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The theories of Langevin and of Hassé and Cook for the mobility of ions in weak fields have
been generalized to fields of any strength. The random energy of the ions is assumed to have a
Maxwellian distribution, and the drift and random energies are both evaluated by momentum

and energy balances.

‘A Nideal theoretical treatment of the mobility

of ions in gases would consist in the solution
of the Boltzmann integral equation,! in which
the laws of continuity are applied to the motion
of ions in phase space. A solution may some day
be found through the equations published by
Pidduck?in 1915. He transformed the Boltzmann

equation into a Fredholm integral equation with

a symmetrical kernel and was able to perform
one of the six required integrations. In the
absence of an exactsolution, however, an approxi-
mate distribution function may be chosen, and
the parameters contained in it may be so ad-
justed that the equation is satisfied in the mean.
Any solution must comply with the laws of
conservation of momentum and energy, and these
may be taken as criteria. The energy of the ions
may be resolved into two parts, the drift and
random energies, and these may be taken as the
parameters. For simplicity the analysis is con-
fined to elastic impacts, to steady distributions,
to uniform densities in coordinate space, to low
ion concentrations, and to uniform fields.

An approximate function which differs from
the equilibrium distribution by a small added
term has been used by Langevin? in his theory
of mobility. In this theory the random energy is
set equal to the thermal energy of the molecules,
and the drift energy is evaluated by a momentum
balance. The theory is thus restricted to weak
fields. It is generalized to fields of any strength
by the adoption of a Maxwellian distribution for
the random energy of the ions which is free of
any restriction as to the amount of deviation

1 L. Boltzmann, Vorlesungen uber Gastheorie, Vol. I, p.
114; J. H. Jeans, The Dynamical Theory of Gases (Cam-
bridge University Press, third edition, 1921), p. 210.

2 B, F. Pidduck, Proc. Lond. Math. Soc. 15, 89 (1915).

3 P. Langevin, Ann. de Chimie et de Physique 8, 245
(1905).

from equilibrium. The distribution is expressed
by the equation

7y (P1—m1v)?
fi=——————exp [— ] (1)
(271"1%1}2711)7 2m1kT1

in which f; is the density of ions in momentum
space, and #; is the density in coordinate space.
my and p; are the mass and vector momentum of
an ion. 3nym;v® and $n.k7T; are the drift and
random energies per unit volume, the sum of
which is the total energy.

The molecules have the distribution of equi-
librium. This is expressed by the equation

P 2 [ P2’ ] @
=———exp| —|,
Y Qrmak o)t Imak Ty .

in which fs is the density of molecules in mo-
mentum space and #; is the density in coordinate
space, ms and ps are the mass and vector mo-
mentum of a molecule, and T, is the temperature
of the gas.

The laws of conservation for steady motion
are expressed by equating to zero the rates of

_change of the momentum and energy of the ions.

In a field of intensity E the ions take up mo-
mentum at the rate #:¢E, and energy at the rate
niev-E. They give up the momentum and energy

F16. 1. The deflection of the ion by interaction
with a molecule.
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THEORY OF MOBILITY

to the molecules of the gas at rates which may
be evaluated by integration over momentum
space of the product of the change in each
quantity per collision and the frequency of
collision.

In a particular interaction the ion and mole-
cule approach each other with a relative velocity
Vi, and separate after impact with a relative
velocity which has the same magnitude as v;2 but
a different direction. The velocity of the ion
itself is equal to the sum of the velocity of the
center of mass, and the fraction ma/(mi+ms)
of vi2. The velocity of the center of mass is
invariant in a collision. The velocity of the ion
after impact therefore lies on a sphere whose
center is at the center of mass. The deflection of
the ion is illustrated in Fig. 1. The change in
momentum p; —p; is equal to the product of the
reduced mass mma/(m1+ms), and the change
in vy2. The angle 6 through which vys is turned
by impact is a function of the magnitude of v;s,
and of the distance ¢ between the asymptotes of
the trajectories which the ion and molecule
describe about the center of mass. The magnitude
of the change in vy, is equal to 2v;, sin 4.

If p11, P12 and py3 are Cartesian components of
P1, the number of ions whose momenta lie in the
element dpndplzdpm iS equal to fldpndpudplg,
and if pg1, pse, and pes are components of pe, the
number of molecules with momenta in the ele-
ment dpzldpzzdpza is fgdpzldpzzdpz:;. After impacts
between these ions and molecules the relative
velocities are distributed symmetrically about
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F1G. 2. Polar coordinates.

V12, and added vectorially form a vector collinear
with vi2. pi’ —p1 may therefore be replaced in the
integration by its component

mimie

(1—cos )iz
mi+me

along vis. Likewise, since pi/2—p,? is identically
equal to (p'—po)- (P —pi+2p1), it may be
replaced in the integration by the expression

mime \*
4 sin? %0V122
mi+ms
ming

—2———(1—cos 0)p1-Via.
my+mg

Interactions in which ¢ lies in the range d¢ occur
with a frequency equal to the number of molecules
in a prism of volume 27ov12f1dp11dprodprado.

The completed momentum balance is therefore expressed by the equation

minte

ffffffflfzvle(U12)7)12dP11dP12dP13dP21dP22dP23+’ﬂ16E’-=0 3)
mi+-me

and the completed energy balance by the equation

mi+me m1+ma

me minty
ffffffflﬁ[** Vie?—p1- Vm]Q(vlz)vmdp11d1>12d1>13d1>21dP22dP23+nlev -E=0. (4)

Q(v12) is the diffusion cross section, and is defined by the equation

Q(Y)m) =21rf(1 — COs B)O’da'.
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Five of the six indicated integrations may be performed after transformation to polar coordinates.
The required transformation is illustrated in Fig. 2 and is defined by the system of equations

pu=mixy o1 =ma(x1+x2) x1=r1 sin 01 cos ¢
pru=my1  pr=m(y1+y:) y1=*r1sin 01 sin ¢;
Prs=miz1  pas=ma(21422) 21="ry COs 01

%2= 72 COS §1 COS ¢1 sin 0y cos ¢pg—73 sin ¢; sin Oy sin ¢pg-+72 sin 61 cos ¢; cos O
y2=+75 cos 01 sin ¢ sin 02 cos ¢2-+72 cos ¢y sin O, sin ¢a4-72 sin §; sin ¢y cos 0,
Za= —7¥ sin 03 sin 65 cos ¢ +75 cos 6, cos 6s.

pi1 is.expressed in terms of the position vectors r; and re by miry, ps by ma(t14r2), and vys by —ra.
The Jacobian of the transformation is m1*m.®r%42 sin 6y sin ;. To facilitate the integration, param-
eters may be inserted into the integrands of Eqs. (3) and (4), and the integrands may be expressed
as partial derivatives with respect to these parameters of simpler functions. The integration may
then be carried out first, and the partial differentiation last since the order is immaterial. The
parameters are finally eliminated by setting them equal to unity.

The momentum balance is reduced by integration to the equation

8 (mlkT2+M2kT1)

mneZ1+neE=0 (5)
i (my4-ms)
and the energy balance to the equation
8 nine mmsg
—_— 71[ k(Tl—T2)22+m1kT221]+nlevE=0. (6)
wt (myt+ma) Limi+my ’ '

Y1 and I, are integrals. They are defined by the equations

o (2\& cosh 2\¢—sinh 2\§)
2= )— L E2 A2\ 4
1 j‘: ) YT exp (—£—A)\d\ (N
and
Zy=2 f °onSinh e (— E2— NN (8)
= ————exp (—&— .
T T e 7P

¢ and \ are defined by the equations

Mmev?
gr= )
2(m1k T2+11’L2k Tl)
and
MMV 12’
A= ' (10)
Z(mlsz+m2kT1)

Langevin’s general formula is recovered if v is
made small. T; becomes equal to T, and v is
given by the equation

3 weE[ (m1+ms) /mms |
= (8/3)”2(27(‘]2 Tz)y‘owQe—)‘2)\5d)\. ‘

The last integration may be performed once
the cross section Q is known as a function of

the relative velocity v12. The relation between Q
and vy, would be disclosed by measurements of
the scattering or retardation of ion beams.
Unfortunately, the experimental data* now avail-
able are not sufficiently precise to warrant a
quantitative calculation. In any case they repre-
sent qualitative evidence that Q decreases with
increase in vqs. .

Accurate theoretical values of Q have been
calculated for two models, which may be used
in conjunction with molecular force data from

the equation of state. In the theory of Langevin,

4+ Cf. C. Ramsauer and O. Beeck, Ann. d. Physik 87, 1
(1928); F. M. Durbin, Phys. Rev. 30, 844 (1927); R. B.
Kennard, Phys. Rev. 31, 423 (1928); I. W. Cox, Phys.
Rev. 34, 1426 (1929); R. E. Holzer, Phys. Rev. 36, 1204
(1930); J. S. Thompson, Phys. Rev. 35, 1196 (1930);
K. H. Bracewell, Phys. Rev. 54, 639 (1938).
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the ion and molecule are assumed to be rigid
elastic spheres which attract each other with a
force inversely proportional to the fifth power of
the distance of separation. The attractive force
is assumed to arise solely from polarization of
the molecule by the field of the ion, and is
expressed in terms of the dielectric constant e of
the gas. The corresponding potential energy V
is expressed in terms of the distance 7 by the
equation
K e—1) e?
Ve — iy _—( ) 3_

rt 8rng 7t

In the theory of Hassé and Cook,® the rigid
spheres are replaced by a repulsive force inversely
proportional to the ninth power of the distance,
and the equation for V becomes

V= Kg/?’s— K4/7’4.

The cross sections of the two models are func-
tions of 712, and of the energy coefficients «q
and xs. They may be expressed in terms of the
distance 12, at which the potential energy is
zero. If the ion and molecule are rigid spheres,
012 is the sum of the radii of the spheres, but if
they repel with the inverse ninth power law, it
is equal to («s/xs)% For each model the ratio
Q/wa12®> may be expressed as a separate function
of the ratio M\/u, in which the parameter u is
defined by either of the equations

87!'?(7124 (mlkT2+m2kT1)
(e—1)e?  EkTa(my+ms)
Kg (mlkT2+11’L2kT1)

1/ut=—
YT (matm)

1/p2=

and

in which p is the pressure of the gas. At low
velocities, Q/me1s® for both models varies in-
versely as N/u. At high velocities, it approaches
unity if the ion and molecule are rigid spheres,
but diminishes inversely with the square root
of N/u if they repel with the inverse ninth power
law. The quantity (\/u)(Q/4wc1,2) has been
tabulated as a function of N/u by Hassé® for the
model with rigid spheres, and the quantity

8 H. R. Hassé and W. R. Cook, Proc. Roy. Soc. A125,
196 (1929); Phil. Mag. 12, 554 (1931).

6 H. R. Hassé, Phil. Mag. 1, 139 (1926). (\/u)(Q/4wo12?)
is represented in his notation by ¥, and \/u by 2.
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(1/V2)(N/ )} (Q/27a12?) has been tabulated by
Hassé and Cook” at small values of w/\, and
(N\/p)(Q/4we12?) at large values for the model
with an inverse ninth power law. Their results
have been used in the evaluation of Z; and =5 by
numerical integration.

For each model the ratios =1/7012? and Z2/70192
may be expressed in terms of u and £ These are
functions of both T; and », and T'; cannot be
eliminated from Egs. (5) and (6). The variables
v and E are separated, however, and expressed
in terms of T, by the introduction of three
parameters, 4, B, and C, which are defined and
related by the three sets of equations

A=%pt(ro1s?/Z1)

- (v/E>p"<f‘”%(mj—lmz)%

my

3
=(pv/eE)(87rK4/m2)%(m - ) , (1)

2 2k(Ty—Ty)
B=(1/¢)* = ,

2e—24 mov?

21 . mlk(Tl—'Tz)
= =— : (13)
22—'21 ’I’}’L1kT2+1’ﬂ2kT1

(12)

in which p is the density of the gas.

Values of 4, B and C for various values of £
are tabulated as a function of 1/u, in Table I
for the model with rigid spheres, and in Table II
for the model with an inverse ninth power law.
Curves of A and B for various values of 1/u are
plotted against C in Figs. 3 to 6. u and C contain
T, but not v and E. The drift velocity v and the
mobility v/E may therefore be calculated from
the curves for a given value of T7.

If 1/u is set equal to zero, the theory of small
ions is obtained. The parameter 4 has the value
0.5105 and B the value %. The drift velocity v is
then expressed by the equation

o=
pie—1)% m1

If 4 itself is set equal to zero, the attractive
forces are eliminated, and Z; and 2, may be

7 Reference 5. (1/V2Z)(\/u)¥(Q/2wa15?) is represented in
ghei; notation by Ii/2w, u/N by k, and (\/u)(Q/4we152)
y 1.
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F1G. 3. The parameter 4 for the model with rigid spheres,
at various values of 1/u.
2
3 | { [ I
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B c
N F1G6. 5. The parameter 4 for the model with an inverse
Z ninth power law, at various values of 1/u.
FiG. 4. The parameter B for the model with rigid spheres,
at various values of 1/u.
TABLE 1. Parameters for the model with rigid spheres. B
£=1.0 £=20 2
Vu A B c A B c 3
0.1 0.553  0.669 0.669 | 0.561 0.673°  2.69 “
2 570 .670 670 | .579 674 2.70 7
3 581 .669 669 | .589 672 2.69
4 .588 .669 .669 | .592 .667 2.67 | | | |
.5 .501 .667 667 | .584 .650 2.60 o 2 6 8
.6 .588 .663 .663 | .559 .628 2.51
N 577 657 657 | .523 611 244 c
.8 .559 .649 649 | 486 .592 2.37
1.0 .509 .636 .636 | 416 574 2.30  Fig. 6. The parameter B for the model with an inverse
ninth power law, at various values of 1/u.
TABLE I1. Parameters for the model with an inverse ninth power law.
£=1.0 t=1.6 £=2.0 £=3.0 £=4.0
1/u A C A B C A B C A B C A B C
0.1 0.541 0.670 0.670 | 0.546 0.673 1.722 | 0.550 0.675 2.70 | 0.568 0.710 6.39 | 0.639 0.873 13.96
2 600 .693 .693 661 751 1.921 726 .803 3.21 931 835 7.51 | 1.052 715 11.44
.3 760 718 718 | .875  .763 1.952 954 761 3.04 | 1.043 669  6.02 999 608 9.72
4 908 .705 .705 990 707 1.809 | 1.018 .682 2.73 978 612 5.51 883 . .583 9.33
.5 977 684 684 | 1.002 .665 1.703 988 .640 2.56 | .891 593 534 | 787 .576  9.21
.6 989 .667 .667 968  .641 1.641 931 619 248 | .814 585 5.27 714,574 9.18
i 969 654 .654 | 919  .627 1.605 872 .608 2.43 750 582  5.23 .656  .573  9.16
8 933 647 .647| .869 .619 1.585 817 .603  2.41 698  .580 5.22 609 573 9.16
1.0 854 .639 .639 | .780 .612 1.566 | .728 .598 2.39 | .618 .579 5.21 539 573 9.17
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expanded into rapidly converging power series
in £ In the case of rigid spheres the drift velocity
v is given at small values of ¢ by the equation

eE (ml—i-mz)é
V= y
(8/3)%20‘122(27rkT2)* mime

which represents one form of the conventional
kinetic theory formula. For other values of £ it is
convenient to introduce a fourth parameter D,
defined by the equations

Du= wy(i—) — (p?/eE) <m2‘)(
2z

1

Values of B, C, and D,, are tabulated in Table III
as a function of &.

On the other hand, if the repulsive force varies
inversely as the ninth power of the distance, v is
given at small values of £ by the equation

eE (M’L1+m2)5
V= .
(5.789)n2(kskT2)t\ mime

For other values of §, it is convenient to introduce
another parameter Dy, defined by the equations

mi )%
“+mq

"1

ml—{—mg)'

Dy=3ntuigd (ro122/21)
= (pv%/eE)r(ZKg/mz)%(

Values of B, C and Dy are tabulated in Table IV.

TaBLE I11. Parameters for rigid spheres with no
attractive forces.

£ B c De
0.0 3 0.0 0.0
2 0.663 0.0265 0.132

4 .654 1046 .258

.6 .639 230 373
8 .623 .399 474
1.0 .607 . .607 .560
1.2 .592 .852 .632
1.4 578 1.133 .691
1.6 .566 1.449 739
1.8 557 1.803 178
2.0 .549 2.19 .810
2.2 .542 2.62 .836
24 537 3.09 .858
2.6 .532 3.60 875
2.8 528 4.14 .890
3.0 525 4.72 .903
3.5 .520 6.36 926
4.0 515 8.23 .942
&) 5 0 1.000
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F1c. 7. The parameter 4 for weak fields. Curve I,
Langevin’s theory for rigid spheres; curve II, Hassé and
Cook’s theory for the inverse ninth power law.

When the drift velocity is small, the mobility
is independent of field intensity. Values of 4 in
this case have been tabulated by Hassé® as a
function of 1/u for the model with rigid spheres,
and values of the quantity V2 (u*/4) have been
tabulated by Hassé and Cook® for the model

TaBLE IV. Parameters for an inverse ninth power law with
. no attractive forces.

£ B C Dy
0.0 2 0.0 0.0

2 0.665 0.0266 0.342

4 .660 .1056 478

.6 .653 235 574

8 .644 412 .648
1.0 635 .635 704
1.2 626 .902 747
1.4 .618 1.211 781
1.6 611 1.564 .807
1.8 .605 1.961 .827
2.0 .600 2.402 .843
2.2 .596 2.887 .856
24 .593 3.416 .866
2.6 .590 3.990 874
2.8 .588 4.61 .881
3.0 .586 5.27 .887
3.5 .582 7:13 .897
4.0 .580 9.28 .904
© 4/7 © 9284

8 Reference 6. 1/u'is represented in his notation by \.
9 Reference 5. %V2(ut/A) is represented in their notation
by I(s). 1/u may be identified with their parameter s.
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with an inverse ninth power law. Their results
are reproduced in Fig. 7 for comparison. Curve I
is a plot of 4 as a function of 1/u for the model
with rigid spheres, and curve II is the corre-
sponding plot for the model with an inverse
ninth power law.

As the drift velocity is increased, the param-
eter C approaches the ratio m1/m,, 1/u becomes
large, and the parameters D, and D, approach
the corresponding values in Tables III and IV.
In the case of rigid spheres, the velocity then
varies directly, and the mobility inversely as
the square root of E/p. If the repulsive force
obeys the inverse ninth power law, the velocity
varies directly as the two-thirds power of E/p,
and the mobility varies inversely as the cube
root of E/p.

Although the theory is not exact, the general
formulae should not be seriously in error.

CHARLES F.

SQUIRE

Chapman,!® Enskog,* and Pidduck? have shown
that at low E/p the error is no greater than a
few percent. Comparison with experiment,2 how-
ever, indicates that the repulsive force varies
with distance to a higher power than nine.
The correct law may eventually be found through
accurate measurements of the scattering and
retardation of ion beams. The use of classical
cross sections also introduces error at low
velocities, and at low temperatures, but this is
less important at high velocities where classical
and quantum theories converge.

The writer takes pleasure in thanking Professor
Leonard B. Loeb for several stimulating dis-
cussions of this subject.

10 S. Chapman, Phil. Trans. A217, 115 (1917).

u D, Enskog, Kinetische Theorie der Vorginge in mdssig
verdiinnten Gasen, Inaugural Dissertation, Upsala, 1917.

2 A, F. Pearce, Proc. Roy. Soc. A155, 490 (1936); A. V.,
Hershey, preceding paper.
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Antiferromagnetism in Some Manganous Compounds*

CHARLES F. SQUIRE
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania
(Received July 13, 1939)

The temperature dependence (300°K to 40°K) of the magnetic susceptibility of the following
Mn++ salts has been measured: MnO, MnS, MnSe, MnTe. A A-point transition at low temper-
atures makes the susceptibility break away from a Weiss-Curie law and decrease with lowering
temperatures. Each salt has its characteristic transition temperature, increasing with increasing
molecular weight. Evidence for field dependence of the susceptibility and for magnetic hysteresis
has been found. It seems likely that an exchange force is the cause of the transition from

paramagnetism to antiferromagnetism.

INTRODUCTION

HE paramagnetic susceptibility of salts usu-

L ally obeys a Weiss-Curie law: x=C/(T'— 0)
where the constant C is the Curie constant, T°
the absolute temperature, and © the point where
the straight line 1/x intersects the temperature
axis. Deviations from this law have been ob-
served in several salts! at low temperatures. The

* The electrical conductivity as a function of tempera-
ture has been measured for these compounds. Details are
‘described in a Letter to the Editor, Charles F. Squire,
Phys. Rev., this issue.

M. and B. Ruhemann, Low Temperature Physics
(Cambridge, 1937), Chapter II.

experiments described in this paper are on the
following Mn** salts: MnO, MnS, MnSe, MnTe.
At a temperature, characteristic for each salt,
the susceptibility breaks away from the Weiss-
Curie law and decreases with lowering of
temperature.

Kelley? has measured the specific heat of Mn,
MnSe, and MnTe; in the latter two compounds
he has found a hump or abnormal specific heat.
Measurements on MnO and MnS by Millar?
and Anderson* each show a hump in the specific
TIK. K. Kelley, J. Am. Chem. Soc. 61, 203 (1939).

3R. W. Millar, J. Am. Chem. Soc. 50, 1875 (1928).
4 Anderson, J. Am. Chem. Soc. 53, 476 (1931).



