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Diffraction Theory of Electromagnetic Waves
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It has been shown by Larmor, Kottler and others that the classical method of calculating
diffraction from the Kirchhoff formula in terms of a scalar light function cannot be applied
directly to the electromagnetic field since it takes into account neither the vector character
of the field nor the effect of charges along the' contour of the opening. The field equations are
integrated directly by means of a vector analog of Green's theorem. The results are applied
to the calculation of diffraction of electromagnetic waves from a rectangular slit in a screen of
infinite conductivity. The results are compared with an exact solution obtained recently by
Morse and Rubenstein.

1. INTRoDUcTIQN

ECENT advances in the technique of
generating ultra-high frequency radio waves

have stimulated interest in a number of problems
of electromagnetic theory which heretofore have
had only academic importance. A natural conse-
quence of this trend towards short waves is an
application of the methods of physical optics to
determine the intensity and distribution of
radiation from hollow tubes, horns, or small
openings in cavity resonators. Now it is well
known that the application of the Kirchho8
diffraction formula to an opening in an opaque
screen involves several fundamental errors of
principle. Nevertheless a remarkably good agree-
ment between measured and calculated intensi-
ties is obtained in the region directly in front of
the opening provided the wave-length is small
compared to the size of the opening. If, on the
other hand, the wave-length is relatively large,
the radiation is distributed over a wide angle
and the Kirchhoff formula proves to be definitely
inaccurate. It must then be extended to account
first for the vector character of the wave, and
secondly for the discontinuities introduced about
the contour of the opening. Both of these factors
as sources of error have been recognized by
previous writers. In the present paper we shall
recall first the restrictions on the Kirchhoff
formula when applied to a scalar wave function.
A vector analog of Green's theorem will then be
derived, from which an integral representation
of electromagnetic fields can be obtained in a
very simple manner. Next the theory is extended
to surfaces over which the field vectors are

discontinuous, and the results are finally com-
pared to those obtained from the solution of a
boundary value problem by rigorous methods.

2. THE KIRCHHOFF FORMULA FOR SCALAR

WAvE FUNcTIQNs

Let s (x, y, s) be any solution of

V'q+k'(p =0

which is continuous and has continuous first
derivatives throughout a closed domain U, and
let ps, (Bp/Bn)e denote the values of p and its
normal 'derivative on the bounding surface S.
Then if the direction of the normal is outward
from S, the integral

u(x', y', s')

1 t'Bp'r e'"" B (e' "$—vs—I I
d+ (2)

4s. e EBn)e r Bn(r )

represents a discontinuous function which at all
interior points x', y', z' is equal to q and at all
external points is zero. Since the values of q

and its derivatives at all interior points are
uniquely determined by the value of yz alone on
5 (Dirichlet Problem), or by (Bp/Bn) s alone
(Neumann Problem), the functions s e and
(B&p/Bn)s cannot be chosen independently if e
and I are to be identical at interior points. The
function defined by (2) satisfies (1) and is regular
within the domain U whatever the choice of yq
and (Bp/Bn) e, but the values assumed by u and
Bu/Bn on S will in general diRer from those
assigned to es and (Bp/Bn) s
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A Kirchhoff diffraction problem is formulated
usually somewhat as follows. A primary wave is
incident upon an opaque screen in which there
is an opening S~. The scalar potential of the
wave, or. a rectangular component of a field
vector, is represented by y satisfying (1). It is
now assumed that on the dark side of the screen
ys and (By/Bn) s are zero except over the
opening Si, where ys and (By/Bn)s have their
undisturbed values. The diffracted wave is then
calculated from (2), the integral extending over
S~ alone.

Such a procedure cannot possibly give an
exact result. For in the first place the assumption
of zero values for the light function and its
derivative over the screen S2 implies a discon-
tinuity about the contour C& bounding the
opening, while Green's theorem, upon which (2)
is based, is valid only for functions which are
continuous over a complete bounding surface.
This difficulty cannot be obviated by the
common expedient of replacing the contour of
discontinuity by a thin region of rapid but
continuous transition. The vanishing of q q and

(By/Bn)s on any finite part of S would then
entail a zero value everywhere. The integral
represents in fact a scalar wave function which
approximates the true intensity to a degree
which must be determined by other means. If
the ratio of wave-length to size of Si is small,
the radiation is thrown largely forward and the
Kirchhoff function may differ by a negligible
amount from the assumed zero value over the
screen. If, on the other hand, the wave-length is
large, the wave function calculated on the basis
of undisturbed values over S~ will be found to
have values over S& which are by no means
small. It is sometimes suggested' that this
distribution over S2 be applied once more to the
Kirchhoff formula (2)—a, method of successive
approximations. Quite apart from questions of
convergence, the difficulties of evaluating the
resulting surface integrals in most cases make
such a procedure of little practical value.

There are other difficulties. An electromagnetic
field at a point on the closed surface S is char-
acterized by a set of scalar functions which

represent the rectangular components of the

~ M. Born, OPkik, p. 152.

electric and magnetic vectors. Each one of these
scalar functions satisfies (1) and its value at an
interior point x', y', s' is therefore expressed by
(2) in terms of its values over the boundary S.
But these components at an interior point must
not only satisfy the wave equation, they must
also be solutions of the Maxwell field equations
The real problem, therefore, is not the integration

'of a scalar wave equation, nor even a vector
wave equation, but of a simultaneous system of
first-order vector equations relating the vectors
E and H. There is nothing new in this remark.
The integration of the field equations in closed
form has been discussed by Love, ' Larmor, '
v. Ignatowsky, ' Tonolo, Macdonald, ' Tedone, '
and most completely by Kottler, ' but their
results appear to have been commonly disre-
garded in treatises on physical optics. Recently,
however, the subject has been reviewed by
Schelkunoff' in connection with equivalence
theorems.

3. A VEcToR ANALoG oF GREEN s THEoREM

The integration of the field equations can be
achieved most directly and rigorously by a
method which is wholly analogous to the treat-
ment of the scalar wave equation. Let U be a
closed region of space bounded by a regular
surface S, and let P and Q be two functions of
position which together with their first and
second derivatives are continuous throughout U-

and on the surface S. The divergence theorem
is applied to the vector PXiP'XQ, giving

fP (PXPXQ)dv= ((PXPXQ( nda. , (3)
V S

where n is a unit normal vector directed outward
from S. Upon expanding the integrand of the
volume integral a vector analog of Green's first

identity is obtained,

' A. E. H. Love, Phil. Trans. A197, 1 (1901).
3 J. Larmor, Lond. Math. Soc. Proc. 1, 1 (1903).
4 W. v. Ignatowsky, Ann. d. Physik 23, 875 (1907); 25,

99 (1908).
5 A. Tonolo, Annali di Matematica 3, 17, 29 (1910).
'H. M. Macdonald, Proc. Lond. Math. Soc. 10, 91

(1911);and Phil. Trans. A212, 295 (1912).
' O. Tedone, Linc. Rendi (5), 1, 286 (1917).
F. Kottler, Ann. d. Physik 71, 457 (1923}.' S. A. SchelkunoR, Bell Sys. Tech. J. 15, 92 (1936).
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(VXP VXQ —P VXVXQ)dvfy

PX~X nba. 4
S

The vector analog of Green's second ' identity
("Green's theorem") is obtained by reversing
the roles of P and Q in (4) and subtracting one
expression from the other.

(Q VXVXP —P VXVXQ)de
1'

PX~X — X~X& nd.
S

The first identity (4) is the logical basis for
uniqueness proofs in connection with vector
fields. It will be noted that if one place P = Q =E,
(4) proves to be identical with Poynting's
theorem.

4. APPLICATION TO THE FIELD VQUATIONS

The field equations in a rationalized m. k.s.
system of units are

(I) VXE—i&up, H= —J*., (III) V H= p*/p,

The vectors E and H satisfy

VXV XE O'E—=icopJ VX—J*,

VXVXH —k'H=i(oeJ*+VX J,

(6)

(7)

VX Q = VQXa, VX VX Q =ak'/+V(a Vf),
V XV XP =k2E+i(op J—V XJ*.

By application of the divergence theorem and
further transformation, it is easily shown that a.
is a factor common to all the terms in (5), and
since the direction of a is arbitrary, it follows that

i~pJW VX J P+ PVP de
V-

where k'= &a'ep. Solutions of (6) and (7) are to
be found which are finite and single-valued at
all interior points of U and at all points on 5.

In (5) let P=E and Q = Pa, where a is a unit
vector in an arbitrary direction and P =e'""/r
The Green's function Q is essentially the vector
potential of a unit current element. Distance is
measured from the element at x, y, z to the
point of observation at x', y', s'.

r = [(~'—~)'+ (y' —y)'+ (s' —s)'j'.
The following identities are readily verified.

(II) V XH+ia&eE= J, (IV) V E= p/e. [i~p(nXH)i/+(nXE) XV''

+(n E)VP —nX J*gjda. (9)

An application of the identity

fVX J"Pdii=J)nX J*gda+ I J*XVPd& (10)
V S V

1
i~pJ4 J*XV4+ pV4 —ds-

i~p nXH + nXE X~
S

+ (n E)Vg]da. (11)

Because of the singularity of the function P
at r=0, the identity (11) holds only when this
point is excluded from V. The procedure is
familiar to everyone acquainted with potential(V) V J+ i(op*=0. —V J—ia)p=0,

It is assumed here that the fields are harmonic
and that all quantities contain the time in the
form of a factor exp ( —idiot).

The field intensity E is measured in volts per
meter, H in ampere-turns per meter, current
density J in amperes per square meter. In free
space po=4ir X10—' henry per meter, ~0 (I/36'——r) reduces this to
X 10 ' farad per meter. The medium is assumed
to be homogeneous and isotropic, and of zero
conductivity. The quantities J~ and p* are
fictitious densities of magnetic current and
magnetic charge. In normal fields they are zero,
but the arbitrary (and physically impossible)
assumption of discontinuities in the tangential
components of E about the contour of an opening
can only be accounted for by some such assump-
tion. Currents and charges are related by the
equations of continuity,
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theory. The point x', y', s' is taken as the center
of a small sphere of radius rI. The normal over
the sphere is directed out of V, and consequently
radially towards the center.

VP = (1/r —ik) (e'"'/r) ro, (12)

and on the sphere n=ra. The area of the sphere
vanishes with the radius as 4mrP, and since

(nXE) Xn+(n E)n=E, (13)

the contribution of the spherical surface to the
right-hand side of (11) reduces to 4irE(x', y', z').
The value E at any internal point of Vis therefore

E(x', y', s')

1
i~pJ4 J*—XV4+ pVO-di

4m y

Lie&p(nXH)P
4~ s

+(nXE) XVP+(n E)VP]da. (14)

An appropriate interchange of vectors gives

H(x', y', s')

1 1
icoeJ*P+JXVit+ p*VP —dv

4x y p

1
+—Li(06(nXE)P —(nXH) XVP

4~ s

—(n H) Vg]da. (15)

sources are placed equal to zero. Then

1 1
E(x', y', z') =— iraq JP+ p—Vif dv,

4m y C

1
H(x', y', s') =—JXVgd&.

4~ v

(16)

Since the current distribution is given, the charge
density can be determined from the equation
of continuity.

It is known from the uniqueness theorem of
electromagnetic theory that a field within a
bounded domain is completely determined by
the specification of the tangential components
of E and H on the surface. It follows in (14)
and (15) that when nXE and nXH have been
6xed, the choice of n E and n H is no longer
arbitrary. The selection must be consistent with
the conditions on a field satisfying Maxwell's
equations. The same limitations on the choice of
ye and (By/Be)z were pointed out in ft2. The
dependence of the normal component of E upon
the tangential component of H is equivalent to
that of p upon J.

Let us suppose for the moment that the charge
and current distributions in (14) are confined to
a thin layer at the sur'face S. As the depth of
the layer diminishes the densities may be
increased so that in the limit the volume densities
are replaced in the usual way by surface densities.
If the region U contains no charge or current
within its interior or on its boundary S, the
6eld at an interior point is

It will be shown below under more general
circumstances that (14) and (15) satisfy the
6eld equations at all points of U and S.

These expressions are essentially equivalent to
those obtained by v. Ignatowsky for a closed
surface. If all sources can be enclosed within a
sphere of 6nite radius, the 6eld is regular at
infinity and either side of S may be chosen as its
"interior, " or S may be closed at infinity. It
may be remarked that (14) and (15) are con-
venient expressions for the calculation of a field

directly from a given distribution of current
without the intervention of vector and scalar
potentials or of a Hertzian vector. The surface
S recedes to infinity and the fictitious magnetic

E(x', y', s') =—
I i(op(nXH)P

4~ s

+(nXE) XVP+(n E)VQ]da. (17)

It is now clear that this is exactly the 6eld that
would be produced by a distribution of electric
current over S with surface density K, a distri-
bution of magnetic current of density K*, and a
surface electric charge of density p, where

K= —nXH, K*=nXE, rl = —en E. (18)

The values of E and H in (18) are those just
ieside the surface S. The function E(x', y', z')
defined by (17) is discontinuous across S. It is
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well known" that the integral

1
E3(x', y', s') = gVPda

4m. ~

(19)

5. EXTENSION TO DISCONTINUOUS

SURFACE DISTRIBUTIONS

The results of the preceding section hold only
if the vectors E and H are continuous and have
continuous first derivatives at all points of S.
They cannot, therefore, be applied directly to
the problem of diffraction at a slit. To obtain
the required extension of (17) to such cases,
consider the closed surface S (surfaces closed at
infinity are included) to be divided into two
zones S& and $2 by a closed contour C lying on S,
as in Fig. 1. The vectors E and H and their
first derivatives are continuous over Si and
satisfy the field equations. The same is true
over S2. However the components of E and H
which are tangential to the surface are now
subject to a discontinuous change in passing
across C from one zone to the other. The occur-
rence of such discontinuities can be reconciled
with the field equations only by the further

H. B.Phillips, Vector Analysis (Wiley and Sons, 1933),
p. 206. In greater detail, H.Poincare, Theoric Mathemati-
gue de la Lumiere, II, Ch. VII.

suffers a discontinuity on transition through S
given by n DEq ——s/o, where EES is the difference
of the values outside and inside. The third term
of (17) does not affect the transition of the
tangential component but reduces the normal
component to zero. Likewise the discontinuity of

1
E2(x', y', s') =— K*XVeda (20)

4~ s

is specified by n)&E2 ——K*, so that the second
term in (17) reduces the tangential component
of E to zero without affecting the normal
component. The first term in (17) is continuous
across S, but has discontinuous derivatives.

ZMp
V'XE(x', y', s') = — (n X H) X Veda. (21)

4~ s

The vector E and the tangential component of
its curl is zero on the positive side of S; it is
therefore zero at all external points. The same
analysis applies to H.

assumption of a line distribution of charges or
currents about the contour C. This line distribu-
tion of sources contributes to the field and only
when it is taken into account do the resultant
expressions for E and H satisfy Maxwell's
equations. The calculation of a diffraction pat-
tern from an integral extended over a portion of
a surface only, as has been the customary
practice, must necessarily lead to erroneous
results.

A method of determining a contour distribu-
tion consistent with the requirements of the
problem was proposed by Kottler. It was shown
in f4 that the field at an interior point in (17)
is identical with that produced by the surface
currents and charges specified in (18). A discon-
tinuity in the tangential components of E and
H in passing on the surface from zone Si to
zone S2 implies therefore an abrupt change in
the surface current density. The termination of
a line of current, in turn, can be accounted for
on the basis of the equation of continuity by an
accumulation of charge on the contour. Let ds
be an element of length along the contour in
the positive direction as determined by the
positive normal n, Fig. 1. Let ni be a unit vector
lying in the surface, normal to both n and the
contour element ds, and directed into zone (1).
The line densities of electric and magnetic
charge will be designated by fT and 0.*. Then
Eqs. (V), when applied to surface currents,
become

n~ (K&—K&) =iooa, n~ (K&*—K~ ) i&oo*,=(22)

and hence by (18),

i&oo=n, (nXH, —nXH1)
= (H2 —Hg) (n&Xn), (23)

i~o*=n~ (nXE, —nXE2)
= —(E2 —E&) (niXn).

The vector niXn is in the direction of ds. If
S2 represents an opaque screen over which
E2 =H& ——0, the field at any point on the shadow
side is

1 1
E(x', y', s') = — — VPH& ds

zG06 4'
1

[icvp(nXH, )g+(nXEi) XVP
4~ si

+ (n. Eg) Vf]da, (24)
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) h
' ——v htaking. into account the relation V' = —V' when

applied to P or its derivatives. Now

(n XH) Veda
S

S2
PVXH. nda — PH ds. (28)

~ S C

The line integral resulting from this transforma-
tion is zero when S is closed, but otherwise just
cancels the contour integral in (27). Inversely,
only the presence of the contour integral leads
to a zero divergence and transverse waves at
great distances from the opening S,. From (II)
and the relation k'/i(dE= i(d—p follows immedi-
ately the result

F 1 The contour on which the fields and their derlvha
tives are discontinuous. The lower n y' g

IG. . e

zone SI should be nI.

ttler'swhic
resul

i
4vrE(X', y', S') = — — Vt)'dH& dS

z(dE

1
V'XH(x', y', s') = —— [(nXH)) VV&

4~ sI

+kEQ(nXH)) —iH)E(n XE&)X Vp]da, (30)

For the magnetic field one obtains

4 H(x', y', s')

h can be shown to be identical with Ko
V' E(x', y', s') = O.

I I ~fAn identical proof holds for H(x, y, .
Finally it will be shown that (24) a.nd (26)

satisfy (I) and (II).
QE) Xds —

( E)——P ~da. (25)
s, & an an)

1
VQE) ds+J~ [iddE(nXE&)((d

zcop,
~

~

~~

~—(nXH)) XVP —(n H~)VQ]da

1
VVE, ds+fVH, Xds

Zcvp
~

~

C

(26)
ap aH, )

s ( an an )
It remains o e st be shown that the fields ex-

pressed by these integrals are in fact divergence-
less and satisfy (I) and (II). Consider first the

/ Idivergence of (24) at a pomt x, y, s .

V' E(x', y', s')

i 1
v'pH) ds+ —Jf I idden(nXH)) vp

zcv~ 4x c 4~ s
~

~ ~

+ (n E))V'f]da
k' i k'

PH, ds ——
j~ (n E,)ada

zME O'Ir
~

~ ~

+— (nXH)) Vgda, (27)
4m SI

since the curl of the gradient is identically zero.
Furthermore

(nXH~) Vvgda
SI

(n vv)~XH))veda
SI

(n VXH)Vdd f,nsXV (HVQ)ds
SI SI

VVH, ds —( J (n )EdVd, s~

~~
~

c SI

V'XH(x', y', z')

1 zG06

VPH) ds+ J [i()n(n XsH)))is
4m c 4m

~~

~

~

+(nXE))XVQ+(n E))V4]«
= —iH)EE(x', y', s'). (32)

onl . Theh the operator Vv~ acts on Vt)t only.
at thelast integral takes account of the fact tha e

field equations are by hypothesis satisfied on Si.
Then
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The validity of (I) is established in the same
manner.

6. APPLICATION TO A RECTANGULAR SLIT

In Fig. 2 a rectangular slit is shown in an
infinite, perfectly conducting screen coinciding
with the xy plane. Plane waves coming from
the left are incident on this slit at various angles.
The n rmal to the slit surface is drawn to the
left and the intensity of the field is to.be calcu-
lated at any point whose coordinates are R', 0', p'

lying to the right of the screen. Then at suS-
ciently large distances

r~R' —x cos p'sin 8' —y sin p'sin 8'. (33)

Consider first the case of a normal incidence,
with the electric vector polarized along the x axis
and of unit intensity. The field at great distances
from the slit obtained by evaluating (25) is

Fi|-. 2, Coordinate system for calculating the diRraction
by a rectangular slit.

tangential component of E must be zero at
8' =~/2, while the magnitude of the initial
normal component is doubled. In the present
instance these conditions are expressed by

4n.Eg '= —ik(1+cos 8') cos y'A,

4~E„'=ik(1+cos 0') sin y'A, (34)

Eg =Ei '(8') +Eg '(~ e'), —

E„.=E„'(8')—E„'(s.-8'), (36)

where

Eg' ——0,
where Eg and E~ are normal and tangential
components of the res@/tant field. Applied to
(34) this gives

sin (~ka cos y' sin e')
A=4

kcosp sing

sin (-', kb sin p' sin 0') ez~~'

X
k sin y'sin O' R' (35)

Now if this solution is extended analytically
towards the screen, it is evident that it does not
vanish on the plane a=0, as required by the
boundary conditions. In fact nothing has been
stated as to the location of the surface S2 which
closes the slit surface Sj, and one is free to choose
it in the way which is least liable to violate the
actual conditions. Thus, in the present case S~
may be closed by a surface S2 which lies just
behind S~ and over which it is assumed that the
field vectors vanish. This is equivalent to saying
that the field functions (34) can be continued
a.nalytically into the region for which 8')m. /2.
The effect of the screen or bafHe is now taken
into account by assuming it to act as a perfect
reHector. The phase relations after reHection are
determined by the condition that the resultant

4~Eel = —21k cos p A ~

4~8„=2ik cos 0' sin q'A.

The energy How or intensity of the diffracted
wave is proportional to the sum of the squares
of these quantities. The solid curves of Fig. 3
are plots of the intensity in the vertical plane
q'=0 for several ratios of slit breadth to wave-
length. Similar curves are drawn in Fig. 6 for
the horizontal plane y'=s/2.

In the more general case the direction of
propagation of the incident wave makes an
arbitrary angle n with the s axis. If the polar-
ization is parallel to the x axis, the components
of the incident wave are

ez7z(y zin a+z zoz n) H—( / )~ cos E, '

(3g)

H. = —(e/p)& sin nE,

The diffracted field is found from (25) to be

4~Eg '= —ik cos y'(1+cos 8' cos n)A,

Eg ' ——0 (39)
47rEr '=ik sin ip'(cos 8'+cos n)A,
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Fedos. 3—8. Polar diagrams of the distribution of field
intensity, showing the diffraction of a plane wave by a slit
in the plane of incidence. The long arrow indicates the
direction of incidence and the short arrow indicates the
polarization of the field at the slit. The numerals on
the curves indicate the width of the slit in wave-lengths
(a/X or b/P ).

FIG. 5.
and the resultant field to. the right of the plane
screen obtained by adding the reflected wave is
identical with (37), but with n now entering
into A in the form

sin (-', ka cos y' sin 0')
A=4

k cos q' sin 0'

sin -', kb(sin &p' sin 8' —sin a) e'"s'
X

k(sin p' sin 8' —sin n)
(40)

FrG. 6.

In Figs. 7 and 8 the solid curves represent plots
of intensity in the horizontal ys plane for a=30'
and n=60', The distribution in the vertical
plane is identical with Fig. 3.

In the alternate case the magnetic vector is
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The diffracted field calculated from (25) is then

4irEg '=ioop sin y'(cos 8'+cos a)A,
(42)

47rE, '=ioolz cos y'(1+cos 0 cos n)A,

and the resultant field after reflection is

4zEg =2tcop sin y cos nA,

47rEy = 2'Loop cos y cos 0 cos 0!c4,
(43)

where A is defined by (40). The solid curves of
Figs. 4 and 5 represent plots of intensity in the
horizontal plane. The distribution in the vertical
plane is identical with Fig. 6.

It is exceedingly interesting to compare these
results with some calculations made recently by
Morse and Rubenstein, " who have carried
through the two-dimensional problem of diffrac-
tion of an electromagnetic plane wave by an
infinite slit. The two methods should lead to
approximately the same distribution in an
equatorial plane. The intensity plots obtained
from this rigorous solution are shown as dotted
curves. The correspondence on the whole is

polarized vertically along the x axis and the
incident wave is defined by

siis(z sin a+z oos a) E — (~/&)'s cos &Il
(41)

E,= (p/e)~ sin nH,

remarkably good. It will be noted that the most
marked deviation occurs in the immediate
neighborhood of the screen and probably arises
from the errors which are fundamental to the
present method: the assumption of unperturbed
distributions over the slit and the manner in
which the reflection problem has been handled.
The authors have discarded two points in Figs.
7 and 8 which fall on the curves published by
Morse and Rubenstein" and which lead to lobes
for which it is difficult to account. This neglect
may or may not be justified. Professor Morse
has kindly put the original data at the disposition
of the authors but insufficient calculations were
made to settle the matter one way or the other.
It is hard to reconcile the anomalous occurrence
of these lobes with the close correspondence of
all other points. Whatever the answer to this
question, the results give strong support to the
belief that Eqs. (25) and (26) can be applied to
the calculation of diffracted radiation with
assurance of reasonable accuracy. In the case of
radiation from hollow tubes and horns, an
extension to take account of the internal re-
flected wave is no doubt possible based on the
methods employed in acoustics under similar
circumstances.

» P. M. Morse and Pearl J. Rubenstein, Phys. Rev. 54,
895 (1938).


