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Therefore, choosing c appropriately, (16) be-
comes for small x

~=~» el»~»~ »p1/(——p)1 (16b)

Inserting p= 2fkb and x from (15), this gives

g
—27rI b (17b)

The difference of the intensities of incident and
outgoing wave represents the particles absorbed
by the nucleus; the formation probability of the
compound nucleus is therefore

g
—27rkb (18)

Equation (18) represents the principal result
of our theory. It gives the desired expression for
the formation probability as a function of the
energy of the particle, which is necessary in
order to deduce quantitative results for the
cross sections of nuclear reactions. The ex-
pression (18) has the following properties:

(a) For high energies (kb))1/2~), the forma-
tion probability is practically unity, in agreement
with the experiments on fast neutrons. This
shows that our assumptions about the absorption
potential were appropriate to obtain the desired
result.

(b) For low energies (kb«-,'m), the formation
probability is

a=2~kb, (18a)

i.e. , g is proportional to k and therefore to the
velocity. This gives the 1/r1 law for the capture
cross section [cf. Eq. (27a) j.

(c) The critical wave-length is

X,,=1/k. ,=2mb. (19)

For a range of the nuclear forces 9 =0.86&(10 "
cm, we have X„=5.4 g 10 " cm. This means
that X„ is of the order of the radius of medium

where g is the complex phase of (2ikb)!, i.e.

e'" = (2ikb)!/ )
(2ikb)! (. (17a)

Equation (17) contains the main result. The
radial wave function u consists of an incident
wave of unit amplitude and an outgoing wave of
absolute amplitude e ".This shows that the
amplitude of the outgoing wave is always less
than that of the incident one, as it must be.
The reflection coefficient of the nucleus is

f = (E/E.,)' (E«E,„). (19a)

According to (14a), k depends on the kinetic
energy lV of the incident particle at the surface
of the nucleus. Only in the case of neutrons with
zero orbital momentum, 8" is identical with the
actual energy E and only in this case, Eqs. (18a)
to (19a) are directly applicable. In all other
cases, TV is less than E because of the electro-
static and the centrifugal potential barrier.
Moreover, in these other cases V, „-~ is a function
of r. Then, among the statements above, only

(a) is correct, i.e. , for large kinetic energy the
sticking probability is still nearly unity. How-
ever, if W is small ( & 1 Mev, say), it is necessary
to take into account the variation of V,„-~ over
the diffuse nuclear boundary. This wi11 be done
in $8 with the result that the formation proba-
bility remains of the order unity even for S'
small, i.e. even when the energy of the incident
particle is only just sufficient to go over the top
of the barrier.

In the next section we shall discuss the con-
nection between our g and the observable cross
sections as well as the level widths occurring in

dispersion theory. In the following sections we
shall consider the cases of slow neutrons (A!6), of
particles going through a potential barrier (j!7),
of particles just able to go over the top of a
barrier (fj8) and of very fast particles (A!9).

Finally, we shall investigate the inHuence of a
nonvanishing nuclear potential V„($10).

fj5. CROSS SECTION, LEVEL WIDTH AND

FORMATION PROBABILITY

From the formulas given in the preceding
section, we can compute the formation proba-

weight nuclei although it is determined not by
the nuclear radius but by the diffuseness of the
nuclear boundary. Thus our explicit calculation
confirms the results obtained in )3 from the
WKB. (It should be noted that X is the ordinary
wave-length divided by 2x, so that the "ordi-
nary" critical wave-length would be 47»~b )T.he

energy of a neutron or proton of wave-length

X„ is E„=0.7 Mev. Therefore neutrons above
1 Mev have a sticking probability close to unity.
The sticking probability (18a) for slow neutrons

may be written
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bility f for a given energy E of the incident
particle as a function of the orbital momentum l.
The probability p& is defined as the fraction of
the incident particles of the given angular
momentum which are absorbed by the nucleus.
The total number of incident particles of orbital
momentum I per second is (2l+1)ark', if the total
incident current is unity and X is the wave-
length of the particle at large distance from the
nucleus. The total cross section for all possible
processes is therefore

(2o)

If the fundamental assumption of the theory of
the compound nucleus is correct, i.e. , if the dis-
integration of the compound nucleus is inde-
pendent of the way of its formation, the partial
cross section for a certain process A is obtained
by the well-known formula

The total elastic cross section is then

0.,1
——21r~~

~

F~' sin Ddt

From I:q. (17) we have, taking into account the
phase shift outside the nucleus" due to V, ~

/=exp }1ril—2ll(l+1)'* arc tan [l'(l+1)l/kR]
—2ikR+2ig —1rkb} (22a)

P is related to the formation probability by

(22b)

The cross section for formation of the compound
nucleus by incident particles of orbital mo-
mentum I is (2l+1)1rX'I'1 Add. ing to this the
contribution I to the elastic cross section (22),
we find for the l part of the total cross section
(elastic plus inelastic)

&a = &1"rz/'r, (20a) s1=(21+1)1rX'2(1—Re p1), (23)

s—i1r+ ( 1) +Igi1kr (21a)

If the actual wave function behaves as

s—far+, ( 1)l+1P ~ikr (21b)

the scattered amplitude will be

F(8) = ',iltp(21+—1)-(p1 —1)P1(cos 8). (21)

where y~ is the partial width for the given
process and y the total width. Both y~ and y
represent averages over all compound levels near
the energy of the incident particle.

Equation (20) does not include the whole
elastic scattering, but only the part due to
formation of the compound nucleus and re-
emission of the incident particle without phase
relations [cf. Eqs. (20), (20a)]. This part which
corresponds to the resonance scattering in the
region of separated levels, is small if many other
processes (inelastic scatter1ng or disintegrations)
can occur. The remaining part of the elastic
scattering follows from the asymptotic behavior
of the radial wave function u. For a free particle,
the radial wave of orbital momentum I behaves
asymptotically as

Re denoting the real part. Comparing this with
(21), we find

s) ——4~X Im F), (24)

where F1 is the factor of P1 in (21) and Im de-
notes the imaginary part. The relation (24)
between the total cross section and the imaginary
part of the elastically scattered amplitude was
found by Bohr, Peierls and Placzek' and will be
referred to below as the BPP theorem.

According to Eq. (22a), P is very small as
long as W is positive and greater than about
1 Mev. For fast neutrons this is the case if
l(R/t. On the other hand, we shall show in

)7 that P is nearly unity for W negative and
~

W~

greater than about 1 Mev, i.e. for I)R/X.
The intermediate region, —i Mev( W& 1 Mev,
is not very important for high E. Therefore
Lcf. Eq. (20)] the total cross section for all
inelastic processes is about mR' and the cross
section for elastic nonresonance scattering Lcf.
Eq. (22)] is also equal to 1rR'. This latter scatter-
ing represents the diffraction of the geometrical
shadow of the nucleus, as has been pointed out by

" This expression was calculated by S. P. Frankel of
the University of Rochester to whom I am indebted for
its communication.
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Bohr, Peierls and Placzek the "shadow scatter-
ing" goes mostly in the forward direction. ' " "

In the case of separated compound levels, it is
important to know the average width of the
levels. This quantity must also be known in the
case of overlapping levels when we want to
calculate the partial cross sections $cf. Eq.
(20a)]. From statistical arguments (cf. refer-
ence 8), we can deduce the relation

(2i+1)(2s+1) 0 (g
(r~ ('),„=D~

2J+1 27r 2X2
(25)

Here F~~J represents the partial width for dis-
integration of a compound level of angular
momentum J into a particle I' of orbital mo-
mentum I and a residual nucleus in the quantum
state A; i and s are the spins of residual nucleus
and particle I', respectively; tT&J is the cross
section for formation of the compound nucleus
in the inverse process, i.e. of a compound nucleus
of angular momentum J by an incident particle
of orbital momentum /; X is the wave-length of
the particle emitted, and D J is the average
spacing between the levels of angular momentum
J of the compound nucleus.

We may write

&LJ &l ~lJ; (25a)

where 0~ is the total cross section for formation
of the compound nucleus by particles of orbital
momentum I; and a& J the probability that the
nucleus so formed has angular momentum J.
If the nuclear reaction is statistical with re-
spect to angular momentum, i.e. if g does not
depend on the total angular momentum J (which
must, e.g. , be true if I =1), we have

n~q=g~;, , q(2 1+1)/(21+1)(2i+1)(2s+1), (25b)

gz') J= 1 for J=I+i+-', and

g~;I, g=2 for II iI+ ~~&+i
(25c)

where g~;, , J is an integer giving the number of
ways in which the resultant J can be obtained
by compounding 1, i and s vectorially. If one of
the three numbers l, i, s is zero, g is unity for all
J's which can be obtained at all. If s= —'„as for
proton and neutron, g is either one or two, vis.

For I=i, the level J= ~l i
~

——-', does, of course,
not exist.

Inserting (25a), (25b) and (20) into (25), we
find

(ran')A =g~'. , zDz f/2~ (26)

This equation contains the well-known result
that the partial width of a compound level for a
given mode of disintegration is of the order of
the spacing between levels if the formation
probability f is of the order unity.

f6. SLOW NEUTRONS. RELATION TO THE

DISPERSION THEORY

The total cross section exclusive of potential
scattering is then Pcf. Eq. (20), I=0]

0 ]—2~ egg (27a)

This formula contains the 1/v law. It is, of course,
only valid when the energy levels of the com-
pound nucleus overlap. The average neutron
width (r&)A„of the energy levels can be obtained
from (26). Since I=0, we have g~;, , ~ ——1 and
therefore

(r~)„=Db/x. (28)

With 9 =0.86)&10 "cm, this gives

(rn)A~=1 9X10 'DE', (28a)

if B is the neutron energy in ev. If we assume
for D a value of 10 ev which seems of the right
order for medium heavy nuclei (A = 100),
(r~)A~E * comes out about 2X10 ' volt'* which
is in fair agreement with the observed values
(reference 13, p. 150).Values of r~ for individual
levels will, of course, differ considerably from
the average.

Our result for the neutron width is rather
larger than was believed in the beginnings of
slow neutron physics. On the other hand, the
radiation width I'~ of the compound levels seems
to be rather smaller than was believed originally.
In practically all cases of medium heavy nuclei,

A. Capture

It has been shown in fl4 that the formation
probability of the compound nucleus for slow
neutrons of zero orbital momentum is [cf. Eq.
(18a)]

(27)
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F, seems to be smaller than 0.1 ev, and in some
cases considerably so. If (I'~)A„——0.05 ev and
D = 10 ev, the average neutron width (28a)
becomes greater than the average radiation
width already for neutron energies as low as
1000 ev. For lighter nuclei, let us say A =50,
the spacing D will be considerably greater while
(I y)A„will be only slightly larger than for A = 100;
then the neutron width will, in general, be laqger
than the radiation width even for energies of
the order of D.

The cross section for neutron capture in the
region of separated levels can be calculated from
the dispersion formula of Peierls and Kapur. 4

Our theory adds to dispersion theory only the
formula (28) for the average rieutron width.

We can make more direct predictions from
our theory for neutrons of medium energy, such
as the photoneutrons produced in deuterium by
the p-rays from ThC" (neutron energy 225
kev). In this energy region we can use the
formulae for the cross section averaged over
the resonances. For the radiative capture of the
neutrons the averaged cross section is

Inserting (29a) in (29), we obtain

4.1X10-'-4 F,—cm'
EX(E) D

(29b)

B. Scattering

Multiplying (17) by e *'s, we obtain

where L' is measured in Mev. N(F) will in general
be of the order unity because E is rather low.
Taking A=0.22; Mev, F~=0.05 ev, D=10 ev
and X(F) =1, we get 0, =9)&10 ~ cm The
cross sections observed by v. Halban and
Kowarski" vary considerably from one element
to another, the largest ones being of the order
of magnitude predicted by our theory, viz. about
2 —5)&10 "cm'. The cross sections of the lighter
elements (A =60) are consistently smaller, vis.
between 3 X 10 ' and 10 7 cm, which is readily
explained by a greater spacing D between the
energy levels. However, some of the nuclei of
A =100—150. also have small cross sections of
the order of 10 " cm'; whether this is due to
an unusually large D or to a large N(F), cannot
be decided at present.

a, =2m'X'(I'vt' /DI') „ (29)
Qe

—1kB =- e
—ikr eskre —2'kR —~kb+9 (30)

where F~ is the partial width for disintegration
of the compound nucleus into a neutron and a
residual nucleus in the ground state, F~ the
radiation width and F the total width, all
quantities being averaged over the compound
levels. As we have pointed out above, the
neutron width can be expected to be considerably
larger than the radiation width for a neutron
energy of 225 kev. Therefore the total width F
is determined by the neutron width, and we
may write

I /r~ =u(F) = P(Z —W.) ''-/R''. (29a)

Here n labels the energy levels of the initial
(not the compound) nucleus whose excitation
energy W„ is less than the kinetic energy E of
the incident neutron. The partial width for
disintegration into a neutron and a residual
nucleus in state n, has been assumed to be
simply proportional to the square root of the
kinetic energy of the outgoing neutron, in accord
with (26), (27) and remembering that g~;,, q=1
because l =0.

The amplitude of the elastically scattered wave
is then (cf. (21); in our case, k=1/X)

F= (e ' "R "+"-" 1)/2ik. — (30a)

g is [cf. Eq. (17a)j the complex phase of (2fkb)!;
since kb is supposed to be small, we may write

g = 2kb/(0) = —2kbC, (30b)

F= —(R+2Cb)+ ', i,~b-.(31)

The scattered amplitude (31) contains a real
and an imaginary part. The former is, in sign
and magnitude, the same as for a hard sphere
of radius

R' =R+2Cb. (31a)

H. v. Halban ancl I.. Kowarski, Nzt;IIre, 142, 392
(im8).

where lb is the logarithmic derivative of the
factorial function and C=0.577 ~ ~ Euler's con-
stant. Then, again remembering that k is small,
(30a) becomes
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This part is usually called potential scattering.
It was originally explained in a very artificial
way, ' using a repulsive potential. Later, it was
shown to come out naturally from the theory
of Peierls and Kapur4 but the result was some-
what uncertain because of the contribution of
the distant levels (cf. 32c). It is now seen to
result equally naturally from the assumption of
a strong absorption in the nucleus. Our deriva-
tion has the advantage of giving a more definite
physical meaning to the nuclear radius. The
effective radius, R', is slightly larger than the R
defined above. We may define R' directly. as that
radius for which the absorption potential is

1 (
e ""s

~

1 iP—
)
—1 (32)

2ik E. B—E„+pic„)

where R" is the nuclear radius introduced by
Peierls and Kapur (their ro), 2„ is the neutron
energy which gives exact resonance with the nth
compound level, y is the total width of the
level, and y ~ its partial width for disintegration
into a neutron and a residual nucleus in the
ground state. For small k,

(32a)

o.(R') = (A'/2mb')e ' (31b)
This expression can. be separated into a real and
an imaginary part:

which, for 6=0.86X10 " cm, is about 9 Mev.
Mathematically, R' can be considered as the
point where the WKB treatment of 0 breaks
down. The sign of the potential scattering
should be the same (negative) for all nuclei.

The scattered amplitude F (31) also has an
imaginary part. This is connected with the
probability of neutron capture because it derives
from the factor e " in (30a,) whose square is
equal to one minus the formation probability g
Lcf. Eqs. (17b), (18)].The relation between the
imaginary part of (31) and the cross section for
formation of the compound nucleus is a special
case of the theorem of Bohr, Peierls and Placzek
[cf. Eq. (24)]. (In our case, the formation cross
section is practically' equal to the total cross
section because it contains the factor 1/v). In
the region of overlapping levels where (31) is
valid, its imaginary part is not very important
for the total scattering, in comparison with the
real part. The total elastic scattering cross
section is then

I'= F„+iF;, (32b)

(32c)

Pn'Y nb

(32d)

F;= —,'~X(yp. )A„/D, (33)

the average being taken over the compound
levels near the neutron energy Z. (1.

' is the value
of y at the resonance energy, cf. reference 2.)
With (28), this gives

(33a)

Ihe exact theory of Peierls and Kapur is still
valid when the compound levels overlap. In this
case, our theory using an absorption potential is
also valid, and a comparison can be made. In
the case of overlapping levels the theory of
Peierls and Kapur simplifies to (cf. reference 5)

0, =4' i Ft '=4~(R"+'-m'0') (31c)

We shall now discuss the scattering according
to the dispersion formula, and compare it with
the results just obtained for overlapping levels.
According to Peierls and Kapur Preference 4,
Eq. (24)], the scattered amplitude is approxi-
mately"

"Since we shall apply (32) only to the case of low
energies, we have put the u„2/N„of Peierls and Kapur
equal to (u„)'=y.pr

in exact agreement with Eq. (31). I his agree-
ment is not surprising and means only that both
the dispersion theory and our theory satisfy the
theorem of Bohr, Peierls and Placzek LEq. (24)].

The sum in the real part of the Peierls-Kapur
scattered amplitude consists of the contribution
of the levels close to E and of the distant levels
just as (32c). The former can be shown to be
zero when the levels overlap. s The latter is
almost independent of the energy and therefore
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represents simply an addition to R". Since the
Peierls-Kapur theory is a consistent treatment
of the compound nucleus, the final result, i.e.
R" plus the contribution of the distant levels,
must be independent of the (arbitrary) choice
of R". Comparing (32c) with (31), (31a) we find
that for overlapping levels

I'„=—R'. (34)

In other words, tke contribution of the distant
levels in (33a) is sero Yvbert R"is chosen equal to R'.
Thus our theory provides a natural choice for
the nuclear radius in the Peierls-Kapur theory.
Since the contribution of distant levels is almost
independent of 2, we can write in the region of
separated levels

v.n (& &)—
I'„=—R' ——,

'ling,

(34a)
„(Q g )-'+Lp

where the sum is to be extended only over the
levels close to E. Taking into account the
conservation of angular momentum, we obtain
then for the elastic scattering cross section the
value given in Eq. (54) of reference 2, with R
replaced by R'.

It is interesting to estimate the relative
importance of resonance and potential scattering.
In the region of overlapping levels we have seen
that the potential scattering is considerably
larger than the resonance scattering Lcf. Eq.
(31c)]. (The overlapping of levels will certainly
occur for neutron energies above 1 Mev because
then the partial neutron width is greater than
the spacing; it may already occur at lower
energies if there are many low excited levels of
the initial nucleus. ) In the region of separated
levels, the average of the elastic scattering cross
section over an energy interval large compared
with D, is

(a-, i),„=4v (R"+-,'v'A'(I'~)A, '/I'gD) (35)

=4'�(R"+ ', v Xb(r„)A„/&A„)- (35a)

If the neutron energy 2 is high enough so that
the partial neutron width is greater than the
radiation width (i.e. perhaps for L')1 kev for
medium heavy nuclei), and if, on the other
hand, 8 is smaller than the first excited level of

the initial nucleus, the total level width F is
nearly equal to the partial neutron width j.&.
Then

(o „)A„——4z (R"-+-,'7rlib). (35b)

If we take R'=6X10 " cm (medium heavy
nuclei) and b=0.86X10 '~ cm, the second term
in (35b) (average resonance scattering) becomes
greater than the first (potential scattering) for
E(30 kev. Therefore, according to (35b), we
should have an energy region (from about 1 to
30 kev) in which the average elastic scattering
cross section is proportional to 1/v.

For smaller energies (below about 1 kev) we
have I'~) F~, therefore the elastic cross section,
averaged over the neutron energy, becomes
independent of E, vis.

(o,i)A,
——4v(R"+ -', vb'D/I', ). (35c)

'8 G. C. Wick, Physik. Zeits. 38, 689 (1937).
"O. Halpern and M. H. Johnson, Phys. Rev. 55, 898

(1939).

With our assumed values for b, D and I'~, the
second term gives a cross section of 30)&10 '4

cm'. It is not surprising that the scattering cross
section for thermal neutrons is considerably
smaller than this amount for practically all
nuclei. This is because the main contribution to
the average cross section (35c) comes from the
immediate neighborhood of the resonances, and
the thermal region is in general "between
resonances. " If we estimate the scattering
amplitude (32a) between resonances by assuming
8—8„=-',D for one level n, and no contribution
from other levels, we obtain for the resonance
scattering = lip„v/D = b Therefo. re "between
resonances" the potential scattering will prob-
ably be the more important term, although it
must be admitted that our estimate of the
resonance scattering is extremely uncertain. It
would be very important to investigate experi-
mentally the relative importance of resonance
and potential scattering for slow neutrons. This
could be done by interference experiments be-
cause the potential scattering amplitude should
have the same sign (negative) for all nuclei
while the resonance scattering may be positive
or negative, according to the position of the
nearest levels. Moreover, the resonance scatter-
ing is partly incoherent. ""
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$7. POTENTIAL BARRIER

ii37

In this section. , we shall treat the case of a particle which must penetrate a potential barrier in
order to enter the nucleus. In deriving Eq. (17), it was not assumed that the kinetic energy W at
the surface of the nucleus was positive. If W is negative, we may simply put

where

Then (17) goes over into

k=i~,

K' = —2m W/5'.

( —N'b) I

~ —gK(r—R) g
—«(r—R) e

—ziKb

(r&b)!

(36)

(36a)

(37)

Since the kinetic energy 8—V,. t, [cf. Eq. (4)g varies with r, this expression must be replaced by
the WKB expression

where

u(r)= IC'I "exp
I

' IC'(I) I!'dI
/

—IC'I 'e '"'exp
/

— ' I+(I) I'*dp f( —~b)'/(Kb)' (37a))
4 = (2m/5') (8—V,„,). (37b)

For large r, 4 becomes positive and (37a) goes over into

u=2C csin
(

I C'ldp+4z
I exp

I
i' IC'(p) I'dp

gJ„, ) EJ,

t' t" l (-C-:cos
(

~ +:dI+l~
I

exp I
—

» l~(I)I'dp )e ""'(—«b)'/(~b)' (37c)

where ro is the point at which C is zero and p an integration variable. The function (37c) can be
represented as an incident plus an outgoing wave. The reHection coefficient can be calculated in
the usual way as the absolute square of the ratio of the amplitudes of the two waves. The formation
probability then is one minus the reHection coefficient and comes out to be

I"=2 sin ~~b e-' (—~b)!/(~b)!+0( 'e) (38)

with
7 p

G=) ~e(r) ldr, (38a)

the Gamow integral. Using the well-known
relation between ( —n)! and n! (cf. reference 15,
p. 89), we find

I. =2~~be ~G/(~b)!2 (38b)

The formation probability P, as here defined,
includes the penetrability of the potential barrier
(factor e '0) and differs in this respect from the
sticking probability $ used commonly in the
literature (cf. )3B). For small «b, the f from
(38b) is very nearly 2m. rbe 'g, i.e. it contains,

besides the penetrability factor e '~, another
factor which is analogous to the formation
probability for small positive W, vis. 2mkb. If
we neglect the variation of V, ~ with r, the
formation probability drops from 1 at high
energies to 0 at W=0, then rises again for
negative W as

~
W~ '*, and finally decreases again

because of the factor e '~.
Our formula for g is in agreement with the

result of Peierls and Kapur, 4 which has also
been used by Weisskopf and Ewing, ' namely
that the probability of formation of the com-
pound nucleus is inversely proportional to the
square of the irregular solution of the wave
equation in the Coulomb field. For r & ro this
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solution behaves as
r'o

~@~
—r(r) exp Jl ~4(p) ~

ldp
)\

which makes the formation probability propor-
tional to

~
4(R) ~" e 'o= xe 'o, in agreement with

our result. Previously, it had been supposed
that the formation probability was directly
proportional to the square of the regular solution,
i.e. (1/x)e '-o, or else that it contained only"
the exponential e '~ without any power of K.

However, it must be remembered that the
variation of V,„iwith r invalidates our Eq. (38b)
for small K for which the factor K would be most
important. We shall show in the next section
that, because of the variation of U,„1, g does not
actually go to zero for S"=0 and then rise again

to a secondary maximum for negative S", but
that it is of the order unity for 5'= 0 and
decreases monoton ical 1y with decreasing
"I herefore the simple exponential e ' is probably
a better approximation to g than the complete
formula (38b), at least as long as the factor
2xK6 is smaller than unity.

For very high barrier (W large and negative),
(38b) decreases faster than the penetrability
e 'o, because of the denominator (xb)!'. This
result is spurious because it depends essentially
on the assumption that U,„& is constant every-
where. A more appropriate treatment of the
case of large negative W can be made on the
basis of the WKB which in this case is a very
good approximation.

The WKB gives for all r &ro,

r

u =c( V F io—) "e—xp
—(2m) 'h 'Jl ( V(p) E i(po)—)tdp-

r p

(39)

if we write for brevity V instead of V,„i.Then the wave function at large distances (r»ro, V«E) is

u=2cE l cos (2mE/h')'*r. (39a)

It will be most convenient to normalize to unit incident current, which means c=(m/2)'. The
total absorption per second can in our case be most easily calculated from the definition (1) of o;
we have

l =(2/h)J" ~u(r) l, 'a(r)«.
0

If we insert (13) for o and (39) for u, and neglect a'- compared with (V—F)' in u, we obtain

CO

dr exp
(2m) l(V —E) tb' ~o

r R(—2m) '

+2 — ( V—F) '-dp

b
(40a)

The exponential in (40a) has a maximum for r=r, where ri is defined by

V(ri) —E, =h'/8mb'.

In order to justify our neglect of o. compared with V E, in the integrand o—f (40a), we must require
that ri be appreciably greater than R, in other words that W(R) &h2/8mb' For our v.alue b=0.86
X 10 "cm, we have h'/8riib' = 7 1Vlev for a proton or neutron. We note that the condition W& h'/8mb'
is equivalent to xb & —', ; for smaller values of ~b, (38b) can be used, and the (xb)! in that formula can
be replaced by unity.

If W&h'/8mb', there will be a certain ri & R for which (40b) is fulfilled. If we expand the exponent
in (40a) in powers of r ri up to the quad—ratic terms and integrate, we obtain, remembering (40b)

(2iih'l ' f'd Vl (2m) '* 1"~ r i —R
exp -26+2 ' (V—F)'«-———

( mba) t. dr)
(4!)

'" K. J. Konopinski and H. A. Bethe, Phys. Rev. 54, 130 (1938).
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It can easily be seen that the exponential in (41) is greater than e '~. The difference arises from the
fact that the main absorption occurs not at the boundary of the nucleus but farther out (at r&)

because the square of the wave function, ~u~', increases faster from R to r& than o. decreases, a
behavior similar to the Oppenheimer-Phillips process. The effect depends, of course, essentially
on the exponential decrease of 0 outside the nucleus; if 0. decreased more strongly, e.g. , as e &" ")',
the main absorption would always be in the neighborhood of the nucleus.

Because of its dependence on the model, the deviation of g from the simple exponential e '~

should not be taken too seriously; but apart from this, the deviation is never appreciable compared
with e '0 itself. If we assume V F& to—vary as 1/r the additional terms in the exponent in (41)
have the value

where
v~= (R/b)( '* —1)'

v = W/(b'/Smb')

(41a)

(41b)

If V Fvaries —as 1/r', we have instead of (41a)

yg ——(R/b) (-', v'* log v —v*'+1). (41c)

Both (41a) and (41c) are relatively small. E.g. , for v=2, i.e. W=14 Mev, we have y&
——0.17R/b

and y2
——0 077R/. b Since. R/b is only 10 for the heaviest nuclei, the exponential differs from e '0

only by a factor e" or e' ", respectively, which is not important compared with the large factor
e '~. It is very unlikely that the additional terms in the exponential in (41) can ever be tested
experimentally. Thus far, no experiments at all have been made in which the energy of the incident
particle was more than A'/Smb' =7 Mev below the top of the potential barrier.

Summarizing, we find that (38b) is valid for moderate negative energies, perhaps from xb= 1/2s.
to xb= ', or W= —-0.7 to —7 Mev. The value of I' for greater

~
W{ is of no practical importance and

depends on the exact behavior of o. as a function of r.
Our formulae for g can, of course, be used both to obtain the total cross section for all possible

reactions in the case of overlapping levels, according to (20), and also the average width of resonance
levels if such exist, according to (26).

The elastic scattering can be obtained from the behavior of the wave function for large r. It
. must be remembered, of course, that the Coulomb potential in the case of charged particles produces
scattering by itself. Let b be the phase shift due to the Coulomb potential for a given l (6=0 for
neutrons), then the actual scattered amplitude for this l is

F,= ——',lX{e"}I ie ~"e ' —( —Kb)!/(~b)!]—1}(2l+1)). (42)

Terms of order e 40 have been neglected. The differential scattering cross section per unit solid
angle is { Q~F~PI(cos 6) {'.The term proportional to e '~ in (42) represents the nuclear scattering.
For neutrons, this term alone exists, and we have

F~ —(l+ ', )Xe 'Ge ——~'"-'( —xb)!/(r&b)! (42a)

(The potential V. & for neutrons is simply the
centrifugal potential, 5'l(l+1)/2mr'. ) The ex-
pression (42a) is nearly real for small ~b and
corresponds then to the potential scat tering
found for small positive W ((6B).The real part
decreases in relative importance as ~b increases
and reaches zero for ~b=-,'. Then there remains
only the imaginary part which is required by
the theorem of Bohr, Peierls and Placzek, and

is equal to
Fl ',i (I+,' )XI. ——--(42b)

For xb)-'„(42a) is no longer valid, for the
same reasons as (38). However, the WKB is
then very nearly valid; and it can easily be
shown that I'"t, is purely imaginary when terms of
the order o'/(V —8)' are neglected } cf. above,
Eq. (40) lf.].Therefore (42b) remains valid; the
elastic scattering at very large negative kinetic
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energies, just as at large positive energies, is only
the amount necessary because of the existence of
inelastic processes according to the optical
theorem.

$8. SPATIAL VARIATION OF TFIE

EXTERNAL POTENTIAL

With the exception of the case of neutrons of
zero orbital momentum, the extranuclear po-
tential V,„z changes (decreases) with r. There-
fore, if W is very small, U, &

—8 will change by
its own amount and more over a very short
distance. In this case, it is not justified to
consider U,„t,—B as constant over the range of
action of the nuclear absorption coefficient 0., as
has been done in )4—7. It will, however, be
sufhcient to consider U,„~—B as changing
linearly with r. We shall put

(2m/Iz') (8—V,„z) = Iz'+A (r —R'), (43)

where A is a positive constant measuring the

force on the particle,

A = —(2m/fi') (d V/dr) zz, (43a)

d'u/dr'+ [fz' +A (r -R') ju —= 0. (44)

Here we introduce the abbreviation

x = r —R'+k'/A. (44a)

The solution of (44) is well known and has been
investigated in detail by Kramers" in connection
with the WKB method. The regular solution
which vanishes for large negative x and is
identical with the solution investigated by
Kramers, is given by

and R' is the radius of the hard sphere which is
equivalent to the nucleus with regard to the
potential scattering of slow neutrons ()68). It is
more convenient to use R' than R for our pur-
pose. (/rz'/2m)k' is the kinetic energy at r =R'.

At large distances from the nucleus, o. is
negligible and we have

v = (zrx) '
j Jz/3( A 'x*)+J z/g( A 'x') },

where J is the Bessel function. The function v is so normalized as to go over, for large x, into the
WKB solution

v~(Ax)-l cos (-";A ~xl ——,v). (45a)

For negative x, the analytical continuation of (45) is

v = 2(~
I
x

I /3) '*e' '/sIIz/3(') (-',A *il x
I
').

The irregular solution of (44) which is shifted in phase by zr/2 against v, is the function

w =3 l(7rx) i
f J z/3(-', A ~x**)—J,/, (-', A~x:) }, (46)

whose asymptotic behavior for large x is

w~(Ax)-i cos (-', A ~xi+-,'-zr).

The general solution may be written

Then the ratio of the amplitude of the outgoing to that of the incident wave is

(47)

(47a)

the reflection coefficient is R=
I
PI' and the scattered amplitude is proportional to P —1. Therefore

we need only determine a. Inserting (45), (46), and omitting a constant factor, we may write (47)
in the form

u~x'*[(1+a+3)J &/3( 23AIx')+(1 —n+3) J&/8(-', A~x')]. (48)

We shall be interested in the behavior of u for r =R', and small k', i.e. , for small x [cf. Eq. (44a)].
"H. A. Kramers, Zeits. f. Physik 39, 828 (j.926).
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In this case we have
x"J y/p(-', A'x'') =3~A l( —-') ' '(1 —pAx'+ ),

x~Jy/p(pA'x') =3 "A''(p)! x(1 —ygAx +' ' ').
(48a)

(48b)

Inserting in (48) and leaving out a constant factor, we find

1 —m+3 31 (—)!
u 1 ——,Ax'+ . + —A ~x(1 ——,', Ax'+ ).

1 +c/+3 2 (—) !
(49)

It will be convenient to use the abbreviation

~ = 2 3 ' (—') !/(-') != 1.372.

Kramers has given a table of the regular solution v for small values of &=A~x. By numerical
calculation, it can be shown that this solution differs by only 4-, percent from the WKB value at
&=+1, and by 8 percent at g= —1. It will therefore be necessary to use the more complicated
theory of this section only if

~ &
~

(1 at the boundary of the nucleus (r =R ).This condition is equiva-
lent to

fk'/ &A-:

j
Z —V,„t,(R')

f
((b'/2nz) l(d V/dr) i.

(50)

(50a)

For
~ & ~

(1, the expressions given in (48a, b) for the J's are accurate to —', and —', percent, respectively.
Our problem is now to solve the Schrodinger equation including o., i.e.

d Q

+(Ax+—e &" s&/P)u=0.
df b2

(51)

This can, of course, not be done exactly. However, we can use the fact that k' is small to get a good
approximation. In the region where 0. is important, Ax will be relatively small and it will be sufficient
to take it into account in first approximation. The solution obtained in this way will, for large r,
go over automatically into the solution of the equation without a, neglecting terms in A' in the
latter. As pointed out in the last paragraph, this is justified for all cases in which the variation of
V, ~ with r is at all important.

Equation (51) with A =0 has the solution (cf. f4)

2II (n(2fg'e —(r—2)/2P)

the factor 2 being introduced for convenience in the following. For large r, (52) behaves as

up~ —(2i/7r) (r R')/b-
-With the usual method, we obtain between I and uo the relation

(52)

(52a)

updu/dr —udup/dr=, l LA(p R )+k'3u(&)up(&)d&. (53)

Here it has been assumed that u as well as No decreases towards small r inside the nucleus. In first
approximation, we may put u= No in the integral. Then the integration is elementary for values of r
large enough so that (52a) is valid. Only the integration constant cannot be determined in an ele-
mentary way; it must be a linear function of A and O'. The coefficient of k' can be determined by
analytical integration, that of A was found by numerical integration. Neglecting terms of order
e '" ~'" and using the abbreviation

y = (r —R')/b, (53a)
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we obtain the result:

with
u = 1 —2iy/v +k'b'(Xy —-,'-y'+ (i/3v) y') +Ah'(py ——,'y'+ (i/6 v) y')

32( 1 1

~

—-i=1.2V8 —0.523i,
3v-' E 2' 3' ) 6

(54)

p = 1.339—2.034i. (54b)

We may now compare (49) with (54). Remembering that [cf. Eqs. (44a), (53a)]

x =by+&'/A
and introducing the abbreviations

a=A'b,

v=k'/A&
we obtain

1 —a+3 Zi/7ra+—pa'+ Xav+ ,'v'+iv'/—3ma.
K

1+n+3 1+2~v/7ra —pa'v —Xav'- —-', v' iv'/—6va

(55)

(55a)

(55b)

(56)

Let us denote numerator and denominator of the right-hand side by v and p, respectively; then the
reflected amplitude P defined in (47a) is

p(v'3+i) +&(v'~ —i)

p(V 3 —i) +&(v'3+i)
(56a)

Of the two constants v and a occurring in (56), v lies between the limits +1 and —1, because v is

simply the value of A&x for r=R', and because the WKB is valid when the absolute value of Alx is.
greater than 1 [cf. Fq. (50)].The constant a is always positive and given by [cf. Eqs. (43a), (55a) ]

We have
a' = 2mb'k '

~

d V/dr
~

i~ .

V(R') =Ze'/R'+0'l(l+1) /2mR",

V/R' ~&
I
d V/dr I ~&2 V/R'.

(57)

(57a)

(57b)

Since we are interested in the case of small
kinetic energy U—8, we may put

potential barrier, the numerator and denomi-
nator of (56) reduce to

[d V/dr
(
= &E/R', (57c) v = 2i~/v. a—+Kpa'; p = 1. (51)

where g = 2 for neutrons, q = i for charged par-
ticles with /=0, and g between i and 2 for
charged particles with /40. Therefore (57)
becomes

a = (b/X) l(vb/R') '. (58)

For atomic weights between i0 and 240, the last
factor is between 0.8 and 0.45. The erst factor,
for b=0.86X10 '~, is equal to (E/28 Mev)&, i.e. ,

0.7 for i0 Mev and 0.33 for i Mev. Therefore a is
in general less than one, and may vary between
about O. i5 and 0.5.

For v=0, i.e. when the energy of the incident
particle is exactly equal to the height of the

In Table I we give the value of P and of the
formation probability, )=1—~P~', for a few

values of a in the important region. It is seen that
P is of the order unity and changes only slightly
with a, in the expected direction, i.e. , increasing
with increasing a. This shows that, due to the
variation of V with r, the point v=0 ceases to
be a singular point and is characterized by a
fairly large formation probability, as has been
anticipated in f7. From the value of P, the
elastic scattering can be found [cf. Eq. (22)].

For v&0, Eq. (56) is more complicated. How-

ever, it can easily be seen that ~P ~

decreases and
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small
0.2
0.3
0.4
0.5

TABLE I. Changing Potential, S'=0.

—,', ——,i+3—&.&46ac,'Q3 —i)
0.369—0.570 i
0.350—0.467 i
0.356—0.404 i
0.382 —0.369i

3.97a
0.539
0.659
0.710
0.718

deuteron, e.g. , for an exponential potential

V (r) =Be

(60) reduces to
o. , = (16v/3)A(Bb'/kv)'. (60b)

According to the theory of the deuteron, with
6=0.86)&10 "cm,

therefore f increases with increasing v, as it
should be. Computations for v/0 are in progress
at the University of Rochester.

Bb' =2.235'/m. (60c)

Considering that for the singlet potential Bb' is
only about 1.31k'/m, we obtain

ft9. VERY HIGH ENERGY
o. t ——4 X'A 5.5 (61)

For very high energy, the formalism of the
compound nucleus breaks down. Instead, the
Born approximation is applicable. Because of its
simplicity, this method permits a comparison
between our theory and general nuclear theory.
Neglecting the correlations between the various
particles in the nucleus, the total cross section
for all processes is from general nuclear theory:

o, = (A/2vk'v')

X~I gdqiJl V„(r) exp [iII r]dry', (60)
p

where U (r) is the nuclear interaction potential
as a function of the distance r between the
interacting particles, kq is the momentum change
and v the initial velocity of the incident particle
and A is the number of particles in the nucleus.

In (60), we have assumed that the interaction
of very fast nuclear particles can still be de-
scribed by a potential. In the following, we shall
even assume that this potential V is the same
as for the usual energies of a few Mev. There is
no justification for such an assumption. How-
ever, we are not interested in the actual behavior
of high energy nuclear particles but rather in
the mathematical problem of the behavior of
fast particles which have the interaction U .
From the solution of this problem which can be
found because of its mathematical simplicity, we
can draw conclusions about the problem which
forms the subject of this paper, vis. the behavior
of particles of moderate energy having an inter-
action V with the nucleus.

The integral in (60) reduces to a quantity
closely related to the binding energy of the

where P is the wave-length of the incident
particle. This approximation is applicable when
o&«mR' Put. ting (cf. reference 8)

R=roAI, ro=1.3„"10—"cm, (61a)

we obtain for the' critical wave-length, at which
o =7IR

X.=ro/(2 5.5'Al) =2.8„'10 "'A —l cm. (61b)

For 3 =100, this is 1.3)&10 " cm and corre-
sponds to a neutron or proton of 1200 Mev
energy. The Born approximation is restricted to
energies higher than this.

From our theory of the absorption potential,
[cf. Eq. (1)] we have in the case of the Born
approximation

2op «
ot=

Av 3

where o.
p is the absorption potential inside the

nucleus. Comparing (62) with (61), (61a), we
find that in the region of the Born approximation
we must have

3 A2

op= — —5.5X =140'A Mev,
2 mfp

(62a)

if X is nIeasured in 10 " cm. 'I'his shows (1)
that o.o is proportional to 1/v and thus changes
only slowly with the energy of the incident
particle, (2) that o.o depends on,

~

V„~ ' [cf. Eq.
(60)] rather than on the average of U, (3) that
oo is very large. Point (1) has been assumed
when o was introduced in )2 and is essential in
order to give validity to the dependence of the
formation probability g on the energy as derived
in this paper. Point (2) is important in order to
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justify the neglect of the average nuclear poten-
tial V compared to the absorption potential o.

(cf. the beginning of f4); the attractive and
repulsive interactions existing between particles
of different relative spin and charge will average
out in U but will all give a positive contribution
to o. Finally (3) the magnitude of o.o may not
be quite as large as would follow from (62a) for
moderate energies (l( = 1 —5 X 10 "cm, Z = 20 —1

Mev) because (62a) has only been proved for
l((l(, [cf. Eq. (61b)j. For l(, =1 3X10 " cm,
we have o.o = i8 Mev, and it seems safe to
assume that ao is greater than this value for
moderate energies.

In our theory, it is quite easy to treat the
transition from moderate to high energies. It is
only necessary to consider the finite size of the
nucleus and to make the wave function n equal
to zero at r =0. Since we can certainly apply the
WKB for these energies, we obtain

r

u(r) =exp
~

—i(2m)i(i ' ' (I'-' —V+i(J)'dp
~J, )

(10. INFLUENCE OF NUCLEAR POTENTIAL

Although we have given arguments for the
assumption that the average nuclear potential
U is small compared with the absorption
potential tr (beginning of )4), we shall investigate
the inHuence on our results of a nonvanishing
V„, attractive or repulsive. We shall assume that
V is proportional to o., vis.

V„=neer.

Then the solution (16) of the Schrodinger equa-
tion is to be replaced by

u = cIIo;kk(" (2 (i ()()—ix) . (65a)

For small argument x, this becomes [cf. Eq.
(16b) 3

u =x" e*r'(i n) —"x-''p!/—( p-)!, (65b—)

so that (17) is replaced by

g
—ik(r —lt) eik(r —R)

Xe—(a+2 crc tcn a)kk+2(C —tkk lcg (1+a ) (66)

and the formation probability (18) by

e
—2(or+2 are tun u)kb (66a)—exp

~
i(2 m)*' k' (Ir- —U+io)'dp ~. (63).

)o The main change is the appearance of
~+2 arc tan o, , instead of 7r, in the exponent.
For an attractive potential, e(0 and therefore
the sticking probability is decreased. On the
other hand, a repulsive nuclear potential will

serve to increase f. The change of g will be only
slight if n is small, i.e. if the nuclear potential is
smaller than the absorption potential. Only for

~

a
~

&& 1 and (). negative, will the formation
probability be very much less than for +=0.
Then we have practically only an attractive
potential, and we consequently get more elastic
scattering and less absorption, A large repulsive
potential, on the other hand, increases the
sticking probabil ity for slow neutrons by a
factor of two. Neither case is of practical im-

portancee.

The elastic scattering is modified by the term
—ikb log (1+().') in the exponential in (65) which

corresponds to an increase of the radius of the
effective hard sphere by ob log (1+n'), both for
repulsive and attractive potential.
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Assuming a small compared with 8 everywhere,
and neglecting o', we obtain for large r:

ml (." o (p)—exp
~

ikr+i&- dp ), (63a)
V2»o (&—U(p))*'

where 8 is the phase shift. Taking o. =o.o for
r~&R and o-=0 for r)R, and taking for V the
pure centrifugal potential /z'I(I+1)/2mr', we find

( 4&o
(&' —t 't ') ")I

hv
(63b)

Summing over all I from 0 to I('./l(, the total
cross section is then

1 —e '(1+x)
o 7l'R 1 2

X2
(64)

with
(64a)x = 4~oIt.'/kv.

m* !" ~(p)
u(r) =exp

~

ikr i 6+ —
~

—— —dp
~

V25 ~o (E U(p))i—


