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A Theory for the Mobility of Ions of High Velocity
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(Received July 12, 1939)

The theories of Langevin and of Hassle and Cook for the mobility of ions in weak fields have
been generalized to fields of any strength. The random energy of the ions is assumed to have a
Maxwellian distribution, and the drift and random energies are both evaluated by momentum
and energy balances.

A N ideal theoretical treatment of the mobility
of ions in gases would consist in the solution

of the Bolt@mann integral equation, ' in which
the laws of continuity are applied to the motion
of ions in phase space. A solution may some day
be found through the equations published by
Pidduck' in 1915.He transformed the Boltzmann
equation into a Fredholm integral equation with
a symmetrical kernel and was able to perform
one of the six required integrations. In the
absence of an exact solution, however, an approxi-
mate distribution function may be chosen, and
the parameters contained in it may be so ad-
justed that the equation is satisfied in the mean.
Any solution must comply with the laws of
conservation of momentum and energy, and these
may be taken as criteria. The energy of the ions

may be resolved into two parts, the drift and
random energies, and these may be taken as the
parameters. For simplicity the analysis is con-
fined to elastic impacts, to steady distributions,
to uniform densities in coordinate space, to low

ion concentrations, and to uniform. fields.
An approximate function which differs from

the equilibrium distribution by a small added
term has been used by Langevin' in his theory
of mobility. In this theory the random energy is
set equal to the thermal energy of the molecules,

and the drift energy is evaluated by a momentum

balance. The theory is thus restricted to weak
fields. It is generalized to fields of any strength

by the adoption of a Maxwellian distribution for

the random energy of the ions which is free of

any restriction as to the amount of deviation

from equilibrium. The distribution is expressed
by the equation

n1
f1 exp

(2~m)k T,):
(p, —m,v)'-
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2m/k T$

in which fq is the density of ions in momentnm
space, and n& is the density in coordinate space.
mi and pi are the mass and vector momentum of
an ion. —,'n&miv' and —,'nikTi are the drift and
random energies per unit volume, the sum of
which is the total energy.

The molecules have the distribution of equi-
librium. This is expressed by the equation

f2= exp
(2xm2k T2) & 2m2k Tg

in which f2 is the density of molecnles in mo-
mentum space and n2 is the density in coordinate
space, m2 and p2 are the mass and vector mo-
mentum of a molecule, and T2 is the temperature
of the gas.

The laws of conservation for steady motion
are expressed by equating to zero the rates of
change of the momentum and energy of the ions.
In a field of intensity E the ions take up mo-
mentum at the rate nieE, and energy at the rate
n&ev E. They give up the momentum and energy

'L. Boltzmann, Vorlesungen Nber Gastheorie, Vol. I, p.
114;J. H. Jeans, The Dynamical Theory of Gases (Cam-
bridge University Press, third edition, 1921), p. 210.

' B.F. Pidduck, Proc. Lond. Math. Soc. 15, 89 (1915).
' P. Langevin, Ann. de Chimie et de Physique 8, 245

(1905).
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FM. 1. The deflection of the ion by interaction
with a molecule.
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to the molecules of the gas at rates which may
be evaluated by integration over momentum
space of the product of the change in each
quantity per collision and the frequency of
collision.

In a particular interaction the ion and mole-
cule approach each other with a relative velocity
v», and separate after impact with a relative
velocity which has the same magnitude as v» but
a different direction. The velocity of the ion
itself is equal to the sum of the velocity of the
center of mass, and the fraction nz2/(mi+m2)
of v». The velocity of the center of mass is
invariant in a collision. The velocity of the ion
after impact therefore lies on a sphere whose
center is at the center of mass. The deHection of
the ion is illustrated in Fig. 1. The change in
momentum p~' —pI, is equal to the product of the
reduced mass 8821m2/(mr+8882), and the change
in v». The angle 0 through which v» is turned
by impact is a function of the magnitude of v»,
and of the distance 0 between the asymptotes of
the trajectories which the ion and molecule
describe about the center of mass. The magnitude
of the change in v» is equal to 2v» sin -,'0.

If Pii, P12 and P18 are Cartesian components of

p~, the number of ions whose momenta lie in the
element dp11dp12dp18 is equal to fidp11dp12dp18
and if p21, p22, and p28 are components of p2, the
number of molecules with momenta in the ele-
ment dp21dp22dp28 is f2dp21dp22dp28 After imp.acts
between these ions and molecules the relative
velocities are distributed symmetrically about

X)

FIG. 2. Polar coordinates.

v», and added vectorially form a vector collinear
with v». p~' —p& may therefore be replaced in the
integration by its component

m]m2—(1 —cos 0)v12
mI+m2

along v». Likewise, since pI ' —pI2 is identically
equal to (pi' —pi) ~ (pi' —pi+ 2pi), it may be
replaced in the integration by the expression

mIm2 l'
sin' —'Ov122

(.888 1+m 2)
mlm2—2 (1 —cos 0)pi v12.

m]+m2

Interactions in which 0 lies in the range do. occur
with a frequency equal to the number of molecules
in a prism of volume 28rov»fidPiidP12dP18do.

The completed momentum balance is therefore expressed by the equation

m 1582 f f' f f'
1

Jl J J~ fif2v12Q(v12) v12dpiidp12dp18dp21dp22dp28+nieE =0
mI+m2~

and the completed energy balance by the equation

1882 f' t' t' f' t' t' 811m2
f1f2 — V12. pl'v12 (Q1 v) 2l v2dlpl dl p2d1p3 dpi 2dp22dp8+21e28v E=O. (4)

m] +m2 m 1+m2

Q(v12) is the diifusion cross section, and is defined by the equation

Q(v12) =2m- J'(1—cos 0)odo..
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Five of the six indicated integrations may be performed after transformation to polar coordinates.
The required transformation is illustrated in Fig, 2 and is defined by the system of equations

p1I m.1+I

ply m1$1
pig= m lsl

$2=+rm cos Hi cos $1 sin
/2=+rm cos Hl 81Q @1sin
sp= —f2 sin Hl sin H2 cos

pli=m2(SI+xm) xi=f1 sill Hl cos QI

pgs=mm(pi+pg) QI =f1 81II Hl sill QI

pma =ma(el+82) 81=&1 Cos Hl

Hm cos p2 —rI 8111 QI 8111 HI sill @I+rI 8111 Hl cos QI cos Hp

H2 cos $2+rm cos @1sin H2 sin @~+r2 sin Hl sin @1cos Hq

+r2 cos Hl cos H2.

yi is expressed in terms of the position vectors rl and r1 by mlrl, yl by m1(ri+r1), and vis by —rm.

The Jacobian of the transformation is ml mllr pr21 sin Hl sin H1. To facilitate the integration, param-
eters may be inserted into the integrands of Eqs. (3) and (4), and the integrands may be expressed
as partial derivatives with respect to these parameters of simpler functions. The integration may
then be carried out first, and the partial differentiation last since the order is immaterial. The
parameters are finally eliminated by setting them equal to unity.

The momentuID bRIRnce ls reduced by 1IitegrRtloQ to the equation

8 (mikTg+m1kTI)
ninny I+nieZ =0

(ml+m1)

and the energy balance to the equation

8 tilmg m1mm
8 k(TI —T1)Zg+mlkT1ZI +nieve=O

m & (ml+m2) mi+ms

Zl and Z~ are integrals. They are defined by the equations

(2X) cosh 2X$—sinh 2Xf)
x =J Q(&) exp (—P —X')X4dX

(2Xt)'

sinh 2Xt
Z1 ——2 Q(X)- — exp (—p —X')X'dl1.

(2Xg)'

IltSg8
p—

2 (mik T1+mgk TI)

PS ling 2812
) 2—

2(mlkTg+mgk Tl)

I.angevin'8 general formula is recovered if v is
IQRde 8IQR11. Tl becoIQes equal to T2, Rnd v 18

given. by the equation

IreZL(ml+m1) /mlmmj'*
8=—

(8/3)n, (2IrkT1) 'J'0"Qe 1'X'dX

The last integration may be performed once
the cross section Q is known as a function of

the relative velocity 812. The relation between Q
and el~ 'would be disclosed by measurements of
the scattering or retardation of ion beams.
Unfortunately, the experimental data now avail-
able are not sufficiently precise to warrant a
quantitative calculation. In any case they repre-
sent qualitative evidence that Q decreases with
lncI'ease ln vga.

Accurate theoretical values of Q have been

calculated for two models, which may be used
in conjunction with molecular force data from

the equation of state. In the theory of Langevin,

4 Cf. C. Ramsauer and 0. Beeck, Ann. d. Physik 87, 1
(1928); F. M. Dorbin, Phys. Rev. 30, 844 (1927); R. B.
Kennard, Phys. Rev. 31, 423 (1928); I. %. Cox, Phys.
Rev. 34, 1426 (1929};R. E. Holzer, Phys. Rev, 36, 1204
(1930); J. S. Thompson, Phys. Rev. 35, 1196 (1930);
K. H. BraceweH, Phys, Rev. 54, 639 (1938).
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In the theory of Hassle and Cook, ~ the rigid
spheres are replaced by a repulsive force inversely
proportional to the ninth power of the distance,
and the equation for V becomes

U = «8/r8 K4/r'—

The cross sections of the two models are func-
tions of v», and of the energy coefficients K4

and K8. They may be expressed in terms of the
distance 0», at which the potential energy is
zero. If the ion and molecule are rigid spheres,
cr»2 is the sum of the radii of the spheres, but if
they. repel with the inverse ninth power law, it
is equal to (K8/K&)&. For each model the ratio
Q/~e»8 may be expressed as a separate function
of the ratio X/p, in which the parameter p is
defined by either of the equations

and

] /p8—
8&P&12 (m 1k T2+m 2k Tl)

(8—1)e' k T8(m~+m8)

K8 (mlkT2+m2kT1)
1/p'= —,

K48 (mg+m8)

in which p is the pressure of the gas. At low
velocities, Q/x. a~88 for both models varies in-
versely as X/p, . At high velocities, it approaches
unity if the ion and molecule are rigid spheres,
but diminishes inversely with the square root
of X/p, if they repel with the inverse ninth power
law. The quantity () /p) (Q/4~a &88) has been
tabulated as a function of X/p by Hasse« for the
model with rigid spheres, and the quantity

~ H. R. Hasse and W. R. Cook, Proc. Roy. Soc. A125,
196 (1929};Phil. Mag. 12, 554 (1931}.

6 H. R. Hasse, Phil. Mag. 1, 139 (1926). (X/p)(Q/4mo lp)
is represented in his notation by y, and ) /p by z).

the ion and molecule are assumed to be rigid
elastic spheres which attract each other with a
farce inversely proportional to the fifth power of
the distance of separation. The attractive force
is assumed to arise solely from polarization of
the molecule by the field of the ion, and is
expressed in terms of the dielectric constant e of
the gas. The corresponding potential energy V
is expressed in terms of the distance r by the
equation

(8—1) e'

Smn2 r4

(=( /~) p'( —1»(
t, m, +m, J

( nz»= (Pv/eE) (88.«8/m«) i(
&m, ym. ) '

Z»
&=(1/8'-

Z2 —Z»

2k(Tg —T8)
)

m28'
(12)

~1 mlk(T1 T2)
C=

1

~2 ~» ~»~ T2+~2~Tl

in which p is the density of the gas.
Values of A, 8 a.nd C for various values of t

are tabulated as a function of 1/p, in Table I
for the model with rigid spheres, and in Table II
for the model with an inverse ninth power law.
Curves of A and 8 for various values of 1/p are
plotted against C in Figs. 3 to 6. p and C contain
T» but not, e and K The drift velocity v and the
mobility s/E may therefore be calculated from
the curves for a given value of T».

If 1/p is set equal to zero, the theory of small
ions is obtained. The parameter A has the value
0.5105 and 8 the value -', . The drift velocity v is
then expressed by the equation

(0.5105)Z (mg+m8) '*

I.
p'(8-1)& E mg

If p itself is set equal to zero, the attractive
forces are eliminated, and Z» and Z2 may be

" Reference 5. (1/%)() /p)&(Q/2m. 0.122) is represented in
their notation by I&/2m, p/) by k, and (&/p)(Q/4mo. »')
by Y&.

(1/v2)(X/p)&(Q/28e&88) has been tabulated by
Hasse and Cook' at small values of p/X, and
(),/p)(Q/48. ed«8) at large values for the model
with an inverse ninth power law. Their results
have been used in the evaluation of Z» and Z2 by
numerical integration.

For each model the ratios &~/m'e'~8' and &8/s 0'~8'

may be expressed in terms of p and t. These are
functions of both T» and v, and T» cannot be
eliminated from Eqs. (5) and (6). The variables
v and Z are separated, however, and expressed
in terms of T» by the introduction of three
parameters, A, 8, and C, which are defined and
related by the three sets of equations

A = -', P P(s.e g8'/Z, )
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FIG. 3. The parameter A for the model with rigid spheres,
at various values of 1/y.
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FIG. 5. The parameter A for the model with an inverse
ninth power law, at various values of 1/p, .

FIG. 4. The parameter 8 for the model with rigid spheres,
at various values of 1/p, .

Tsar.E I. Parameters for the model with rigid spheres.

$ =1.0 $ =2.0

0.1
.2
.3
4
.5
.6
.7
.8

1.0

0.553 0.669
.570 .670
.581,669
.588 .669
.591 .667
.588 .663
.577 .657
.559 .649
.509,636

0.669 0,561
,670 .579
.669 .589
.669 .592
.667 .584
.663 .559
.657 .523
.649 .486
.63.6 .416

0.673 2.69
.674 2.70
.672 2.69
.667 2.67
.650 2.60
.628 2.51
.611 2,44
.592 2.37
.574 230

4
7

I

4
I

8

FIG. 6. The parameter 8 for the model with an inverse
ninth power law, at various values of 1/p, .

Taaz. H II. Parameters for the model with an inverse ninth power law.

0.1
~ 2
.3
4
.5
.6
.7
.8

1.0

0.541
.600
.760
~908
.977
~989
.969
.933
.854

f =1.0

0.670
.693
.718
.705
.684
.667
.654
.647
.639

0.670
.693
.718
.705
~ 684
.667
.654
.647
.639

0.546
.661
.875
990

1.002
.968
.919
.869
.780

$ = 1.6

0,673
.751
.763
.707
.665
.641
.627
.619
.612

$ =2.0

C A 8 C A

1.722 0,550 0.675 2.70 0.568
1.921 .726 .803 3.21 .931
1.952 .954 .761 3.04 1.043
1.809 1.018 .682 2.73 .978
1.703 .988 .640 2.56 .891
1.641 .931 .619 2.48 .814
1.605 .872 .608 2 43 .750
1 585 .817 .603 2 41 .698
1 566 .728 .598 2 39 .618

$ =3.0

0.710
.835
.669
.612
.593
.585
.582
.580
.579

g =4.0

6.39 0,639 0.873 13.96
7.51 1.052 .715 11.44
6.02 .999 .608 9.72
5.51 . .883 .583 9.33
5.34 .787 .576 9.21
527 .714 .574 918
5 23 .656 .573 9 16
5.22 .609 .5'73 9.16
5 21 .539 .573 9 17
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expanded into rapidly converging power series
in &. In the case of rigid spheres the drift velocity
rr is given at small values of g by the equation

(mi+~2$ '

(g/3)nmogm'(2~kTp)' E m,m2 J

which represents one form of the conventional
kinetic theory formula. For other values of P it is
convenient to introduce a fourth parameter D„,
defined by the equations

0.8

0.6

0.4

Values of 8, C, and D are tabulated in Table III
as a function of $.

On the other hand, if the repulsive force varies
inversely as the ninth power of the distance, v is
given at small values of $ by the equation

eE (m&+m2q
'

8=
(5.7g9)e2(rrskTr)*' 4 mgmg )

For other values of t, it is convenient to introduce
another parameter D9, defined by the equations

Dg ——-'rr'pi&'*(orog2'/Zg)

( my= (poi/eZ)7r(2rrg/m2)
~

&m, ym, )
Values of B, C and D9 are tabulated in Table IV.

1

2
I

FIG. 7. The parameter 2 for weak fields. Curve I,
Langevin's theory for rigid spheres; curve II, Hasse and
Cook's theory for the inverse ninth power law'.

When the drift velocity is small, the mobility
is independent of field intensity. Values of A in
this case have been tabulated by Hasse as a
function of 1/p for the model with rigid spheres,
and values of the quantity —,', v2(pi/A) have been
tabulated by Hasse and Cook' for the model

TABLE IV. Parameters for an inverse ninth power law with
no attractive forces. '

0.0
.2
4
.6
.8

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.5
4.0

0.663
.654
.639
.623
.607 .

.592

.578

.566

.557

.549

.542

.537

.532
~ 528
.525
.520
.515

0.0
0.0265
.1046
.230
.399
.607
.852

1133
1.449
1.803
2.19
2.62
3.09
3.60
4.14
4.72
6.36
8.23

TABLE III. Parameters for rigid spheres mitk no
attract&re forces.

0.0
0.132
.258
.373
.474
.560
.632
.691
.739
.778
.810
.836
.858
.875
.890
.903
.926
.942

1.000

0.0
.2
.4
.6
.8

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.5
4.0

0.665
.660
.653
.644
.635
.626
.618
.611
.605
.600
.596
.593
.590
.588
~ 586
.582
.580
4/7

0.0
0.0266

.1056

.235

.412

.635

.902
1.211
1.564
1.961
2.402
2.887
3.416
3.990
4.61
5.27
7;13
9.28-

0.0
0.342
.478
.574
.648
.704
.747
~ 781
.807
.827
.843
.856
.866
.874
.881
.887
.897
.904
.9284

g Reference 6. 1/y'is represented in his notation by ) .' Reference 5. —,', %2(pk/A) is represented in their notation
by I(s). 1/p, may be identified with their parameter s.
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with an inverse ninth power law. Their results
are reproduced in Fig. 7 for comparison, Curve I
is a plot of 2 as a function of i/p for the model
with rigid spheres, and curve II is the corre-
sponding plot for the model with an inverse
ninth power law.

As the drift velocity is increased, the param-
eter C approaches the ratio en~/mm, 1/p becomes
large, and the parameters D and D9 approach
the corresponding values in Tables III and IV.
In the case of rigid spheres, the velocity then
varies directly, and the mobility inversely as
the square root of Z/p. If the repulsive force
obeys the inverse ninth power law, the velocity
varies directly as the two-thirds power of Z/p,
and the nloblllty . Va11es lnve1 sely as the cube
root of Z/p.

Although the theory is not exact, the general
formulae should not be seriously in error.

Chapman, "Enskog" and Pidduck' have shown
that at low Z/p the error is no greater than a
few percent. Comparison with experiment, "how-
ever, indicates that the repulsive force varies
with distance to a higher power than nine.
The correct law may eventually be found through
accurate measurements of the scattering and
retardation of ion beams. The use of classical
cross sections also introduces error at low
velocities, and at low temperatures, but this is
less important at high velocities where classical
and quantum theories converge.

The writer takes pleasure in thanking Professor
Leonard B. Loch for several stimulating dis-
cussions of this subject.

~0 S. Chapman, Phil. Trans. A21'7, 115 (1917}.
~' D. Enskog, Xinetische Theoric der Vorgonge in massing

verdN'nnten Gasen, Inaugural Dissertation, Upsala, 1917.
"A, F. Pearce, Proc. Roy. Soc. A155, 490 (1936);A. V.

Hershey, preceding paper.
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Antiferromagnetism in Some Manganous Compounds~

CHARLEs F. SQUIRE

Department of I'hysics, University of I'ennsylvania, , Philade/phia, Pennsylvania

(Received July 13, 1939)

The temperature dependence (300'K to 40'K} of the magnetic susceptibility of the following

Mn++ salts has been measured: MnO, MnS, MnSe, Mn Te. A X-point transition at low temper-

atures makes the susceptibility break away from a gneiss-Curie law and decrease with lowering

temperatures. Each salt has its characteristic transition temperature, increasing with increasing

molecular weight. Evidence for field dependence of the susceptibility and for magnetic hysteresis

has been found. It seems likely that an exchange- force is the cause of the transition from

paramagnetism to antiferromagnetism.

INrRoDUcnoN experiments described in this paper are on the
following Mn++ salts: MnO, MnS, MnSe, MnTe.
At a temperature, characteristic for each salt,
the susceptibility breaks away from the Weiss-

Curie 1aw and decreases with lowerin of
temperature.

Kelley' has measured the specihc heat of Mn,
MnSe, and MnTe; in the latter two compounds
he has found a hump or abnormal specific heat.
Measurements on MnO and MnS by Millar"

and Anderson' each show a hump in the speci6c

K. K. Kelley, J. Am. Chem. Soc. 61, 203 (1939).
~ R. W. Millar„J. Am. Chem. Soc. 50, 1875 (1928).
4 Anderson, J. Am. Chem. Soc. 53, 476 (1931}.

HE paramagnetic susceptibility of salts usu-

ally obeys a Weiss-Curie law: x = C/(T 0')—
where the constant C is the Curie constant, 1
the absolute temperature, and 0 the point where
the straight line 1/x intersects the temperature
axis. Deviations from this law have been ob-
served in several salts' at Iow temperatures. The

*The electrical conductivity as a function of tempera-
ture has been measured for these compounds. Details are
'described in a Letter to the Editor, Charles F. Squire,
Phys. Rev„ this issue.' M. and B. Ruhemann, Iom TenzPeratlre Physics
(Cambridge, 1937), Chapter II.


