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The Diffraction of I-Rays by Small Crystalline Particles
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The problem of the diffraction of x-rays by small crystalline particles is discussed by the
methods of Fourier analysis, and the calculation of the intensity of the x-ray scattering from a
single particle is reduced to the evaluation of a simple Fourier transform. This approach leads
immediately to the interference functions for the parallellepipedon and the octahedron as ob-
tained by other authors. In addition, it makes possible the detailed discussion of the inter-
ference functions for the tetrahedron, the rhombic dodecahedron, the ellipsoid, and the elliptic
cylinder. The method is shown to be applicable to any polyhedron. A simple method is also
given for calculating the interference function and its integral breadth for speci6c directions of
departure from the whole-numbered points. This is applied to obtain a partial discussion of the
scattering from the tetrahexahedron and the trisoctahedron.

1. INTRoDUcTIoN

HE phenomenon of line broadening in x-ray
and electron diffraction offers a very valu-

able method for the determination of the size
of crystalline particles whose linear dimensions
are less than 1000A. The ultracentrifuge, the
ultramicroscope, and osmotic pressure measure-
ments have also been applied to particle size
measurements in this range. These methods,
however, possess two disadvantages in common.
First, they do not distinguish clearly between

single particles and aggregates of particles; and
second, they give only indirect information as
to the shape of the particles. The diffraction
method measures the size of the individual
grains regardless of their relation to one another,
and in addition gives a direct indication of the
shape of the particles.

In 1918 Scherrer published a simple formula
connecting the breadth of the lines with the size
of the particles of the substance producing the
pattern. The first detailed treatment of the
theory of a method for obtaining the size and

shape of particles was given by v. Laue. ' His

paper has provided the basis for almost all

subsequent work' in this field. However, recent
work' ' has indicated that some of the simplify-

M. v. Laue, Zeits. f. Krist. 64, 115 {1926).' For bibliography see G. H. Cameron and A. L. Patter-
son, Symposium on Radiography and X-ray DiBraction
Methods, Philadelphia 1937, Am. Soc. Testing Materials,
pp. 324-338.' C. C. Murdock, Phys. Rev. 35, 8 (1930).

4 M. v. Laue, Ann. d. Physik 20, 55 (1936).' A. L. Patterson, Phys. Rev. 49, 884 (1936)~

ing assumptions made by v. Laue' are inadequate
for an exact discussion of the phenomena ob-
served. A more extensive treatment of the
problem seems therefore desirable. Following
v. Laue the problem can be treated in three
stages: (i) The calculation of the scattering
from an isolated crystalline particle which
possesses a definite orientation with respect to
an incident beam of parallel radiation. (ii) The
calculation of the scattering of parallel radiation
from a mass of particles oriented at random but
of the same size and shape (Scherrer problem).
The effect of a distribution of size can also be
discussed at this stage. (iif) The detailed analysis
of a given experimental arrangement, taking into
account the configuration of the camera and the
sample, the size of the slits or aperture, the
divergence of the radiation, the absorption of
the sample, etc.

This paper will present a treatment of the
first stage outlined above, and a detailed dis-

cussion of the dependence of the diffraction
pattern of a single particle on its size and shape
will be given. In a second paper, these results will

be applied to the analysis of the Scherrer
problem. The general approach is similar to that
of v. Laue' 4 but the details of the method are
quite different. The particle is represented by a
distribution of scattering power which is periodic
within its boundaries and zero outside. ' The
methods of Fourier analysis can then be applied
to the discussion of the diffraction problem.

Cf. A, L. Patterson, Zeits. f. Physik 44, 596 (1927).
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2. DIFFRACTION FROM A SMALL CRYSTALLINE represented by the Fourier series
PARTICLE OF ARBITRARY SHAPE

Let us consider a distribution of matter in

space whose scattering power can be represented
by a density function p(x;) electrons per unit
volume. The coordinates (x,) are the three com-
ponents of the vector r from the origin to the
point (x„) expressed in terms of three non-
coplanar vectors a; by the relation

8

r=Px„a;.
1

I= lac(x) I y(A, ) I
', (2)

in which Cis independent of p(x,) and is a known
function of the angle between s and so, of the
state of polarization of the incident beam, and
of certain universal constants. The function
p(A, ) which may be called the interference
function, is given by the Fourier transform'

p(A ) vp j Jl Jl p(x,)e—' '
*'*'fdx&dxmdx8, (3)

If a parallel beam of monochromatic radiation
of wave-length ) and intensity Io, falls on the
distribution p(x;) in the direction of the unit
vector so, and we observe the scattered intensity
I in the direction of the unit vector s, it can be
shown that

c(x,) QPPF($.)e2wizh;zg
hi ———oo

(6)

q(A;) =vpj~J"J/c(x;)s(x, )e 'v"' 'dx~dx2dx~ (9)

and is thus the Fourier transform of the product
of two functions. It may consequently' be
written

p(A;) =vo j C(t;)S*(t;—A, )dt,dt2dta, (10)

in which C(t,) and S(t;) are the Fourier trans-
forms of c(x;) and s(x;), respectively, and S* is
the conjugate complex of S.

The Fourier transform of c(x,) is given by the
integral

in which F(k;) is the structure factor for the
reflection of Miller indices (k;). Outside the
boundary, the density is zero. We can now
define p(x;) for our particle by the relation

p(x;) =c(x;)s(x,),

in which c(x;) is defined by (6) throughout
space and

=1 inside the particle boundary
=0 outside the particle boundary.

The integral (3) takes the form

in which vo ——(a~I a&a8)) and the quantities A; are 00

coordinates in the reciprocal space, defined by Cp, ) (2x)—~ I I )pppF(l, ,)
the relations

kH = ZA,b;, (4a) k = 2m./X, (4b) Xe'*" "' "'*'dx,dx2dxg. (11)

H=s —so, (4c) IHI =2 sin y/2. (4d)

In (4a) the vectors b; are the reciprocal lattice
vectors associated with the vectors a; by the
relation

(a,b;) = 8,;,

in which 8;; is the Kronecker delta.
We shall assume that the particle under dis-

cussion is a small perfect crystal. Within a
definite boundary its electron density can be

~The double use of i as a subscript i=1, 2, 3 and
i= g (—1) should not lead to confusion.

This integral may be evaluated by the use of an
appropriate limiting process and can be shown
to be a delta-function for the lattice of points
t;=27fh;; the integral over the peak at 2mb;
having the value (2')&F(k;)f. With this informa-
tion we can evaluate the integral (10) by in-
spection and write

w(A') = (2v)~vo+QQF(h, )S*(2x&;—A;). (12)

See for example: G. A. Campbell and R. M. Foster,
Fourier Integrals for Practical Applications (Bell System
Monograph 8584, 1931), p. 39, pair 202; or Titchmarsh,
Theory of Fourier Integrals (Oxford 1937), p. 50, $2.1.
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Thus the interference function y(A;) is built up
of a number of similar functions having their
respective origins at the whole-numbered points
of the reciprocal lattice. It then remains to
evaluate the transform*

S(t ) = (2pr) i t t ~e—'~'***'dx&dxpdxp (13)
J

for particles of various shapes, the integral being
taken throughout the interior of the particle.
This function S(t~) determines completely the
effect of the size and shape of the particle on
the diffraction pattern and is not directly de-

pendent on the crystal lattice. For convenience
we shall define a function 4(t,) by the relation

4'(t„) = (2pr) lvoS*(t;)/U, (14a) 0'(0) = 1, (14b)

in which V is the volume of the particle. We shall

call this function the shape function.
We note that in the present section, the only

restriction on the vectors a; is that they be three
noncoplanar translations of the crystal lattice.
We have not assumed that they are a primitive
triplet, and they are not necessarily orthogonal.
The results obtained are therefore quite general,
and can be applied to particles of any shape and

any crystal system. The only limitation is
introduced by the practical problem of evaluating
the integral (13) within the boundary surface of
the particle.

3. CALCULATION OF SHAPE FUNCTIONS

The general problem of cataloging the sur-

faces inside of which the integral (13) can be
evaluated is beyond the scope of this paper.
Our main interest is in its evaluation for the
various crystallographic polyhedra. Any poly-
hedron with plane faces can be built up from a
number of irregular tetrahedra each having one
vertex at an arbitrarily chosen origin within the
boundary surface. Since the integral (13) is

obviously additive for noninterpenetrating solids

the shape function for a polyhedron will be the
sum of the shape functions for its constituent

~ This integral is obviously similar to that obtained by
v. Laue, reference 4, Eq. (7) by a different method. We
shall here evaluate it directly instead of by a transforma-
tion to a surface integral.

tetrahedra. The shape function for a general
tetrahedron with one vertex at the origin is
evaluated below. It is therefore possible to
evaluate such a function for any polyhedron.
We also note that the ellipsoid and the skew
elliptic cylinder can be transformed to the
sphere and the right circular cylinder by appro-
priate linear transformations. The integral (13)
for these latter shapes can be readily evaluated
in polar and cylindrical coordinates, respectively.

Let us now consider the tetrahedron with
vertices at the four noncoplanar points x;=0
and x;=M;;(i, j=1,2, 3). We transform to a
new coordinate system P, in which the vertices
are the origin and the three points (100), (010),
(001). We then have*

xi ~pi[4

the Jacobian of the transformation being the
determinant J=

~
M, ;~. If now we write

the shape function for the general tetrahedron
can readily be obtained in the form

+(f;) = (6i) ( (rgr, rp)
—'

3'

+P[e"'r;(rp —r;)(r; —r;)] ' (15a)

(16b)

We note that this function is complex, in common
with the shape functions of all particles which
do not possess a center of symmetry.

The particles for which shape functions have
been calculated in the present paper all possess
the following simple properties. They make
intercepts x;=M; on the axes. Thus when trans-
formed to the coordinate system

they make unit intercepts on the axes. . In this
system, the polyhedra become the symmetrical
polyhedra of the cubic system, the ellipsoid
becomes the unit sphere and the skew elliptic
cylinder becomes the section of the unit right
circular cylinder bounded by the planes &3= ~1.

The shape functions which have been calcu-
lated are given in Table I. The interference
functions can then be derived from them by

~With summation over indices occurring in pairs.
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TABLE I. Shape functions: U;= M;(Zmh, ;-A;).

SHAPE FUNCTIONS

1. Parallelepipedon I100)
3

e{v;)=IILsin v;jv; jl
2. Octahedron I111I

+(V;) =6xt V; sin V;(Vt, —V2) '(V2 —V ) 'j
1

3. Tetrahedron (111I
U;(i cos U; sin U; sin Ut, —sin V; cos U; cos Vt,)

( U~2 U'.2) ( V.2 U.2)

4. Rhombic Dodecahedron f110I
16ZI U; sin -', U;Leos ~2U; —cos ~2U; cos -', Ut, )I

(Ul+ V2+ U3)( Ul+ U2+ U3)(Ul U2+ U3)(U1+ U2 —U3)
5. Ellipsoid

e(v;) =3R '{sin R-R cos R); R2= UI + U22+ U32

6. Elliptic Cylinder
+(U;)=2{pv) J (p) sin U; p = U +U

MIM2M3W

47t-3

6m2

4~2

N/(M lMIMtt)

4/3

8/3

means of the expression

y(A„.) = VQQQF(jt;) +(U;), (17a)

U, = M, (2s.h; —A;), (17b)

obtained by combining (12) and (14). We see
that each whole-numbered point (tt„) in the
reciprocal space is surrounded by a function

VF(h;)%(U,), (17c)

whose form depends on the shape of the particle
and whose extent depends on the scale factors
M„ in (17b) and through them on the size of
the particle. M. v. Laue' was the first to discuss
the significance of functions of this type in the
reciprocal space. From them we can calculate
the intensity ratio I/Io (for given s and so) from

(2) by making use of the relation (4).
Laue' has also introduced the concept of the

integral breadth of an intensity function. This
he defined as the ratio of the integral of j y(A~) ~'

over the neighborhood of a whole-numbered
point to its maximum value. It is readily seen
that the breadth S' so defined is given by*

W=vo'(2m)'V 2 '
~ ~S(t;) ~'dt, dt2dt3

= (2s.)'vg V '. (18)
~ Since S(t;) is the Fourier transform of s(x;), the result

(18) follows from the well-known identity (cf. CampbeB
and Foster, reference 8, p. 8, pair 202 footnote)

fff (s(x;}('dxgdg, dms fJJ (S(t;=) ('dt, dtmdta

and the special form of s(x;) given by (8). See also Titch-
marsh, reference 8, formula (2 ~ 13), p. 50.

If we write
U= Nvo,

in which N is the total number of unit cells in
the particle, (18) takes the simple form

W= (2s.) '/X. (20)

The breadth lVis thus inversely proportional to
the number of unit cells N and is independent
of the shape of the particle. However, in using
this concept of breadth in setting up approxima-
tion functions for

~
p(A, ) ~' v. Laue was able

to restore the dependence on the scale factors M;.
Values of MiM2M38" together with the corre-
sponding values of X/(M&M2Mg) are included
in Table I.

It should be pointed out that the shape
function obtained here for the parallelepipedon
has already' been shown to be equivalent to
the form obtained by M. v. Laue in his first
paper on x-ray diGraction. The function ob-
tained for the octahedron is identical with that
given by Murdock' Eq. (8); while the result
obtained by v. Laue and Riewe" can also be
reduced to this form.

Obviously, it is possible by the present method
to calculate shape functions for polyhedra other
than those given above. The polyhedra of lower

A. L. Patterson, Zeits. f. Physik 44, 596 {1927).This
point has also been discussed more recently by K-H.
Riewe, Zeits. f. Krist. M, 85 {1937).

M. v. Laue and K-H. Riewe, Zeits. f. Krist. 9S, 414
(1936), Eq. (12}.
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symmetry which involve only 0 and 1 as Miller
indices are very simple to calculate; while those
which involve mixed indices (i.e. , I kkO I, I kkk I,
or I kkkI) are somewhat more complicated, but
can readily be obtained if the necessity arises.

4. THE FORM OF THE INTERFERENCE FUNCTION

FOR SPECIFIC DIRECTIONS

All the information which we may hope to
obtain about the shape of the diffracting particle
is contained in the function

~
y(A;) ~'. In par-

ticular, the simple derivation of the Scherrer
equation given by W. L. Bragg" indicates that
the breadth of an x-ray deflection depends to a
large extent on the variation of the function
~%'(u~) ~' along a line perpendicular to the plane
producing the reHection. While this aspect of
the problem will be dealt with in more detail in
a later paper, we can obtain considerable infor-
mation as to the effect of particle shape on x-ray
diffraction by considering the variation of
~%'(u,) ~' along the directions perpendicular to
the principal planes of the crystal. The departure
from spherical symmetry of this function will

give us a direct measure of the possibility of the
determination of the shape for a given case.

The shape of the particle depends on (i) the
crystallographic form of its bounding faces,
(ii) the scale factors M;, and (iii) the shape of

» W. L. Bragg, The Crystalline State (London, 1933),
Vol. I, p. 189.

the elementary cell. We shall confine ourselves
here to (i) and reserve the discussion of (ii) and
(iii). For this reason, we shall assume that
3f~

= M2 = 3II3 and that the lattice is cubic.
Then, if u be the departure from

'

the whole-
numbered point measured in the direction of
the normal to the plane in question, we can
define a function tf(u) which will give the varia-
tion of +(U~) along that norma. l. Functions P(u)
for the shapes of Table I are exhibited in Table
II. They are obtained from the functions of
Table I by the following substitutions

PLANE

(100)
(110)
(111)

Uz

0

Us

0
0

P*(u) = V ')~ A(x)e ' dx, (21)

in which A(x) is the area of section of the par-
ticle by the plane of indices (k;) whose per-
pendicular distance from the origin is x. We
have used this approach to check the functions
of Table II, and thus indirectly those of Table I.

We can now define an integral breadth B~

in which v =u/g2 and w =u/Q3. Limiting
values must be taken where necessary.

The function f(u) can also be obtained di-
rectly from (13). It is given by the relation

,TABLE II. Shape functions p(u) for specific directions. (For notation see text. )

SHAPE DIRECTION Bl

4. Rhombic Dodeca-
hedron f110}

5. Sphere

6. Circular Cylinder

$100j
L1101
I 111j

2. Qctahedron f 111I (100$
Liiog

3. Tetrahedron f111.) $1001
L110)
$111j
E100
L110j
L111j
Lhkl j
Lh~oj
$001j
Lhki j

sin u/u
sin' v/v'
sin' m/m3

6(u —sin u)/u'
3(sin v —v cos v)/v'
3$(1+m') sin m —m cos m j/(4m')

3(sin u —u cos u)/ua
3(2v —sin 2v)/(4v')
3e '"f $4gr —sin 4' j+iLcos 4m+8m2 —1)I j(32m')

16 sin —',.u(1 —cos —,'u)/u3
sin —,'v(v cos —,'v+2 sin -',v)/v
8 sin m(1 —cos &m)/m3

3(sin u —u cos u)/u'

2JI(u)/u
sin u/u
2 sin vJI(v)/v~

3.142
2.962
2.993

5.655
5.332
5.509

3,770
3 999
4.897

4.817
4.813
4.807

2.783
2.834
2.851

5.248
5.133
5.097

3.630
3.711
3.754

4.626
4.590
4.577

3.142 2.783
2.962 2.834
2.993 2.851

3.112 2.888
2.934 2.825
3,032 2.805

2.614 2.517
2.772 2.573
3.396 2.603

3.035 2.914
3.032 2.892
3.028 2.883

3.395
3.142
3.162

3.233
2.783
3.031

3.133 2.983
2.899 2.568
2.918 2.797

3.770 3.630 3.039 2.925
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TABLE III. Integral breadths for compLex polyhedra (h&k).

SHAX ES

Tetrahexahedron

Trisoctahedron

FORM

I210I

fhhkI
221I

a

h/(h+ k)

2/3

h/(2h+k)
2/5

N/M&M2M3

32/9

4n
8/5

DIRECTION

[100j*
(»0)
E'100j
L1101

t100j
L100j

Bl
m (8+7a) /(15m)

v2~(1 —90.+450,'+3n')/(600. ')
3.979
3.971

(3+20 —6 ')/(15 )
5.257

PI

n&By
&~BI

3.037
3.030

(~/2) &a&
3.074

*The shape function for the tetrahexahedron [kk0] in the [100] direction has also been obtained in the form

P(u) =2 [(1—3a+3a~) sin au —au(1 —a) (1—2a) cos au-a3 sin u] [a'u'(1 —a)~] 1.

for the function f(u) by the relation

(22)

denote by pr and pq, are also included in Tables II
and III. They are connected with the corre-
sponding 8, for a given particle, by the relation

p =X'(8M~My3II3) (25)

which can be evaluated directly. From (21),
however, we can obtain an expression for J3~

which is strictly analogous to (18), i.e. ,

Pr =2~@'—~jt +2(~)dg (23)

We can thus obtain Bl from the curve of areas
without calculating P(u). The values of Br
given in Table II have been checked by both
methods. A few values of Bi for the twenty-
four-fold forms of cubic holohedry obtained from
(23) are given in Table III.

Another method of characterizing the breadth
of a function of the type P(e) is by means of
the half-value breadth 8 ~ defined by the equation

10(&~/2) I'=(1/2)
I 0(0) I' (24)

Values of B~ for the functions which have been
computed are also given in Table II.

In order to be able to compare breadths for
particles of different shape, it is necessary to
establish some standard property which all

particles must possess. Murdock has proposed a
comparison on the basis of equal volumes. This
is also suggested by the relation (20) and will

be adopted here. We shall compute values
of By and B; for particles having a volume
V=83fIM2M3vo. Such values, which we shall

A comparison of the values of P for the various
shapes suggests that it will be difficult to recog-
nize complex forms from the measurements of
breadth alone. In order to do this an accurate
knowledge of the shape of the interference
function is required, and this is difficult to obtain
by means of x-rays from a random oriented
powder sample. It may be that electron diffrac-
tion, following the suggestion of v. Laue, 4 may
prove more fruitful for this purpose. Our results
do, however, indicate that the approximate
shape of a particle can be obtained from accurate
x-ray measurements. . It should certainly be
possible to decide which of the simple shapes of
Table II provides the closest approximation to
the shape of a particle belonging to the cubic
system. In investigating crystals of lower sym-
metry it will be necessary to calculate the
interference functions for the simple forms of the
system in question, and to prepare a table
corresponding to Table II with which to compare
the experimental results.

It is not profitable to discuss at this point the
relative merits of the half-value breadth and
the integral breadth as indices of particle size
or shape. It should however be noted that for
the functions calculated, the integral breadth is
consistently higher than the half-value breadth
by amounts varying from 4 to 30 percent.


