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The indices I and 2 refer to the electron and
neutrino and u, v, m, 8 are, respectively, the four-
component Dirac amplitude, velocity, mass and
energy of the corresponding particle. 01 and 02
can be any operators of the Dirac type, e, P, e or
any product. The trace vanishes for odd powers
of any Dirac operators and is 4 for a constant.

Using the commutation rules for a, p we find
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The mass terms are zero when the neutrino
mass is assumed to be zero. For the decay of the
meson, electron and neutrino have velocities c
in opposite directions, therefore vi v2/c'= —1;
and in averaging over all directions v„t„/c'
= —1/3. For the P-decay there is no correlation
between the direction of electron and neutrino
velocities and all products vt V2 and vl.v2, are
zero in the directional average. A11 sums give 1
therefore for p-decay.
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The problem of hindered rotation in methyl alcohol is
discussed in relation to a model in which a rigid OH bar
may rotate about the axis of a rigid pyramid representing
the CH3 group under the action of a hindering potential
of the form V= —,'II{1—cos3x). The wave equation is
separated into a Mathieu equation governing the internal
motion and a symmetrical rotator equation which describes
the rotation of the whole molecule. The Mathieu functions,
because of a coupling between the internal motion and the
rotation of the entire system, obey quasi-periodic boundary
conditions. A qualitative treatment is given of the behavior
of the energy levels as the barrier height II, is raised from
zero to infinity, An exact method of calculating the energy
levels, the wave functions, and the transition probabilities
is devised which involves finding the roots of certain
continued fractions. It is shown that the levels lying well
below the barrier, which may be described as vibrational
levels, are each split into three components v hose spread

is dependent upon the. penetrability of the barrier. The
positions of the three components of a level are periodic
functions of the variable o.=EC~jC (Cl and C are moments
Qf inertia and X is a quantum number having integral
values. ) Examining levels in the order of increasing
energy, the levels which lie above the barrier rapidly take
on the character of states found in free rotation. A set of
numerical calculations of the levels and of the resulting
spectrum are made with a barrier height of 770 cm '.
The qualitative features of the theoretical spectrum appear
to be in agreement with the observations of Borden and
Barker and those of Lawson and Randall, but a comparison
indicates that the barrier height is probably lower, about
470+40 cm '. Further experimental work, particularly in
the far infra-red, should determine the barrier height
more exactly in which case better correlation between the
predicted and measured spectra may be expected.

hindered rotation in the ethane molecule. ' TheINTRODUCTION

URING the past few years more than a 'E. Teller and B. Topley, J. Chem. Soc. 885 (1935);
ciozen papers have appeared ciealing with J. B. Howard, J. Chem. Phys. 5, 442, 451 (1937); E. B.
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interest aroused in this subject has led to the
experimental investigations of Borden and
Barker and of Lawson and Randall' on methyl
alcohol. They have obtained data on that portion
of the infra-red absorption spectrum which is due
to changes in the internal rotation of the mole-
cule. Methyl alcohol was chosen because it is one
of the simplest molecules in which the frequencies
associated with hindered rotation are active in
infra-red absorption. It is the purpose of this
paper to present a detailed study of hindered
rotation in methyl alcohol and to make a pre-
liminary comparison of the results of this
formulation with the existing experimental data.

In methyl alcohol, not only does the whole
molecule rotate in space, but the OH bar and the
CH3 pyramid also rotate with respect to one
another about the C —0 bond. Available evi-
dence indicates this internal rotation is not free,
but that there exists an interaction between the
bar and the pyramid which hinders this rotation.
It ie evident that any hindering potential must
have the threefold symmetry of the CH3 group.

MoDEL CHosEN

The computations made in this paper are
based upon a model which has been used to
represent the methyl alcohol molecule.

First, the model molecule will be taken to
consist of a rigid OH bar and a rigid CH3
pyramid; the only internal degree of freedom
allowed in the model will be a rotation of the OH
bar and the CH3 group with respect to one
another about the axis of the molecule. This
assumption will not introduce any large errors
into these considerations because, while the
fundamental frequency associated with hindered
rotation appears at 270 cm ', all of the other
fundamental vibrational frequencies appear above
850 cm '. Thus, in a normal coordinate treatment,
if those force constants which are not associated
with internal rotation are increased to infinity
(thereby making the molecule rigid) the hindered
rotation will not be materially affected, because
of the initial lack of resonance.

Wilson, Jr. , J. Chem, Phys. 6, 740 (1938);F. Stitt, J.Chem.
Phys. 7, 297 (1939).These papers give references to others
which have appeared on this problem.

'A. Borden and E. F. Barker, J. Chem. Phys. 6, 553
(1939); J. R. Lawson, Thesis; J. R. Lawson and H, M.
Randall (to appear shortly).

FIG. i. Numerical val-
ues of moments of inertia
and the molecular dimen-
sions. Estimates made by
Borden and Barker, refer-
ence 2.
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Second, the hindering potential in the model
molecule will be taken to be:

' D. M. Dennison and G. E. Uhlenbeck, Phys. Rev. 41,
313 (1932).

U=-,'FI{1—cos 3xI,

where II is the height of the barrier and x is the
angle measuring the rotation of the OH bar with
respect to the CH3 pyramid. The work of
Dennison and Uhlenbeck' on the double minima
problem has shown that the results of such a
calculation as is contemplated here are very little
influenced by the exact form of the potential
used, but depend considerably on the area under
the potential barrier. The above potential func-
tion is one of the simplest having the desired
flexibility and the necessary symmetry properties.

Third, the molecule will he taken to be a
symmetric rotator; it will be assumed that the
principal C axis lies along the geometric axis of
the molecule, and that the center of gravity lies
on this axis. The slight asymmetry of the actual
methyl alcohol molecule is due to the relatively
light hydrogen atom in the OH bar. Borden and
Barker have shown that the moments of inertia
A and 8 dier in methyl alcohol by 4 percent
from their average value. This diHerence will

produce practically unobservable changes in the
J and X spacings of the perpendicular bands
resulting from internal rotation, these changes
amounting to 0.06 cm ' for both J and X
spacings. The numerical values of the moments
of inertia and of the molecular dimensions which
we shall use are based on the plausible estimates
made by Borden and Barker and are indicated
in Fig. 1.

In the next sections the problem will be set up
from our model of the molecule. The wave
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equation will be obtained and separated; finally we will examine the boundary conditions which
the various portions of the wave function must satisfy.

THE WAvE EQUATIQN

In order to obtain the wave equation describing the rotation and internal motion of this model
molecule, it is necessary to know the classical formulae for the kinetic and potential energies of the
system. The kinetic energy associated with the precession of our model, written in terms of the usual
Euler angles, is just that of a symmetric rotator;

2 T~ =A {tl'+P~ sin~ 0},

where A is the moment of inertia of the entire molecule about an axis perpendicular to the axis of the
molecule. If C~ is the moment of inertia of the OH bar about the axis of the molecule and C2 is the
moment of inertia of the CH3 group about this same axis, the portion of the kinetic energy associated
with rotations about the axis of the model is:

2 T~, Jrm
——C& {P cos 0+$1}'+ C2 {lP cos +Q2 }

where @& and p2 describe the position of the OH bar and the CH3 pyramid, respectively, with regard
to rotations around the axis of the model. The total kinetic energy is the sum of these two energies:

I

2 T=A {8'+ P' sin' 8}+C~ {g cos 8+&~ }'+ C2 {P cos 0+ Qg }'.

The wave equation can now be written down at once. The procedure is well known and is equivalent
to the writing out of the Laplacian in a curvilinear coordinate system for which the metric is given by
2T. Inserting the hindering potential, the result is:

1 8 Bu} 1 8'u 1 cos' 8 8'u 1 cos' 0 8'u—sin 0—+ — + —+ + +
A sin 8 Bg Bg!, A sin' 88$ Cq A sin 8 Bqp Cq A sin 8 8@

2 cos g g'u g'u 2 cos g g'u 2 H
+ + +—W ——(1 —cos 3{@,—g, }) u=0.

A sin' 8 BQB&~ Bpit$2 A sin 8 8&q8$2 li' 2

This equation is the same as that used by H. H. Nielsen in his discussion of the torsion oscillator. In
his paper Nielsen carries out the separation of the wave equation. We will merely describe his results.
The coordinates:

y = (C\(j)f+CQ$9)/C, and x = @i—0 2,

in which C = C&+ C2, are introduced into the equation. It is then observed that p and f are ignorable
coordinates and the diff'erential equation which results from the use of this information is seen to be
separable into an equation involving x alone and an equation involving 8 only. Writing out the
results:

u = (1/2x) e'~~e'~&0(0) DR(x),

where 0 and OR satisfy the equations:

1 d do—sin 0
sin' 0 d8 d9

{M Ecos 8}'—J(1+1)+X—' 8=0,
sin' 8

d' OR/dx'+ {R+Scos3x}OR=0. (3)

4 H. H. Nielsen, Phys. Rev. 40, 445 (1932).
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In these equations:

8"=8' +Wp,
or

(1/A) [J(J+1)—X']= 2 We/Ii' —X' ~ C

CgC2 2 II
5=

C 5'2
CgCp 2 I7

R= —lV ——
C fi' 2

From the form of these equations it is evident that the motion can be described as the rotation of
the whole top, together with an internal motion of the two ends of the molecule relative to one
another. The whole top motion is given by the symmetric top equations in @, P and 8 while the
internal motion is described by the l&lathieu equation in x.

BOUNDARY CONDITIONS

We have seen that the wave function for the
problem is:

u = (1/27r) e'~i'e""&O(0) BTt(x)

Since the wave function must be single valued in

f, it is clear that M must be an integer. The
solutions must also be periodic in 8 with period
2x. Let us now consider the boundary conditions
obeyed by p and x. These coordinates describe
the rotation of the whole top about the axis of
the molecule and the internal motion which
takes place about the same axis; they have been
chosen in a way which avoids a cross product
term in the kinetic energy between @ and i. The
coupling, however, still exists and is now ap-
parent in the boundary conditions. We will next
examine these boundary conditions. Floquet' has
shown that solutions of Mathieu equations can
be written in the form:

01t(x) =e' *P(x)

where P(x) is periodic with period 2~ and the
coefficient io. in the exponential has been chosen
imaginary so that the wave function will be
everywhere finite. We now make the following
transformations on the entire wave function:

Qz~Qz+ 2~ny, $2~$2+ 2&n2,

where n~ and n2 are integers. It is clear that since
the physical system remains unchanged under
these transformations, the wave function de-
scribing the system also remains unchanged.
Hence:

u(@i@2)=u(pi+2xni, pg+2m-n p)

' E. T. Whittaker and G. N. Watson, Modern Analysis,
fourth edition, p. 412.

Considering only those portions of the wave
function which contain p~ and p2, this means
that:

Thus:
X(niCi+n2Cu) /C+ 0 (ni —nz) =n,

where n is an integer. This equation can only
hold for all n~ and n2 if X is an integer and if
O. =s —XCi/C where s is an integer whose value
depends only on the definition of 0-. It is conve-
nient to let s=0 and thus, o = —KCi/C. The
internal wave function is therefore:

3R(x) =P(x) exp [ iXC&—x/C] (4)

and must obey the following boundary condition:

3R(x+2ir) = 5K(x) exp [—2iriKC, /C].

Thus the coupling between the @ and x motions
appears through the dependence of the boundary
conditions of the internal motion on the angular
momentum of the whole rotator about the axis
of the molecule as given by K. The apparent
asymmetry in the moments of inertia C& and C&

is merely a result of the particular way in which
the equations have been written here.

In the next sections of the paper we will devote
most of our attention to a consideration of the
internal motion. We will only mention the whole

rotator briefly when we wish to obtain certain
rotational spacings in the various types of bands
which occur. We will first consider the internal
motion in the limiting case in which the two
ends of the molecule rotate freely with respect to
one another. This will be followed with a dis-

cussion of the other limiting case in which the bar

eiKpeiazp (x) —eiKi'eiaxp(x)

Xexp [2iriIX(niCi+n2C~)/C+~(ni —n2)]i
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and the pyramid are tightly bound together and
can only vibrate slightly against one another.
The internal energy levels are then qualitatively
connected across from the free to the bound case
by using symmetry considerations. Finally exact
calculations suitable to the intermediate case are
made.

FREE CAsE

Let us first consider the internal motion when
the internal energy is very much greater than the
hindering potential (W»H). The differential
equation for the internal motion bec'omes:

C'mt/Ch'y RslT, =0
Hence:

DID = (1/2~) l exp [aiR'*x].

It is evident that:

P(x) =(1/2h)l exp [imx],

where m is an integer and:

OR= (1/2h)'* exp [i(m —XCq/C)x].

Comparing the two 5K's:

~Rl = (m —XC~/C).

The value of the internal energy resulting from
this relation is:

but, not upon that of the CH3 pyramid, it is
clear that the quantum number m must change
while (X—m) does not.

The appearance of the spectrum for the free
case has been sketched by Borden and Barker
and should consist of a set of bands separated by
h/4~'cC~ which for methyl alcohol is about
39 cm '. Each set of bands is composed of lines
with a spacing of h/4m'cA or about 1.57 cm '.
This last spacing is not affected by the internal
rotation and is associated with the precession of
the molecule. It will be shown that even in the
general case, bands of the "free" type will appear
in the short wave-length end of the internal
rotation spectrum.

BQUND CAsE

We will next consider the case where the
internal energy is much less than the barrier
height (W «II/2). For this case the internal
motion is a torsional oscillation of the OH bar
and the CHs pyramid with respect to one another,
the two ends rotating against one another through
small arcs about the axis of the molecule in the
region of one of the potential minima.

We will first consider vibrations about the
minimum at x equals zero. Expanding the
hindering potential about this point in a Taylor's
series we obtain:

W. =—+—
(

m —R'—f.
2 2 CgC2& C)

Note that if both E and m change sign W
remains unchanged. That is, if we reverse the
direction of rotation of the whole top and of the
internal motion, the internal energy must remain
invariant.

The selection rules for the free case have been
given by Borden and Barker and are, 6J=0, ~1,
Am= ~1andh(X —m) =0.The physical meaning
of these rules is interesting. XA denotes the
component of the total angular momentum of the
system along the axis of the molecule and is
composed of two parts; mk, the angular mo-
mentum of the OH bar and (X—m) 5 the angular
momentum of the CH3 pyramid. Since the
component of the electric moment perpendicular
to the axis, which is responsible for these transi-
tions, depends upon the rotation of the OH bar

C'Dlt/Ch'+ I~ —g'x'I m= 0, —-',-~ & x & —',~,

where:
2 CiC2 9CgC2II

X=— W„P=
C 2A'C

We have seen that:

zt(x) =P(x) exp [—iX(C&/C)x].

For small values of E and for. large values of the
barrier height the motion will take place within
such a small range of x that the exponential will
be practically constant in this. region. On the
other hand P(x) will vary rapidly in this region.
We can therefore insert for the exponential, the
value which it has at x=o. Thus:

OR(x) =P(x) - 3~7r-x- 3~..
If the barriers are su%ciently high and wide, the
energies and wave functions will be just those of
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the linear harmonic oscillator:

W.„=3k(CH/2C, C,)(n+ -,'),
(6)

OR„(x) =N„exp [——,'$x']H„(&~x), —,'m ~x~-', x-.

is the center of positive and negative branches
whose lines are spaced h/4''cA = 1.57 cm '.
These latter lines would no doubt blur together
to form a background of absorption.

II„(fix) is the nth Hermite polynomial and X„is
the normalization factor. There will be two other
states having this same energy; they are the
states in which the system is executing an
exactly similar vibration about the minimum at
2m-/3 or the one at 4m. /3. The wave functions will
be just the one given above except that they will
be centered at a different minimum and will

have a phase factor characteristic of that mini-
mum. For example, the harmonic oscillator
function describing vibrations about the mini-
mum at 2~/3 will be written in terms of the
variable (x—2'/3) and will be multiplied by the
phase factor exp [ 3xiE—Cr-/C].

The three wave functions described above are
not the correct zeroth-order wave functions for
our threefold hindering potential. The correct
linear combinations of these wave functions can
be found from group theory or by performing a
degenerate perturbation calculation. Let us con-
sider, for a given X, the three wave functions of
the degenerate states whose energy is bv, (n+-', ).
If we call the harmonic oscillator wave functions
centered about 0, 2~/3, 4~/3 simply H„'(x),
H '(x), H„'(x), respectively, and if we write the
phase factor for all of these wave functions as a
common factor, we find for the correct zeroth-
order wave functions:

CONNECTION BETWEEN THE FREE AND

BQUND CAsEs

The qualitative behavior of the energy levels as
the barrier height is gradually raised from zero to
infinity may be inferred from the following
arguments. The presence of the three identical
hydrogen nuclei in the CH3 pyramid leads to the
well-known result that the levels of the system
may be divided into the symmetry classes n, p
and (y8). A wave function belonging to the n
class is invariant under an interchange of any
two of the hydrogen nuclei while a p-wave
function changes sign under this operation. The
degenerate classes (y8) always occur together and
the levels cannot be separated by any order of
perturbation. The symmetry class of a wave
function is of course not altered by changing the
barrier height. We now determine the symmetries
of the wave functions of the free rotator and also
those of the bound oscillator. The connections
between the two may then be made uniquely for
it has been shown by Strutt' that, for a given
o (or X), the solutions of the Mathieu equation
which are subject to the boundary condition
OR(x+2m) =e' "OR(x) can be ordered by the
number of zeros which the wave functions possess
in the interval 0 to 2z. This means that the levels
will not cross as we raise the barrier height.

The symmetry characters of the wave functions
of the free internal rotator are easily found by
adapting the arguments employed in finding the
symmetries of the rotating molecule YX3 to our
case. ' The significant point is that the symmetry
is determined by the quantum number (X—m)
rather than by X since it is the former which
represents the rotation of the CH3 group. Thus if
(E—m) =0 the level is either n or P depending
upon whether the total angular momentum
number I is even or odd. If (X nz) is no—t a
multiple of 3, we have the degenerate pair (p6)
while if (X—m) is a multiple of 3 there are two
levels one of which is a and the other P.

OR„= (1/3) l exp [ iXCqx/C]—
X[H '+IV '+II '],

OR„'=(1/2)l exp [ iKC,x/C][II ' ——H ']
A perturbation treatment shows that if X=0 the
threefold potential will cause the triply degener-
ate state to split into two states, the c state
splitting away from the other two. If %&0, in
general, all three states will separate.

In the truly bound case, the spectrum resulting
from changes in the internal motion would be an
ordinary perpendicular band and would consist
of a series of zero branches with the spacing
(1/C —1/A)h/4m'c=6. 57 cm '. Each zero branch

' M. J. O. Strutt, Ergebn. Der. Math. u. Ihrer Grenz.
I, No. 3, p. 14 (1932).

7 D. M. Dennison, Rev. Mod. Phys. 3, 280 t,'1931).

OR„'= (2/3) ' exp [—iXCgx/C]

X[II„' ,'(FI '+H ')]——(7)



ioi2 J. S. KOEHLER AND D. M. DENNISON

K-m
rS

AX@

p8
K=I

3 ot/3-I—
2

OJ3

I

Free case
Bound case

EXACT METHODS —INFINITE DETERMINANTS

We will now consider the internal motion for
intermediate values of the barrier height, ex-
amining the equations of motion first with the
aid of infinite determinants, and in the following
section considering the equations of motion when
they are written as infinite continued fractions.
The two descriptions are equivalent.

The internal equation of motion can be written
in the form:

where:

and:

d ~5K/dx2+ {R+ 2a cos 3x } 5R = 0,

OR(x) =e' *P(x)

a = —ZCg/C.

FIG. 2. Splitting of energy levels.
We can now expand P(x) in a Fourier series.
Thus:

When the barrier is infinitely high (the bound

case) the wave functions may be writ. ten as the
product of the vibrational functions (Fq. (7)) and
the wave functions of a symmetrical rotator. For
each vibrational level, n, there are, as has been
seen, three functions whose symmetry is easily
shown to be n, (yb) for n even and P, (y5) for n

odd. The symmetry classes of the rotational wave
functions are well known and may be stated as
follows. For E =0, the level is o, or P as J is even
or odd. For X not a multiple of 3 we have a
degenerate pair (y8) while for X a multiple of 3
we have the two levels n and P. The symmetry of
the total eave function may then be found from
the usual multiplication rules,

(~~) =o (~~) =(v~),
(V&) (V&)=a & (V~)

OK(x) =e"* P a,e*'*

where 7- is an integer. If we substitute this into
the differential equation, multiply through by
e'"*, and integrate from zero to 2~ we will obtain
the following recursion formula:

Qq 3+0&+ a,+3=0. (9)
f R —(o+ r) '} {R —(o+ r) '}

The necessary and sufficient condition that this
infinite set of linear homogeneous equations shall
have solutions other than a, = 0 (for all r) is that
the determinant of the coefficients should vanish.
"{A"e have written out a few terms of the determi-
nant below:

Dr(~, R) =0

i 0 0
The results of these considerations are shown

diagramatically in Fig. 2 for the typical cases of
K =0 and X= i, both for J even. No attempt has
been made to draw the levels to scale (this will

be done later in Fig. 3) but only to show the
manner in which the levels of the free rotator
connect with those of the bound oscillator. In
constructing such a diagram it is important to
notice that the order of the levels on the "free"
side for K/0 depends upon the ratio of the
moments of inertia C~/C and will alter as X
increases.

0 i 0 0

0

{0}

{2}

f
—

& } (l0)
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where

The vanishing of this determinant is the relation
which yields the eigerivalues of the problem (R)

in terms of 0 and n. It is evident that the
determinant converges. It is also clear that the
determinant can be factored into three infinite
determinants a few terms of which we have
written below:

BI——DiagB3,

Dg(o, R) =0=

Dg(o, R) =0=

(2}

Da((r, R) =0= (
—2}

1
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Thus the threefoldness of the problem expresses
itself in these three determinants, the vanishing
of each yielding a different group of eigenvalues
and eigenfunctions of the internal motion.

Using a remarkable theorem discovered by
G. W. Hill' we can now state the dependence of
these determinants on a precisely. Writing out
this theorem for our cases, we have:

Dr(o, R):Dr(0—, R) —sin' rra/sin' rrR".

Thus our eigenvalues are given by:

Dr(0, R) =sin' ~a/sin~ rrRl.

Similarly, in the case of the three factors one
finds:

Dq(0, Rq) =sin' —',~a/sin' ~~R'-,

—,'- —cos -', rr(a+-,')
D2(0, R2) =

—,'+cos -', m.R2s

—', —cos -', m-(a ——,')
D3(0, R3) =

p +cos 3 7rR3'

These, then, are the three equations yielding the
three different types of eigenvalues denoted by
R~, R2, and R3. We can, however, proceed further.
Upon examination the three infinite determinants
of the above equations prove to be simply related
to one another. It can be shown that:

~
—Dq(0, R) sin2 —,~Rl

D2(0, R) =D3(0, R) =
+ln 7l R4 3

and, noting that l is an integer:

R,(a+3l) =R2(a),
R2(&r+3l+1) =Rr(o),
Rg(a+3l+2) =R3(a).

EXACT M ETHODS—CONTINUED FRACTIONS

We will now write the equations describing the
internal motion in terms of continued fractions.
The actual numerical calculations were made
with continued fractions. We have obtained the
recursion formula:

where:

Gg 3+6 + — C +3=0,
(r}

{r}= {R—(o+r)'}.

The way in which the cyclic permutations are
made should now be obvious. If one now examines
the determinants and the recursion formulae it is
clear that the determinants and the wave
functions also depend upon 0 in just the same
way. For example:

DRr(a+3l, Rr) =Rtg(a, Rg),

DRr(a+31+1, Rr) = OR3(a, R&), etc.

From these discussions concerning the case where
the potential is —,'Eicos 3x one can immediately
see the extensions appropriate for the case where
the potential is 2H cos Xx (—where X is an
integer).

From this relation the three equations yielding
the roots become:

D~(0, Rr) = sin'- —,'~a/sin' —', rrRr'', (13)

D~(0, R2) =sin 3~(a —1)/sin' —',rrR2', (l4)

Dq(0, R3) =sin' ( 3+1a)/sin' -';aRqi. (15)

Using the methods discussed by Poole' we can
eliminate the a, by using convergence require-
ments, thus obtaining the following three
equations which give the three types of eigen-
values:

Using these equations one finds that the eigen-
values transform into one another in a very
beautiful manner. We see that:

Rg(a+3l) =Rg(a),

R,(o+3l+1)=R,(o),

Rr(a+3l+2) =R2(a)

(6}(9}
1 —etc.

{—3}(
—6} (16)(Rr)

1 —etc.

'E, T. Whittaker and G. N. Watson, Modern Analysis,
fourth edition, p. 415.

' E. G. C. Poole, Introduction to the Theory of Linear
Differential Equations, p. 182.
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for negative r. (20)

1 —etc.
{r}{r

1 —etc.

{1}{4}

{4}{&} {—2 } {—5 } (18)(R3)

1 —etc.

1 —etc.

It can be seen that these continued fractions
converge very rapidly. The convergence becomes
worse if we increase n, the barrier height, or if we
go to larger values of the internal energy (if we
increase R).

Having found an R which satisfies one of these
equations, we can proceed to calculate the a,
which determine the corresponding internal wave
function. To do this we will need the equations
which connect successive a, in each of the three
types of wave functions. These relations, which
appear during the process of eliminating the a,
from the recursion equations, are:

{r 3}{r—6}-
1 —etc.

The Fourier coefficients are now determined as
follows: Suppose that we have found an R~. The
as' are then calculated in terms of some initial
coefficient from the above equations. Suppose uo

is the initial coefficient: We calculate a3 and a 3

in terms of ao using these equations: then u6 and
a 6 are determined by substituting these values
of a3 and a 3 into the equations relating a6 with
G3 and c 6 with a 3 . and so on. The wave
function is normalized by choosing the initial
coefficient. For an R2 the @3~ ~ are calculated in
terms of a ~. For an R3 the c3~+~ are calculated in
terms of a~.

Let us next examine the transition probability
between two states of motion of the molecule. We
will assume the OH bar to be a permanent dipole.
The components of this dipole along the x~y~s~

axes will be (d, 0, f). These axes are fixed in the
bar. The projections of the dipole moment upon
the axes fixed in space at the center of gravity of
the molecule are:

px ——d {cosP cos Q~ —cos 8 sin f sin Q~}

+f sin 8 sin P,

{r}{r+3',

{r+3}{r+6}
1 —etc.

for positive r (19)
pr= d {sin P cos p~+cos 0 cos y' sin p~}

f sin e cos P—,

pz=d sin 0 sin P~+„fcos 0.

The spectral lines resulting from the terms in f are

just the ordinary far infra-red lines due solely to
changes in the precessional motion. Taking only
terms in d and using the fact that:

y, = @+C,x/C,

the above formulae become:

px =d[{cosP cos @—cos 8 sin P sin Q} cos C~x/C —{cos P sin P+cos 0 sin P cos @} sin C2x/C],

pr ——d[{sin P cos P+cos 0 cos tl sin P} cos C&x/C —{sin P sin Q —cos 0 cos P cos @} sin C2x, C],

pz ——d[sin 0 sin P cos C2x/C+sin 0 cos P sin C2x/C].
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The matrix elements are now given by:

uzi f f
(y;)z x v = ji ~i J

'(~4~)~ "on'(x) p On(x)-F(8~~)--dxd~d~ sin Ode

wherei =X, V, or Z. Carrying out the integration over x we find:

dp

cos C~x/C
on(x) ~dx =

sin C2x/C

-'L5~ z+' Q a, a, +g+5 lr ~—' P a a

1 00 00

8«~+—' 2 a,a,+&+8~." 'P a,a, ~]
-2j —00 —OQ

where the 6 are Kronecker deltas. Note that the
nonvanishing integrals over x will have the same
value if X is replaced by minus X.

Let us consider the case where X' is X—1. If we

carry out the integrals over x an examination of
the remaining portions of the matrix elements
shows that we are evaluating the symmetric
rotator matrix elements of a dipole fixed in the
whole rotator. In a set of coordinates fixed in the
whole rotator so that their s axis lies along the
axis of the molecule and their x axis lies along the

@ direction the components of the whole rotator
dipole are

(d d
E a~a~

42 -m 2z —~

(IK K)2 d2(g a a )2—(21)

The same procedure can be carried out for the

The integrals over the whole rotator coordinates
8, P, and P will be just the symmetric rotator
matrix elements which one obtains in the calcu-
lation of the intensities of lines appearing in the
negative side of an ordinary perpendicular band.
Here, as in the case of the symmetric rotator, we
can square the matrix elements and sum over the
three directions X, Y, Z. This operation gets rid
of all imaginary numbers. We can also sum over
the (27+1) allowed values of 3I and over the
two values +Xand —X.The resulting transition
probabilities contain as one factor just those
amplitudes which give the intensities of the lines
in the negative side of a perpendicular band. The
integrals over x contribute, if we include the
dipole strength, the factor:

case where X' is X+1.The symmetric rotator
amplitudes which result are those encountered on
the positive side of a perpendicular band. The
factor multiplying them which results from the
internal motion is:

(Ilr+~ )'=d'(2 a.a.+~)'. (22)

The selection rules for the whole motion are of
course:

DJ=O ~i 5M=0 ~i AX= ~i

Then the selection rules state that in the case
where X—+X—1 the internal transitions are of
the following types:

P P V
I
2y 3) 1 ~

In case X—+%+1 the internal transitions are of
the following types:

V P V
1 2

3$ 1) 2 ~

It is well to note that these rules say nothing
about the relative intensities of fundamentals,
overtones, etc. This information can only be
obtained by actual calculation of the a, .

The selection rules for the internal motion can be
deduced by noting which classes of the a, can
appear together in the I~+1~. For example, in
I~ p if thea, are a3~ then thea, 1are@3~ 1. Thus
the frequency absorbed involves a, transition
from. a state of the first kind to one of the second
kind. Let us call such a frequency:

1

2'
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This could be only a very rough estimate indeed
since their observations did not extend beyond
380 cm '. A reference to Fig. 3 shows that the
difference between the levels n =0 and n =1 will

be equal to 350 cm ' when the barrier height
measured from the bottom of one of the minima
is 770 cm —'.

The rest of the calculations were made with a
particular value of the barrier height. The con-
stants employed were:

H=769.43 cm '

n =s/2 = 2 m'cCiC2&I/h C= 7.7699,
0.= KCg/C—= —0.20766K,

W =24.7568{R+15.5398} cm "

300

200

100

0
0 200 400 600 800

,
IOOO

BARRIER HEIGHT, CM
'

NUMERICAL CALCULATIONS

A series of numerical calculations of the energy
levels and wave functions have been made with a
particular value of the barrier height. These
results are preliminary in the sense that the
barrier height chosen is probably not the correct
one for methyl alcohol. The predicted spectrum
is therefore not in very good agreement with the
observed spectrum. The qualitative features are
very interesting however and will undoubtedly
lead to a better evaluation of the barrier height.

A first set of computations was undertaken to
determine the energy levels having X=O for
various barrier heights. The results are shown in
Fig. 3. This figure is a correct plot of the levels
which were drawn qualitatively in the lower
portion of Fig. 2. The information thus obtained
was used in the following way. The transition
from the ground state (n=0) to the first excited
state (n = 1) will approximately correspond to the
most intense region of the absorption spectrum.
An examination of the spectrum as reported by
Borden and Barker indicated that the absorption
increased in intensity as the wave-length in-
creased. An estimate indicated that it would
reach a maximum intensity at about 350 cm —'.

It will be remembered that the total energy of the
system is equal to 8 plus the energy of the sym-
metrical rotator, namely (fi'/2A) (J'+J K')—
+fPK'/2C The va. lues of W for any K are to be
found from the continued fractions (Eqs. (16),
(17) and (18)) by the method of successive
approximation. The continued fractions converge
so rapidly that it was necessary to calculate only
about five or six terms. The results for n =0, 1, 2

amd 3 are shown in Fig. 4. It must be noted that
only integral values of K have physical meaning.

The curves of Fig. 4, although calculated for a
particular barrier and ratio of moments of inertia,
are characteristic solutions of the problem and
are worth considerable study. Thus the ground
levels (n=0) are seen to be three in number.
Initially when IC=0, the two upper levels com-
bine to form a degenerate level at 192.34 cm '

(energy is measured from the bottom of one of
the potential minima). The other level lies 1.4
cm ' lower. As K increases the degeneracy
disappears and the positions of the levels oscillate
up and down over the comparatively narrow
range of 1.9 cm '. The spread of this triplet state
in frequency units represents the inverse of the
time it would take the system in one potential
minimum to leak through to one of the other
minima. The three curves giving the levels are of
course identical but are displaced laterally by the
amount C/Cq.

The first excited levels (n=1), also three in
number, lie about 538 cm ' above the minima.
The spread of the energy levels as X changes is
larger than that of the ground state, being 33
cm '. This increase in the "width" of the level
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indicates the greater ease with which the system

may penetrate the barrier in this excited state. If
we go to still higher values of n we will be dealing

with states which lie above the potential barrier.
The properties of these states must rapidly

approach those of the free rotator as we go to
larger values of n. Two points are to be noted.
First, for the higher states the spread of the
levels becomes so large that the upper levels of
one state, say the nth state, nearly reach up to
the lower levels of the (n+1)th state. In the
second place the maxima and minima of the

energy versus X curves become so sharp as to
suggest discontinuities. These phenomena are
immediately explicable when we consider the
energy curves for the free rotator. As has been

shown, in this case

C,y
~ Cfi'

W. =] ~—II.—f

C ~ 2CiC2

The resulting parabolae are drawn in Fig. 5 in

such a manner as to illustrate their relationship
to the preceding curves where the barrier height
is not zero.

The next step in the calculation is to obtain the
wave functions describing the states. This has
been accomplished by employing Eqs. (19) and
(20) to compute the coefficients in the Fourier
expansion (Eq. (8)) of the wave function. The
results of this process are shown in Fig. 6 for the
wave functions of the first kind. They are given
in normalized form. The coefficients of the second
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and third kind are found by displacing the curves
laterally by an amount C/C&. It is interesting to
observe that as we go to the higher states which
must resemble the free rotator one of the Fourier
coeScients becomes large compared with the
others. For the completely free rotator we have
seen that only one of the coeAicients differs from
zero. A series of the actual wave functions were
plotted and it was found, in accordance with our
expectations, that the wave functions in the
ground state approximate quite accurately to
linear combinations of the Hermitian orthogonal
functions centered about the potential minima.
On the other hand, the wave functions of the
excited states above the barrier (already for
states having n =2) closely resemble the sine and
cosine functions of the free rotator.

The internal transition probabilities may now
be evaluated (Eqs. (21) and (22)). These show
oscillations of the same general character as
those existing in the energy levels. However, the
amplitude of the oscillation is small for a
transition connecting two states which lie well
below the potential barrier. Thus the maximum
value of the internal transition probability for the
transition n =0 to n = 1 is 0.0480 while the
minimum value is 0.0339. As we connect suc-

20
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0 l 2 3 4 5
K

FiG. 5. Values of 8' as a function of X for the free rotator.
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cessively higher and higher states these fluctu-
ations become more violent. The maximum and
minimum values for the transitions n = 1 to n= 2

and n = 2 to n=3 are 0.2706, 0.0225 and 0.8910,
0.0012, respectively. The fact that the maximum
value increases as the internal rotation becomes
more free is connected with the fact that the
amplitude of oscillation becomes larger as the
influence of the hindering potential decreases.
From our definition of the internal transition
probability it is clear that this quantity will equal.
1 for the allowed free rotator transitions.

The analysis will enable us to calculate any
desired portion of the spectrum. We have applied
it to what may be described as the fundamental
band, that is, the transition n=0 to n=1. We
have also applied it to the first upperstage band
which corresponds to the transition from n = 1 to
n=2. The results are shown in Fig. 7. The lines
in these figures represent zero branch lines and
refer to transitions in which 6J=0. Each zero
branch line will be the center for the positive and
negative branches which will be composed of
lines having a spacing of h/4m'cd =1.57 cm '.
The lines in the positive and negative branches
result from transitions in which AJ= &1. These
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lines will generally merge together to form a
fairly continuous background of absorption. In
order to calculate the positions of the lines in

Fig. 7 it was of course necessary to use the total
energy of the system, that is TV plus the
symmetrical rotator energy referred to earlier.
The total intensity of absorption also depends
upon both the internal and the symmetric rotator
transition probabilities. It can readily be shown
that the intensity of a particular line is given by
the expression,

JK JKIJ,~, —1"p (1 —g ""~
."r)1~($J. ) 2g

where I' is a constant, 12 is the internal transition
probability for this particular transition, and

275 300 325 350 am ' 3'
Fundamental 8and

6-
t'~ io '

5-

425

3.0-

[ xlo
2.5-

2.0-

JK
(&z I; )'

is the square of the matrix element of the
direction cosines using the symmetric rotator
wave functions. Here ggK is the statistical weight
of the state and takes into account the affects
caused by the nuclear spins of the hydrogen
nuclei in the CH3 group. The above formula is
identical with the usual expression for the
intensities of the lines of a symmetrical rotator
except for the inclusion of the factor I' and the
addition of W to the energy.

THE PREDICTED SPECTRUM; CORRELATION

WITH EXPERIMENT

We are now in a position to describe the general
features of the spectrum of methyl alcohol as
predicted by our model. Since the weaker lines
arising from transitions in which AJ= ~1 will

usually form a continuous background of ab-
sorption we will only consider the transitions in
which 6J=0. The positions and intensities of the
lines associated with 6J= &1 can be easily
calculated if necessary.

Starting in the far infra-red there will be a
series of groups of lines corresponding to transi-
tions in which An =0 and AE = +1. Let us
consider only the lines resulting from transitions
between states having a certain definite value of
n. Then each group is a multiplet having three
members since in absorbtion as K~K+1, the
allowed transitions are from a state of the first
kind to one of the third kind, from one of the

lo-

0.5-

200 250 360 „.l 350
First UPPerstage Band (Vn*2)

400

Frg. 7. Fundamental band and first upperstage band in
methyl alcohol.

second kind to one of the first kind, and from a
state of the third kind to one of the second kind.
The average spacing between the multiplets is
(1/C —1/A)h/4m'c=6. 6 cm '. The positions of
the lines within any given muItiplet depends
upon the value of K and upon the spread of the
three levels for the particular n chosen. This
spread is of course a sensitive function of the
barrier height. In our calculations the three
states with n =0 have a maximum separation of
1.9 cm '; this leads to a maximum spread of the
multiplet lines of 2.4 cm —'. The pattern of the
lines within a multiplet varies rapidly as we go
from one multiplet to another, that is, as we
consider diff'erent values of IC. Measurements of
these lines, which should be strong in the region
around 200p, have not as yet been made. A
knowledge of them would lead at once to a
reliable estimate of the barrier height. In addition
to the transitions just described there will be
transitions between the states n = 1. Since this is
an excited state the lines resulting will be weaker
by the Boltzmann factor, which in the present
case is about 0.18. The maximum spread of a
multiplet of this series is around 44 cm '; thus in
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general the spread of each multiplet of this series
is much greater than the mean spacing between
m ultiplets.

The lines corresponding to the transitions
An =0 will grow weaker as one proceeds to
shorter wave-lengths but they will soon be
augmented by the absorption resulting from
transitions in which An=1. Thus there probably
exists no very transparent region in the spectrum.
A typical transition of the type An= j. is the
fundamental (n=0 to 1) which has been illus-
trated in Fig. 6a. It consists of three super-
imposed bands for the same reason that the
multiplets of the far infra-red consist of three
members. Any one of the three bands resembles a
normal perpendicular band only in the fact that
the average spacing of the zero branch lines
within it is (1/C —1/A)h/4s'c=6. 6 cm '. How-
ever neither the line spacing nor the line intensity
is uniform. In each of the three bands the lines
exhibit the phenomena of bunching together at
intervals of 6.6(3C/C~) =95 cm '. The positions
of bunching of one band are separated from those
of another band of the triplet by one-third of this
amount. This phenomena will probably only be
evident in the fundamental band.

High upper stage transitions will eventually
take place between levels which are so far above
the barrier that they have all the properties of
the free rotator levels. These transitions will give
rise to groups of lines having a spacing between
groups of h/4m'cC~=39 cm '. These groups are

undoubtedly the series of absorption maxima
with this spacing found by Borden and Barker in
the region around 20@.

Recently Lawson and Randall' have under-
taken an investigation of the spectrum of methyl.
alcohol in which they were able to make measure-
ments in the interval between 20 and 57@. Their
results show many points of similarity with the
predicted spectrum. They find an intense ab-
sorption consisting of irregularly spaced strong
lines which exhibit the tendency to bunch to-
gether at intervals. There is everywhere a strong
background of absorption in which fine lines may
often be discerned with the expected spacing
h/4''cA =1.57 cm '. The most intense region of
absorption occurs at 270 cm '. If we identify this
with the position of the fundamental (n=0 to
n = 1) we would conclude upon referring to Fig. 3
that the appropriate barrier height should be
470 cm ', with an estimated uncertainty of 40
cm '. This is of course the value of the barrier
height when measured from the bottom of one
of the potential minima. We believe that the
analysis of hindered rotation which we have given
contains the essential qualitative features which
will enable it to explain the spectrum of methyl
alcohol. In order to obtain a quantitative fit
between theory and experiment it will be neces-
sary to evaluate the barrier height with greater
precision. Further observations, particularly in
the far infra-red, would furnish the necessary
information.


