
CHANGE OF RES I STAN C E

In contemplating long operating life the ques-
tion of vacuum deserves consideration. Some
observations were made last year on power
Thyratrons which had been in operation for two
years at constant current (175 amperes, 120degree
conduction). These tubes were tested in the

laboratory for ability to operate at high voltage,
and the results compared to initial tests on the
same tubes. In every case the voltage tolerance
was found to be higher than at the start. This
shows that vacuum is not impaired by operation
under these conditions.
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The general theory of the Hall effect and the change of
resistance in a magnetic field expresses these quantities in
terms of a number of integrals over the surface of the Fermi
distribution. The values of these integrals depend upon the
form of the electron energy and the relaxation time as
functions of the wave vector. If the free electron situation
is assumed, the Hall eEect has the right order of magnitude,
but there is no change of resistance. This can be seen from
a qualitative consideration of the eHect of the fields on the
distribution function. A general form for the functions in
other cases can be obtained as an expansion in spherical
harmonics with the symmetry of the crystal lattice. The

results can then be expressed in terms of the coefficients
in this expansion. When only the first two harmonics are
retained, the computed change of resistance and Hall eA'ect

are close to the observed values. However, contrary to the
available observations, the ratio of the transverse to the
longitudinal change of resistance shows a minimum value
of about four. It seems improbable that this result could
be changed in any material way by the inclusion of higher
series members, so that if the experimental results are to
be taken as reliable, doubt is thrown on the general method
of treatment.

t 1. INTRQDUcTIoN

CHANGE of resistance in a magnetic field~ cannot be interpreted in terms of a free
electron picture. But since such a change is ob-
served in the alkalies, it is of interest to see if it
can be understood as a small departure from the
free electron situation. Jones and Zener' have
given a theory for this eGect that seems to give
quite satisfactory numerical results in the case of
lithium. However, their approximate method of
evaluating the integrals made it necessary to
apply, later, an estimated correction factor of
about six. This paper attempts to give a method
of evaluating the integrals that will enable one
to get analytically as good an approximation as
is desired, provided the surfaces of constant
energy are not too irregular. Also it is not as-
sumed that the relaxation time is a function of
the energy only. f2 gives a summary of the

'H. Jones and C. Zener, Proc. Roy. Soc. A145, 268
(1934).

general theory, in Wilson's' notation, and f3 gives
a physical picture of the situation, in which par-
ticular attention is given to the free electron
case. In (4 the energy and the relaxa, tion time
are expressed in terms of series of cubically sym-
metric spherical harmonics. By a proper choice
of independent variables, the integrals can all be
evaluated in terms of the coefficients of the
spherical harmonics. If the first two terms of the
series are taken as a satisfactory approximation,
expressions are obtained for the conductivity,
the Hall coefficient, and the two coefficients, Bf,
and B~, of the change of resistance in a magnetic
field. In )5 the conclusions that may be drawn
from these expressions are discussed. It is found
that theory and experiment give radically dif-
ferent values of B~/B~. Experimentally this ratio
is about unity, while no choice of parameters can
give a theoretical value less than 4. The expres-
sions for B~ and B~ show that the variation of the

"" A. H. Wilson, The Theory of Metals (Cambridge Univ.
Press, 1937), Chapter V.
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relaxation time with direction, as well as with
energy, is nearly as important in all these effects
as the fact that the surfaces of constant energy
are not spheres.

f2. GENERAL RESULTS

We will specify the state of an electron in the
usual manner by the wave vector k whose Car-
tesian components are (ki, ko, ko). The energy
eigenfunctions of the electrons when unperturbed
by external fields can be taken as

P&(r) =exp (ik r)u3(r),

where Ni, (r) has the periodicity of the lattice.
The number of electrons per unit volume whose
wave vectors lie in the range (dki, dko, dko) is

(1/43') f(k)dkidkodk3

We omit any dependence on r since we are going
to be interested only in the case in which the
temperature and composition of the metal are
independent of r.

If there exist in the metal an electric field, E,
and a magnetic field, H, then the condition that
the distribution function, f(k), remains constant
in time under the inAuence of the fields and the
collisions of the electrons with the lattice points
is given by Boltzmann's equation,

—(3/I'3) [E+vo XH/c] grad f3.
+(f fo)/r(k) =0 (1)

where —e is the charge on an electron, vI, is the
velocity associated with the state k, and fo is the
value of f when E=H =0. We have assumed that
a relaxation time, r(k), can be defined so that we
can use this form of Boltzmann's equation. A
relaxation time can be used if the temperature is
greater than the Debye characteristic tempera-
ture, and perhaps under other conditions. Eq. (1)
is only valid if oHr/2mc«1

To solve Eq. (1), take the direction of the
magnetic field as the s axis and substitute for v
its value in terms of k,

V3 = (1/5) grad. o Z(k), (2)

where E(k) is the energy associated with the
state k. It should be noted that B refers to the
energy of an electron while E always refers to the
electric field.

Let
f=fo @—(k)&fo/a&

The equation which C(k) is to satisfy is

C (k)/r(k)+ (3/fi)E grad. 3 8
—(oH/i33C) QC (k) =0, (3)

where the product of E and C is neglected, and
0 is the operator

BB 8 BB 8
0=

Dk2 BkI. Dkg ~kg

This process is equivalent to a development of f
as a power series in the components of E and the
neglect of all terms of higher than the first degree.

To solve Eq. (3) we write C(k) as a power
series in II, and obtain

4(k) = —(3/A, ) I rE grad. Z

+(oH/53C) rQ(rE grad. Z)

+(oH/k'c)'rQ[rQ(rE grad. Z)]+ I. (4)

This is one particular integral of (3) and may or
may not be the solution we desire. The general
solution of (3) is obtained by adding to (4) the
general solution of

C (k) = r(k) (oH/Pic) QC (k)

= (r Ho/I'c) i[gr daC3(k)] [g. rad. ~ E(k)]Xe3,

where e3 is a unit vector in the k3 direction. Con-
sider the curve of intersection of any surface of
constant energy. with the plane k3 ——0. The vector
(grad. o E) Xeo will be directed along this curve.
In all cases of interest Z(k) is such that this
vector is directed in the clockwise sense of
describing the curve. Since r(k) is essentially
positive, our equation shows that the component
of grad. ~ 4 in the direction of (grad. 3E)Xeo is
always of the same sign as C. Hence if we traverse
our curve in the clockwise sense,

~
4

~

will increase
unless 4=0. Therefore the only single-valued
solution of the homogeneous equation is C =—0.
Hence (4) is the desired solution.

The reason that we can terminate the series in
the components of E with the linear terms while
we must include at least the quadratic term in
the series in II is that the magnetic force is very
much larger than the electrostatic for electrons
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whose representative points are at the surface
of the Fermi distribution. If the current density
in silver is 10 amp. cm ', and if the magnetic
field is 1000 gauss, the magnetic force is 10'
times as great as the electric force.

We can get expressions for the conductivity,
the Hall coefficient, and the change of resistance
in a magnetic field by substituting the value of C

found above in the equation giving the current
density,

J= —( /4p~') v,f(k)d V

=( /p4 'pk)Jt gr ad kE(.afp/BE)CdV,

For those metals in which E(k) and r(k) are
even functions of ki) of k2, and of k3, we find that
the electrical conductivity in the absence of a
magnetic field is

o =I,/E, = (p'/pk')Ig,

that the Hall coefficient is

R =E„/HJ~=E„/HoE, = —(4p'/cp) I~/I~I p, (7)

and that the coefficients of the change of re-
sistance in magnetic fields that are perpendicular
and parallel, respectively, to the direction of the
current are

B,= (op o) /oI. IP—= (p/k'c) 'I4/IgI p

&i= (~p o)/oI—Z'= ( /kp'c)'I„. /I, .

By Schwarz's inequality the change of resistance
is always an increase. These formulas are
equivalent to those given by Wilson. 2I,= -)t,(af./BE)(BE/Bk, ) d V,

and
where d V is an. element of volume in k-space.

To do this we introduce the following abbre-
viations:

Ip
—)"r(afp——/BE) (BE/Bk p)'d V,

Ip )t r(afp/——B—E)(BE/Bkp)'d V,

I4 ——I2I6 —I72)

t Bfp BE ( BE/
n .n~ ~

~
dV

J BE Bkp E Bkp)

t. Bfp
n( ~ [ dV, (S)

()E E gk3)

t af, aE p BEI
Ip= T n Tn( r (

dV
BE Bkg & Bkg~

oaf, pBEq
n] .—/

dV,
BE E Bkg)

t af, aE ( BE)
I7 rn 7 —— dv

BE Bk& & Bkpl

Bfp BE t' BE)
n] ~ (d V.

J BE Bkp ( Bkg)

The second form of each integral is obtained by
integrating the first form by parts.

f3. PHYsICAL PICTURE

A careful study of the above equations enables
one to get a physical picture of what is going on.
In the absence of external forces, the distribution
of representative points in k-space is given by
the Fermi function, fp(k). The density of dis-
tribution depends on the energy only'. The
application of a force, F, causes the distribution
of representative points to drift in the direction
of the force, since rate of change of the state of
an electron is given by

dk//dt = F/k.

When we assume the Boltzmann equation in
the form of Eq. (1), we are really assuming that
the effect of the collisions of the electrons with
the ions is such that the actual distribution, f,
differs at each point from the normal distribution,

fp, by an amount that is proportional to the rate
at which fwould tend to be changed by the drift
produced by the force. We are not assuming that
a representative point drifts for a certain time
or distance, on the average, before a collision
changes its state.

Our series solution of Boltzmann's equation is
really a solution by successive approximations
Rather than consider the effect of the drift
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produced by the external forces on the final
unknown distribution, we first calculate the
change in distribution on the assumption that
only the representative points of the undisturbed
function, fo, drift. Hence from Eq. (1) we see
that in the first approximation we must add to the
equilibrium distribution function the term

—rF grad. q fo

We get the second approximation by considering
the drift of those points given by the first ap-
proximation and obtain

—rF.grad. ~L —rF grad. ~ foj

Each additional term is found by considering the
action of the forces on the representative points
given by the previous term.

Since the forces on conduction electrons due
to magnetic fields in metals are, in general, much
greater than those due to electric fields, we
include the electric forces in the first term only
of this series of approximations. We do not
include the magnetic forces in this first term
since the drift produced by them is perpendicular
to v=grad. ~ E/fi It is, . th.erefore, along the
surfaces of constant energy and produces no
change in the undisturbed distribution. The
first approximation gives the ordinary conduc-
tivity, the second gives the Hall effect, and the
third gives the change of resistance in a magnetic
field.

Let us consider our picture of the free electron
case. We may assume complete degeneracy
since Sommerfeld and Frank' have shown that
the departure from complete degeneracy gives
only about one-ten-thousandth of the observed .

change of resistance in a magnetic field. There-
fore when no external field is applied, the density
of representative points is uniform inside a
certain sphere and zero outside. When an ex-
ternal field is applied, the change in the distri-
bution function is given by a surface density of
representative points on this sphere. We can
show this in Fig. 1 by taking a cross section in

k-spAce through the plane k 3 ——0. The circle
represents the interaction of the sphere with this
plane and the width of the surrounding band
indicates the surface density of representative

3A. Sommerfeld and N. H. Frank, Rev. Mod. Phys. 3,
1 (1931),

FIG. 1. The free electron case. Since the charge of the
electron is taken to be negative, the representative points
drift in a direction opposite to that of the electric field.

points. Black indicates a positive and white a
. negative surface density. For the case in which
the electric field is in the x direction and the
magnetic field is in the s direction, Fig. 1 (a)
shows the effect of the electric field on the undis-
turbed distribution. Fig. 1 (b) gives the second
approximation and shows the effect produced by
the action of the magnetic field on the surface
density of representative points shown in (a).
Fig. 1 (c) gives the third approximation and
shows the effect produced by the magnetic field
on the points that make up the second approx-
imation. The actual distribution, shown in (d),
is obtained by superposing these three terms.

It is evident that if the electric field is in the
x direction, then the current is not. But all the
effects are defined for the case in which the
current is in the same direction, with and without
the magnetic field. Hence the Hall effect arises
from the fact that to eliminate the current
indicated in (b) we will need to apply an electric
field in the negative y direction. Fig. 1 (c) would
seem to indicate that the current is less when we

have a magnetic field, that is, that the magnetic
field increases the resistance. But if we consider
the Hall effect of the electric field introduced to
suppress the y component of the current, we see
that if we have spherical symmetry, this effect
completely cancels out and there is no change of
resistance.

If the magnetic field is parallel to the current,
the application of an electric field yields, if we

have spherical symmetry, a first approximation
that has cylindrical symmetry about an axis
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parallel to the magnetic field. Therefore the
magnetic field produces no change in the dis-
tribution function and hence no change of
resistance.

If we do not have spherical symmetry, we
must remember that the velocity is in a direction
perpendicular to the surfaces of constant energy.
The interaction of effects is very complicated,
but, by a sufhcient extension of this kind of
argument, it can be seen in a qualitative way
that the effect of all departures from spherical
symmetry is a tendency to increase the resistance
in a magnetic field. If the departures are small,
the Hall effect is not greatly changed. If the
departures from spherical symmetry are large,
then by proper choice of the shapes of the
surfaces of constant energy it is easy to explain
the fact that the Hall coefficient is positive in
some metals.

fl4. CALCULATIONS

In the case of the monovalent metals we
expect that the surface of the Fermi distribution
will lie entirely within the first Brillouin zone and
will be nearly spherical ~ By expressing the de-
pendent variables in terms of spherical har-
monics, we can evaluate the integrals of f2 and
get simple expressions for the various coefficients.

Our integrals are all of the form

where Eo is the energy at the surface of the
Fermi distribution.

The partial derivatives that we find in our
integrands can be changed to the new variables
by means of the following formulas from the
calculus:

EaI = (k sino B cos rp
—k p sin |I cos B cos p

+k„sin p)(kks sin B) ',
Esp= (k sin' 8 sin po

—kp sin 8 cos B sin p
—k„cos pp)(kks sin B) ',

Ekp ——(k cos B+kp sin B)(kks) ',

where Zk» means the partial of E with respect
to k», keeping k2 and k3 constant; while kg means
the partial of k with respect to 8, keeping 0 and
q constant.

Now the lattices of all the monovalent metals
have cubic symmetry. Consequently when we
expand k(E, B, p) and r(E, B, op) in series of
surface harmonics, we need include only those
surface harmonics that have cubic symmetry.
The first two such surface harmonics are

Y'=1
and Y4' ——P4(cos B)+cos 4&pP, '(cos B)/168;

the next is of the sixth degree. I'„" is Ferrers'
associated Legendre function. Neglecting terms
of the sixth degree and higher in our expansion,
we write

I= )~(Bfo/BE) F(k)d V,

where d V= k' sin Odkdod p is an element of
volume in k-space. If we use as our independent
variables 8, 0 and y, this becomes

2~ w ~Bf (ak )I= —F(k)k' sin g~ ( dEdBd p,
o o ~ o (BE),, „

We can do this since E is a monotonic function
of k in the cases in which we are interested.
Near the surface of the Fermi distribution all
the factors in the integrand vary slowly com-
pared to Bfp/BE, while elsewhere Bfp/BE is prac-
tically zero. Pence

IEnp(E)
a=no(Eo), a'=

dE E= Ep
rp(EO) s

1 dn, (E)= nI(Eo)/no(Eo),
6 dZ E=EO

T= ri(Eo)/ro(Eo),

k= no(E)+nI(E) Y;,
7.= ro(E)+rI(E) Y4'.

Let us now transform the integrals of Eqs. (5)
by the use of Eqs. (10) and (11). If we expand
Lno(E)+n~(E) Y'3" Lno'(E)+n~'(E) Y'j" and

rp(E) + rI(E) Y4' j" by the binomial expansion,
all the integrations can actually be carried out
by means of formulas given by Gaunt. 4 If we
write

2x —F(k) k'
o aE E= EO

sin BdBd&p, (10) 4 J. A. Gaunt, TranS. Roy. SOC. 22S, 151 (1929), Ap-
pendix.
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and neglect the cubes of A, B and T compared
to unity, we get

Ii = Ig I3=——(4s./3) (t/a') a' {1+(4/21)
X [21A'+2A (T B)——B(T—B)j},

I,= (4x/3)'(4/77) (t/a') 4a'

X {597A'+46A(T B)+—37(T B)'}—,

I5= (4ir/3)(80/231)(I/a'. )'{3A+T B}',— (12)

I6= (4ir/3) (I/a')'
X {1+(4/231) [2220A'+600A (T B)—

—33B(T—B)+532 (T—B)']},
I,= (4m. /3) (t/a')'a

X {1+(4/21) [30A'+22A (T B)—
2B(T B)—+ (T—B—)'j}.

Substitution of these values in Eqs. (6)—(9) gives

0 = (4e'/3k') (t/a') a' {1+(4/21)
X [21A'+2A (T B)—B(T——B)']}, (13)

R = —(3~'/ceP) {1+(4/21)
X L

—12A'+18A(T —B)+(T—B)']} (14)

B,= (4/77) (3~2' /cpg, ') ~

X {597A'+46A(T—B)+37(T—B)'}, (15)

B~——(80/231)( 3's/0c&a')'{ A3+T B}' (—16)

We have eliminated t from the expressions for B~
and Bi by introducing 0 from Eq. (13).We are
to regard a as being determined by experiment.

(5. DIscUssIQN QF REsULTs

In the evaluation of these integrals we have
made three approximations. In the integration
over Z we have, as usual, assumed complete
degeneracy. We have stopped at the second term
in our expansions in surface harmonics and at the
square terms in our binomial expansions of k, k'

and r. If it seemed desirable, more terms could
be included in each expansion, but it does not
seem likely that the general results would be
changed much.

Reasonable values of the parameters, based on
Jones and Zener's" work on lithium, give the
correct orders of magnitude when inserted in the
expressions (13)—(16). The consideration of the
departures from spherical symmetry have a
negligible influence on 0. and R, but provide the
essential part of B~ and B~.

Since t and T always enter in the combinations
t/a' and (T B), we—get nothing by putting in a
relaxation time that varies with direction that
we could not obtain by suitable choice of the
shape of the surfaces of constant energy. How-
ever, the extra parameters would give a means of
getting better agreement between theory and
experiment if the shape of the energy surfaces
were given by other considerations.

If we consider the value of B&/Bi given by
Eqs. (15) and (16), we find that this ratio can-
not be less than the value, 4.08, obtained when

A/(T B)=1/6, —and that if A/(T B) does n—ot
lie between —0.07 and 5.5, B&/Bi will be larger
than 9. This disagrees with Jones and Zener's

theoretical results and with the experimental
results; in each the ratios are approximately one.
There seem to be two ways of explaining this.
One can say that the experimental results are
not to be trusted, or one can say that some point
has been overlooked in the development of the
theory of magnetic effects in metals.
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stages of the work.


