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A complete theory for the rotation-vibration energies of tetrahedrally pentatomic molecules
has been derived to second degree of approximation for certain vibration states. In this discus-
sion the elements of the matrix H are given for the states Vivi, va, Vivi+vs, Vivi+rs, votvs
and »;+»4. The selection rules governing what transitions may take place have been determined

with relations for the intensities.

I. INTRODUCTION

HE band spectra of tetrahedrally symmetric

molecules, of which methane is a typical
example, have long been known to possess
anomalies in their rotational structure. Not only
does the value of the moment of inertia A,,
computed from the rotational line separation Ay
by the relation 4y=(k/47%v), vary from band
to band, but recent measurements! have shown
that the rotation lines themselves are not single
lines, but show multiplet structure. The first
effect has been explained in a theory originally
proposed by Teller? and subsequently enlarged
upon by Johnston and Dennison® which shows
that the Coriolis interactions between rotation
and the threefold degenerate oscillations yield
corrections to the energies of these states so sig-
nificant that the relation for A4, becomes
(¢h/4Am?Av) where { is a constant, varying from
band to band, which depends upon the nature
of the normal vibration and may be substantially
different from unity. The second effect has, for
the frequency »s, been accounted for by Jahn*
who attributes this splitting principally to a
Coriolis interaction between the optically active
frequency »s and the optically inactive vibration
v2. The work of Jahn does not, however, take into
account any of the other kinds of interactions
which may be present, such as the centrifugal

1'W. B. Steward and H. H. Nielsen, Phys. Rev. 47, 878
(1935); W. B. Steward and H. H. Nielsen, Phys. Rev. 48,
862 (1935); A. H. Nielsen and H. H. Nielsen, Phys. Rev.
48, 864 (1935).

;E) Teller, Hand und Jahrbuch Chem. Phys. 9, 11, 43
(1934).

(1; I\S/I). Johnston and D. M. Dennison, Phys. Rev. 48, 868
35). .
¢ H. A. Jahn, Proc. Roy. Soc. A168, 469 (1938).

expansion of the molecule, the Coriolis interac-
tions between more remotely separated vibration
frequencies and the effects of the anharmonicity
of the oscillational motion, all of which are indi-
cated by experiment to be of considerable im-
portance. Jahn’s work serves essentially to
emphasize the importance of obtaining a com-
plete theory for the energies of such polyatomic
models where all second-order effects are taken
into account.

In a recent paper® we have made just such
calculations for non-linear triatomic molecules
and have given explicit expressions for the ele-
ments of the energy matrix for the general rota-
tion-vibration state. In principle it is possible to
make such calculations also for the tetrahedrally
symmetric model, but in practice it is not feasible
to do so and it becomes necessary to treat each
vibration state as a separate case. We have deter-
mined the elements of the energy matrix accu-
rately to second order of approximation for the
states Vi, ve, Vinitws, Vinidws, vatvs, vats,
2v3, 2v4 and v3+vs. In this paper we desire to set
down our results for the first six of the above
states, leaving for a Part II the discussion of
the states 2vs;, 2v4 and the combination states
between v; and »,.

II. DERIVATION OF THE SCHRODINGER
EqQuaTioN

The orientation is a system of body-fixed
coordinates x, v, z of the model which we shall
refer to herein is illustrated in Fig. 1. In their
equilibrium positions, the four identical ¥

5 W. H. Shaffer and H. H. Nielsen, Phys Rev. 56, 188
(1939).
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particles of masses m; lie at the corners of a
regular tetrahedron, of which the edges have a
length 2(2)%, and the X particle of mass m; is
situated at the center of mass of the ¥ particles.
From Fig. 1 the equilibrium positions of the five
particles will be seen to be the following:
1, (@, —a, —a);2,(—a,a, —a);3, (—a, —a,a);
4, (a, a,a);5, (0,0,0).

The kinetic energy of the molecule expressed
in the coordinates x, y and 2z will be:

%{st(mﬁ—l- ys2+zs2) +ZA Wa?
_Z,:e Daﬂwaw5+22 Quwa}, (1)

a and B being summed over the values x, ¥ and z
and the prime associated with the summation
aff meaning that ap. In the above the x,, v,
and z, are the instantaneous values of the coor-
dinates of the particles; 4, and D, are respec-
tively the moments and products of inertia; Qq
are the internal angular momenta, their values
being :
5 5
A= Zlms (B247sY), Dag= Zlmsasﬁsv
5 @)
9{1 = Zlm(ﬁsa'}’s —7:0B5).
o

The w, are the components of the angular veloc-
ities along the axes x, ¥ and 2 and the da in the
above are the displacements of the atoms from
their rest positions in the %, ¥ and z directions.

To be useful in deriving the Schrédinger
equation Eq. (1) must be expressed in terms of
the normal coordinates. To obtain these it will
be necessary briefly to consider the problem of
the oscillation of the molecule in the body-fixed
coordinates. There are in all nine degrees of oscil-
lational freedom for this type of molecule so
that the above coordinates are not all inde-
pendent. It is convenient, therefore, to introduce
the nine intermediate coordinates which are
related to the x;, ¥, and 2, by the relations:

xy=a+3(um/m)E+35—3m—
xa= —a+5(u/m)E—3551+5m—
x3= —a+3(u/m)b—551+3met+3n2,  (3)
xs=a+3(wm/m) E+381—
x5 = —2(ua/ms) £1.

1
22

1
2M2

%773+%772v
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Fic. 1. The orientation in a system of body-fixed coordi-
nates ¥, 9, 3 of the pentatomic molecule.

‘The corresponding v, and z, are obtained from

(3) simply by replacing the coordinates (&, {1,
N3, n2) by (£2, ms, {2, m) and (&, n; m, §35), respec-
tively, with appropriate changes in the equi-
librium coordinates. In the above y; is substituted
for myms/(dmi+ms). It may readily be verified
that these conform to the usual requirements
that the centroid shall remain fixed and that to
zeroth approximation the angular momentum in
the coordinates x, ¥ and 2 shall be zero.

We must next select a function for the har-
monic portion of the potential energy. To do so
we proceed as follows: We denote by S;; the
distance between two particles 7 and j and by
d:; their relative displacements from their posi-
tions of equilibrium so that S;;=S:;°+6;;. We
shall adopt the perfectly general quadratic
function of the displacement coordinates §;;

=731 1K12 Z 5@72+K225k5

=1 j=1

4 4 4
+1Ksy 2 2"64i(8u+04r)

i=1 =1 k=1

+ K4Z Z 6756k5+ K5Z Z 51](515"'615)

j=1 k=1 =1 j=1

lK Z/ ZII ZIII lella 5/01

i=1 j=1 k=1

4 4 4
F3EK Y X Y bt} (4)

=1 =1 k=1
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as the one suitable for our problem. In (4) the
single and double primes are used to indicate
that no two indices may simultaneously take
the same values. The K’s are the force constant
factors. When §;; are expressed in the inter-
mediate coordinates one obtains for (4):

=731 k12512+2k2217£ +kaZm
=1 3

3
+k4_§_:1§ i2+k5§:§' $£ity (5)
=1
where the constants

ki=(K3/3) — (K./6),
2ky=(4K2/3) — (2K4/3) +(4K;/6%) — (4K/6%),
ks=4K;+(4K,/3) —2K;3;— (2K4/3)
+(8Ks/6%) —2Ks— (8K4/6Y),
ki=2K;+(K:/3)+3K;+1K,
+(4K;5/6%) + Ko+ (4K/6%),
2ks=2K;+7K;+ K+ (8K;/6%)
+Kot+ (8K:/6Y).

The actual normal coordinates, which we shall
designate by ¢, go, * - ¢s, are simple linear com-
binations of the intermediate coordinates (3). In
fact it is readily verified that oscillational kinetic
and potential energies take the following simple
form

(6)

T+ Vo= {Z(Qw [wstwsqi )+Z(<1:2/w4+w491)

8
+I:Z7(q'k2/ weFwek?) + (go? /w1t nge?), (7)
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where the intermediate coordinates &;, 9; and ¢;
are taken to be the following linear combinations
of g::

&= (u)~H(q: cos v/wit +qiys sin v /wid),
m=(2ms)H(—qi sin v/wd+qiyscos y/wid), (7)
C1=(3ms) H(wa(2)t+go/wr?)

where the index ! takes the values 1, 2 and 3 and
a takes, respectively, the values x, ¥ and z. For
the sake of brevity the following notation has
been adopted : %, =ws"%(g; cos e;4gssin €1), 1=
+27(l—1)/3 where ¢ is arbitrary;

sin vy
} =F (2)H1F[(2msks — piks)?
cos vy

/(8[1,17%5}322 - (2m5k1 - :ulk?s) 2) ]i}%Y

w1, 2= 277'1/1, 2= {[k4+(k5/2)(1 :‘:3)]/1”5}%,
ws, 4= 2mv3, 4= { ((uaks+2msks)

== [ (urks— 2msky) 248 puamska® 1) /4 pams } 2.

To carry our calculations to the desired ap-
proximation, contributions to the energy from
the anharmonic terms in the potential energy,
cubic and quartic in the coordinates must be
taken into account. These have also been chosen
as perfectly general functions of the coordinates
which are tetrahedrally symmetric. They have
been designated by V; and V, and are the fol-
lowing :

TaBLE 1. Basic transformation functions S, required to remove the types of terms occurring in HO' together with the corre-
sponding values of 1(H°S,— ),

Sp

i(HOS, —S,HO)

(— pw/ )

(gr/hvi)

(—2/hwr) (Pi®/3+ 3qrprqr)

(1 /1) s@:rgsF-vrprpe) [ (2 —vs2)t

-~y A NP W= |

(grgs+Drps) / 1(wr—vs)

( V72 - Vc2) Qrzpa +Vr1/s (Qrpr“i'PTQT) Qs + Zl’rzprzpa } /h”s (47’1' - Vaz)
- { Vr(Vr —v?—v tz)Prqu t+Vs(Vs —vl—vy )qusq [t ZVerV !Prpa
+7’t(V12 o Zi VaZ)QTQEQt } h— ]'(1’1'4'{'1’3‘1“‘"1’14 -

[
Pr
@®
Qrps
gr*gs
20,202 — 202 — 20, %,2) 1

4rqsq¢t
QTPs -

Drqs

1 Siis the function which removes from H® the Coriolis interaction terms which are of the type (@rps —Drds) Pe. When these terms originate with

degenerate oscillations the difference vy —ys occurring in the denominator vanishes.

method.

Obviously such terms cannot be removed from H® by this
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Vi= Ci919295+ Co( 919296+ 019595+ 424594) + Co( 019595+ 42196+ 039495) + Cudugsgs+ Co(@1*+ 92+ 5°) 4o
+ Co(919s+ 3205+ g596) Go+ Cr (94> + 45"+ ¢6%) Go+ Co(242q1® + 11 G2 +2.G5%)
~+ Co(soq194 41, G295+11.q3G6) + Cro(%:q4> + 14, 5>+ .g6%) + Cu1go®
+ Cra(vs>+14* + ") g+ Crstiatiythz,
Ve=di(q*+¢:*+ 5" +d2(3:1° ¢+ ¢2° G5+ 05°G6) +da(91%q4> + 275+ 45°¢6%) +da( 194>+ 9205° + G36°)
+d5(g*+ g5+ gs*) +ds(91°¢2* + 32¢5* + 01°05%) + (10292 + 01° Q205+ G29595° + 02" ag6
+q59691°+45°q191) ~+ds(1020495+ 0295505+ G3019398) ~+ Ao (947205 + 019395+ G20595> + 43050
+03050° + 45°019) + d10(95°g5* +¢5°06* + 04°¢6") + du (9°¢5* + 01°6° + 495>+ 02° 0 + 4578 + 4°G5)
+d1245(9192G5) + d15(G29394+ 19395 + 019296) Qo+ Ara(4304g5+ G294G6+ 019596) 9o+ d15949596 9
+do(120aqs9s~+ 119505+ 1:G102q6) + iz (Ueq1G5Gs+ 144920195+ 1 59395) + d1sqe* (1" + 2° +g5%)
+d1995* (@190 + 9295+ 306) + d20go* (¢> + ¢5* + ¢6%) +dan (4.1 + 1,2 g2+ 1..°G5%)
+da[ 1. (g2 +q5%) +u,* (¢ + ¢5%) + .29+ %) 1+ dos (w14, s + 141057 +110..01%)
+doa(142* @194+ 1442 G2q5 +11:°q3G6) +dos[ 1 (@15 + Gags) +1,* (9306 + @194) + 2.7 (014 + ¢2g5) ]
s (14, GaGs U1t oGas 10,10 :G18) Ao (0,22 1,25 10.262) - g (0, Go? 1t oG52 - 0,10.922)
+ dos (.7 (gs2 4 g62) + 1, (042 + 6% + 1.2 (2 + ¢52) ) +ds0go* + dingo® (122 1,2 4-1..%)
+dagrs 10,1 .o+ das (1t 1y 1),

When the complete kinetic and potential energies have been written down in terms of the normal
coordinates and expressed in the Hamiltonian form, one may proceed directly to obtain the
Schrédinger equation. We have made use of the method of Wilson and Howard® and later verified
the results by the variational method of Schrodinger. We shall give none of the intermediate details
here, but set down directly the appropriate quantum mechanical Hamiltonian expressed in orders
of magnitude. It is the following:

3 6 8
H=(P?/240)+7vs3_ (P +q:®) +mva2_ (P +g%) + WVzch (P +qi?) + 11 (po®+qo?), (9a)
=1 j=4 =17

where p; is the differential operator —4%(8/dg,), P, the total angular momentum operator and A,
the constant part of the moments of inertia.

HO = —(TpaPa/A0) + L EaP o +33 Fus(PoPs) —ifi(3m1/ A0)'po-+ Vi, (9b)
a a af

The summation « and 8 is over x, ¥, 2, and the prime indicating that no two indices may at the same
time take the same value. In the above E,= (3403 ws o —2(201)¥ge] and Fog= Fao= (ms/24:*)y,,
r taking the values 1, 2 and 3 with a8 equal to yz, xz and xy, respectively. The quantity p, is
equal to:

Po= 3(qeps— gsp2) + a(gspe— qeps) + Caal (va/v9)* (qaps — Gsp2) + (v3/ve) F(gsps — gepa) ]
+ Cosl (va/ve) a1 — (va/v9)*qupo, 1 — Ssl (va/v2) 0o — (v2/v4)iqup, ],

by and p, being, respectively, obtained by cyclicly rotating the coordinates gi, gz, gs; the coordinates
g4, Gs, gs; the momenta py, ps, ps and pa, ps, ps in the relation p,. For the sake of brevity the notation

6 E. Bright Wilson and J. B. Howard, J. Chem. Phys. 4, 260 (1936).
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Ve=g; SN €, —@s COS ¢ and P,,=p;sin e —Ps cos €,

899

Ca=(1—(3/2) sin?v), {4s=(1—(3/2) cos?v),

Cos=sin 7y, faa=cos v and {z=(3/2){23{2 is introduced.

H(2)= C+ZGaPaz“*“]z‘Z,HaﬁPaPﬂ'*“ZIaPa+Z(Pa2/2AO)+ VZ;
. o af a a

where

(9¢)

C=(ih/440) { (q1p1+ GepotGsps) Cas® 4 (Qupatgsps~+ Gepe) Coa® — (4/3) Saal (v3/v0) (qupr+ gspa+gsps)

+ (v4/v3)¥(q1pa+ Geps+ gspes) 1+ @rbr+gsps+4qops}

Go= (474"~ (2s?/v3) (¢2° — (¢2°/4) + (3gs*/4)) + (foa®/v4) (¢4 — (¢5*/4) + (3g6®/4)) + (s /v2)
+(2/v)gs*+(4/3) ) s — 1gat (1/4) q2gs — (3/4) g3gs) — 2(2/v1ve)uiago} ,
Hoy= (474" {(— £3/2) (vsva) "H(qng5+ gage) + (35252 4v5) q1ga+ (3¢aa/ 4v4) 4ugs
— [(tea®/va) g5 — (Fas/v2) g 1L (6/71) g+ (3 /4v2)Pui. 1},
L= — (2w A¢®) [ (4/3v2) us— (8/3v1)}q0 Jpat [ (§24*/v4) g5 — ($25*/v3) qs 1y

+[($2e?/va) g5 — (5282 /v9) e 1.} .

The quantities Gy, G, Hy., H.., I, and I, may be obtained from the above by cyclically rotating

Uz, %y: Uz, PI! Pur Pz; Qb 92, q3; 4, Gs, gG~

III. DETERMINATION OF THE EIGENFUNCTIONS -

AND EIGENVALUES -

The Schrodinger equation corresponding to
(9a) is separable in the coordinates and has the
eigenfunction :

‘Ilo(nlyn%_n% J)KvM) =N R(J’K!M)é(nlyn%n:i)
Xq>(n4yn5)n6)q)(n77n3)q)(n9) (10)

where R(J, K, M) is the wave function of the
spherical top, ®(#n1, s, n3) and ®(ns, ns, 7s) the
eigenfunctions of two three-dimensionally iso-
tropic oscillators of frequencies »; and »4, respec-
tively; ®(ny, ng), the wave function of a two-
dimensionally isotropic oscillator of frequency »,
and ®(ng) is the wave function of a linear oscil-
lator. The 7, are all integers and may be regarded
as the vibration quantum numbers associated
with the coordinates ¢,. IV is a normalization
factor. The zeroth order eigenvalues become:

Eo(Vh V2v V3) V4, J):(Vl—!_%)hyl
+ (VatDhve+ (Vat§) hvs
+(Vat D v+ J(J+1)0?/87%4,, (11)

where for convenience the substitution V;=m,,
Ve=mny-+mns, Vas=m+ny+ns and Vi=nstns+ng
is made.

The evaluation of the corrections to the energy
contributed by H® and H® may be effected by
perturbation methods, but is a formidable under-
taking when one considers the large number of
terms included in H® and H® and the high
degree of degeneracy of the zeroth order energies.
The only terms in H® which can contribute in
first approximation are the Coriolis terms arising
from the oscillations »; and », and a linear com-
bination of the functions (10) can always be
found such that the matrix of these will have
elements only along the principal diagonal. This
suggests the effectiveness of transforming H by
a contact transformation” THT-! into H®’
+HD'4+H® so that H® will, to second
approximation, contain only the above Coriolis
terms. The evaluation of the second-order
energies will thus, in principle, be reduced to a
first-order perturbation calculation where the
wave functions to be used are the stabilized wave
functions of H®’, i.e., the linear combination of
the functions (10) which diagonalize H®'+H®’,

We shall denote by T°(A\) the transformation
function e™8 (and by T71(\)=¢ ™8 its inverse)

7 See for example, J. H. Van Vleck, Phys. Rev. 33, 467
(1929); O. M. Johrdahl, Phys. Rev. 45, 87 (1934).
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which to second approximation may be written:
T=14S—3N82—(4/6)N3S3+---. (12)

The transformed Hamiltonian will become to
second approximation THT 1= H'=H®' +\H®’
+MH®' where H=HO+NH®+NH®. When
(12) is used for T (and T?) in the above indicated
transformation one obtains by equating together
like powers of \:

HO' = O,

HW' =H® —i(HOS— SHO),

H®' =HO+ /D[ SHO+H)
—(H®4H®) ST,

(13)

The portion of H® which we wish to remove
consists of terms each of which is a function of
the normal coordinates g¢; (or the conjugate
momenta p;) multiplied by a coefficient which

HO =[®,

SHAFFER, NIELSEN AND THOMAS

is either a constant or a function of the angular
momentum operators P,, for example ap; and
P2 When, as in the latter case, the coefficients
are functions of P, they may still be treated
merely as constants since the rotational part of
H®O ig proportional directly to the square of P,
which commutes with all functions of P, so that
(HOP,—P,H®W)=0. In Table I is given the
basic transformation functions S, required to
remove the types of terms occurring in H®’
together with the corresponding wvalues of
i(H'S,— S,H®). The complete S function will
be a sum of terms, each of which will be a basic
S, multiplied by an appropriate coefficient. It
will contain as many elements as there are terms
to be removed ; each element in S being chosen
to remove a single term in H®,

The transformed Hamiltonian H’ written in
orders of magnitude becomes:

HO' = —(¢3/A0) [ (g2ps— gspa) Pt (gspr — @198) Py+ (qupe— @2p1) P ]

HE = HO+(i/2)[SEHO+H) — (HO+H®")S],

where

(i/2) [ SHO+HW) — (HO+HO) S]= Vst S6G aPo2+ 5 H eP P+ Taaad Pa*
« aff a

+Taaﬂﬁz,(Pa2P82)+Ta8aﬁz;(PaPﬁ+PﬂPa)2+ Z Taﬁvﬂ[(PaPﬁ‘*‘PﬁPa) (P7Pﬁ+PﬂP7)
af Q,

afvB

(14a)

— (£4/ A0) [ (gsps— gsps) P+ (gsps— gappe) Py+ (qups— gsps) P2, (14b)
(14c)

- (P7P5+P5P7) (PaPﬂ—I‘PpPa):H- T0P2. (14CI)

In the above :

Va=(35%/4406)+B(vs) +B(ve) + C(vs) + C(va) + T (vs) + J (v4) + K (v5) + K (v4)
— (ca?/4m) (vt vt vat — 2012 — 201 %0s® — 2v5P4®) H{wa (v —va® — 1) @*(¢4* + ¢5>+ 46%)
Fra(re —vs® — 11%) g2 (012 + @2+ 05%) +r1(m2 — w5 —v4®) (0194 + 4205+ 4306) *+ SiAvavsvs
— owwsra[ p1P4(Qegs+Gsg6) + D2Ps(q1gs+ 0s06) + Dape(1gst+gags) 1} — (co®/4m) (va* +vs*+v4*

— 2way® — Qwg?ps? — 2v32s?) " w3(vs” — va® — vo?) (1,2qu% 1, 2¢s2 + 1..°6?)

Fva(va® —vs? — va?) (0,2q1 2+ 1, 2qa% + 1.2q5%) +va(pe? —vs® — v3%) (q:12q4* 4 42°q5* +45°q6® — 1929495

— 1930496 — g2Q395gs) + Sihwgvwat vavaval p1pa(Gegs+qsgs) + D105(q1g5+ gsge)
+ pape(q19a+gags) 1} — (Gen®/Fivn) { (1/3) (pe*q9® — o*bs®) +5 (qopegs* — 99*Psgs) }
— (9¢c19%/ 8.11'1/1(41/22 =) { 22 —n?) (g2 + 452 2+ 2% (Pr%gs? +g:2ps?) +4v1vaqe* (¢r* +gs?)

Formula continued on following page
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(P’ + @i 1"+ P05 + s ps™) } — (c1s®/Amos) { (3/48R) (pr°qr® — @ pr® + Ps®qs® — ¢s°s°)
+(3/8)qr%gs*+ (3/32) (gr*+ gs*) — (3/16) [ps(pra:*+q:°r) + b1 (Psqs® + as*ps) +17°05° + 15" ]
+(3i/16%) [pr2q:*Psqs — GsPsqn*br + Do Qs s — 45> bsGapr® + Ps’Gsprqs® — G Prdsps® + G ps’as”
—gs*ps’qrpr 1} — ((c16s/ 27v3) +(cacs/ 27v4) ) (91929405 + 1039496+ 2G3g5Gs) — (¢561/ 2v1) (@1 + @+ G5°)
X (g +¢5*+¢6%) — ((Bcson/2mv1) go + (3cscra/47v1) (9774 5%)) (@2 +g2+5) — ((3oren/ 2mm) gs?
+(3c1612/2791) (g2 +s%)) (¢4 + ¢5* + ¢6) — (Csc10/ 2mv2) [ ¥ (91* — 302" — 35) + 05> (02 — 301* — 305%)
+96*(¢5* — 301* — 392*) 1— (9cucra/4m1) g (g5 + ¢s%),
where
B(rs) = (— 62/ 12m05) { qi202* + 012052+ 42052+ (24/ ) (prgupegapsds — 1prgopagsps) }
C(vs) = (ca?/4mvs) (04> — 4vs®) " { [ (Gegs+q345) *+ (0196 + 9594) > + (9105 + 42g4) * vavs
— (122> + 02*qs* + 017s) (va® — 2v5?) + (245> / 1) (P101p3qspsGs+ Prq1D20epeds+ Pedapsgspags
— Qip19sPsGsPs — Qip1gepadspe — Gepaqspsqubs) |,
J(vs) = (—cs*/4mv) (dvs* — 1 ®) 7 (205 — 01 %) (@1 +@2° +¢5) P+ 4vivsge®(01° + ¢2° + ¢5%)
+ 203 [1%(ge*+ %) + p22(@1+g5%) + P52 (@ + @) 1+ (2w /1) [(p1°01° + 2°Q2* + D375 Pogo
— gopo(gi* P12+ @2’ po* +gs7ps%) 1},
K (v3) = (—cs?/4mvy) (4va? — 1) 7H{ (2052 —19?) (g1 + G+ @5 — 01202 — 01 %0% — 02°45%)
FAvaws(uaq 1, g +1.°q5%) —vi’ [ p1(g2+ %) + p2( 9+ ¢5) + P30+ ¢2) ]
+rl [P’ — o+ o’ — g P 1}

The corresponding quantities for », are. obtained, respectively, by replacing ¢;? by c; ¢ by ¢3?;
¢st by ¢;? and ¢g? by ¢y and in addition by interchanging »; by », and the coordinates and momenta
G, G2, Gs, P1, D2, P3, Tespectively, by g, gs, e, Ps, Ps, pe. Other quantities which occur in (14¢") are

Taaaa=(—1272403) 7 (1 /2 +2/1?), Taags=(2/n*—1/203%), Tagap=(—1/327240%)(Coa®/va*+ o /"),
Tayer = (—1/16mhA®) { (Faups/ved — Casps/vad) (Faugs/va — Caaqa/vat) — (Sosps/vad — Laspa/vih)
X ($ugs/ v — §aags/vi) }
1= {265(q+ @2*+45*) +26:(q:>+ g5+ 46) + 6cuge’ + 3c10(g+ 45 } (dr A (o)),
Go' = {(a1/v2)(@:* — 392 — 395°) + (a2/v2) (g4 — 305> — 306%) + ($3s/ (5> —va)) [ (2 +235%) ((g5* +g6%) /74
— (g2 +5") /v3) + 20a(ps*+ p6?) — 2v3(pa® + pa?) 1+ ($2®/ (v —va®)) [ (w52 +24%) (2 /va—v2/v2)
— 2vapea® +2vspr® 1+ (aa/ (ve? —v4®) ) L (v +24%) (94?/v3— 2%/ v2) — Lvapoa+2vap4®],
H.y' = {(3as/vs) — (az/vs) a1/ (wavs) 14 ($aa?/ (v5® —v42)) (a4 3v5?) /vs} quga+ { (3as/va) 4 (as/vs)
Fan/(vava)t— (Fa?/ (vs2—v42) (Bva4-vs?) /va} qugs,
where for the sake of brevity the substitutions have been made:
1= —cs(Ao/6mra)t, da= —cxo(Ao/6mus),  ao=(crfas/6)(Ao/2mv)},
ar=(ca824/6)(Ao/2m4)},  as=(cs¥2s/2) (Ao/2v3)t,  ao=(—cs$2s/6)(Ao/2mvs)},
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aw=—%(Ao/2m) [ (cates/vs) (vs/va)t — (Cr823/vst) (va/v3)¥],
an=—3%(Ao/2m) [ (cs§os/ i (v3/vs) — (€1$2s/vs?) (va/v3) ¥ ]

Tysyer Teszyy Gy Gy Hy', H,,' are obtained from the above by cyclic rotation of ¢i, ¢s, gs; p1, P2, P3;
qs, G5y G5 P4y P5; PG; Vzy Uyy Vi Pvzy va, P’vz-

We are now in a position to calculate by perturbation theory the alterations of the energy caused
by the second-order Hamiltonian. We shall treat each of the states Vivy, vo, Vivs+vs, Vivi+vs, vo+vs
and o+, separately. In doing so we shall employ the degenerate perturbaticn methods for while
certain degeneracies have been removed those in the quantum numbers K and M still exist. The
matrix H®’ will be a step matrix with a step for each value of J. Each step will have 2741 rows and
columns corresponding to the 2J+41 values of the quantum number K for a given J value. Since
H®’ contains terms which are functions of P, the degeneracy in K is removed in this approximation
so that these steps will contain elements which are nondiagonal. The elements of the matrix H®’
are obtained for any one of the above states by evaluating the integrals

(V,' : KIH(Z)’IV]' : K’) =f§JKM(V]', S)H(Z)"I’JKM(Vj, S)d?), (15)

where ¥y (v; 1 s) is the stabilized wave function for the state in question.

The state Vi, of which the normal state may be regarded as a special case, is entirely non-
degenerate in the vibrational coordinates and the functions ¥;xu(», s) is simply the function (10)
where all the quantum numbers V, save Vi, are set equal to zero. For these states, the only non-
vanishing matrix elements are the (K |K) and (K | K+4) elements which are given below:

(K|H®'|K)vin=(#*/240) {Ro( V1) + T (J+1) Ri( Vi) + T2 (T +1) 2Ry (Vi)
+[6J(J+1)K2—5K2—T7K*|Rs(Vir1)}, (16)
where
Ro(Viwr) = (1/4) {27/ 2[(ws/es) + (wa/w3) J¢ 2% §aa2+3[ (wa/w3) + (ws/ws) I§ 2+ 3[ (we/wa) + (s /w2) 1524
— 27§00 — 9} +(340/2) {3d1+ds+-3ds+ds+dr+2d 1+ dor+dos — 5 (das+da9) +dar
+dog+3dss+ (2 V1) (dis+dao+dsr) + (2 Vi2 42 Vi41)dso} — (Ao/4) {12/ 3ws
+ 3¢/ (2ws+ws) 3652/ (2ws+ws) 44/ 3ws 43 (12w3? — Se01?) €52 /o1 (4ews? — w1?)
+18(6scr Csra - Crc19) Jor+ 3c62[wr (w12 — w52 —w42) + Zeorwsws 1/ (wrt +wst+wat — 21 %ws?
— 212042 — 205%ws?) +3(1 2042 — 5012) 07 /w1 (dess® — w12) + 6¢52/ (2ws~4ws) + 6102/ (25 +ws)
+36(205% — w1%) 122 /w1 (4ws? —w12) + 5¢152/ 1 6wa+ 3692 [ ws(ws? — wi? — wa?) Fwa(ws® — w1? — we?)
eon(n — 02 — o) -+ Zeoxeoos ]/ (rt gt — Zeogteos? — Zeogdeos? — Deogleor?)
— 2 Vi+1)(40/2) {9(cs+crtc12) (en/v1) +6wses?/ (dws® — wi?) +6wicr®/ (dwi* — wi?)
+ 18wac12?/ (dwa® — w1?) + (3¢6%/ 2) [ws(ws? — wa? —w1?) Fwa(ws® —ws? —wi?) ]/ (wr* +wst +ws
— 200, %w3? — 201w — 2w3%w?) } — (Aocun?/4w1) (30 V2+30V1+11),
Ry(Vin) = (] Ao) { (Sen? — ooz 2005?) F25? / Aconews(wa~+ws) 4 (2 Vi 1) feor 4 (1/ 2000)
+ (Sews? — waewa=2ws?) Fa4? / desowa (wa +ews) + o4 (ws —wa) ? /s (ws+ws)
+ 840/ 2 es 612+ (2 Vi 1)en ]+ (B/ 24057
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Ro(Vw1) = (—12/640%) { (8 /61®) + (5/2w®) + (3/4) ($2* /s + {au? /i) },
Ra(Vwy) = (2/4A46%) { (1 /w2?) — 3 ($as*/0i®+ F2a?/04) }
and
(K|H® | K+4)={[f-KE+)]f—(K+1)(K£2)J[f— (K£2)(K+3)]
Xf— (K£3) (K4} (#2/440) Rs(Vivy).  (17)

We have for the sake of brevity introduced the notation f=J(J4+1) and %= (h/2x).

The state v, becomes excited when V, is set equal to unity. This may take place in two ways, i.e.,
by setting n;=1, ns=0 or n;=0, ng=1, so that this frequency is twofold degenerate. It, also, is
uneffected by the presence of H®' and the stabilized form for that part of the wave function charac-

teristic of », is readily formed to be:
U(ve) .
=2 ®(m; =1, ng=0)F &(n; =0, ng=1)}. (18)
V(v2)

The degeneracy in », is removed by H®' and its matrix breaks up into two nearly identical steps in
the vibration coordinates with the elements Ujgy i Usgxrar and Viyxa i Vixrn. The elements
Usku i Vigru vanish identically. These steps will again be diagonal in all the rotation quantum
numbers save K and the nonvanishing elements are the elements (K |K) and (K |K +4), the values
of which are given below :

(K|H®'|K),,= (52/240) {Ry(v2 : 1, 2)+ T(JH+DRy(vs : 1, 2)+ T2 (J+1)2Re(r : 1, 2)
+[6J(J+1)K2—5K>—TK*IRs(vs : 1, 2)+K?Rs(v2 : 1, 2)}, (19)
where
Ro(vz 1 1, 2) = Ro(0) + (3/4) { [ (wa/ews) + (ws/wa) 15282+ [ (wa /o) + (wa/w2) J24?}
+(340/2) {do1+2ds+ (5 — 2}/6) (das+das+dar+ 3das+doy +6dss) }
— (Ao/4) { 1801610/ 41205652/ (Aeos® —w9?) + 1 2004016/ (deos® — wa?) + 181361 /o0y
+36(3wa - 2001) 192 /01 (20 wor) + (427 12) 152/ 16ws 4 co? [ws(ws? — wa? —ws?)
s — 0 —ws?) ]/ (0rt ozt ost — 2urtws? — 2ogwsd — 2wgwi) ],
Ri(z 1 1, 2) = Ri(0) + (/) Aiwn) { (1F1/8) — (3£1/8) [ (Bwa? +w3?) {2s?/ (we? —s?)
+ (Bwa? Fws?) §24?/ (e —ws?) 1},
Ro(va: 1,2)=Ro(Viws); Rs(va: 1,2)=Rs(Viy),
Ri(vg 1 1, 2) = 4= (3%/8 A ows) { (3un? +s?) {25/ (w9? — w3?) + (3wa+wa?) {242/ (wa? —wa®) +1}

and
(K|H®'|K+4),,=(K|H®'| K +4)vy,,. (20)

The state »; is excited when V; takes the value unity. This may take place in three different ways,
namely; when one of the three quantum numbers #;, 7,5, 73 is set equal to one, so that the state »;
is threefold degenerate. This degeneracy is removed by H®’ and the wave functions which we shall
require for our second-order calculations are just the linear combinations of the basic functions (10)
which will diagonalize H®’. It is not difficult to show that the appropriate linear combinations of
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these® are of the form:
Yrru(vs : ) ={a;F(rs) RIK+1)+b,G(vs) +c.H@s) RIK - 1)} (V1 Vo Vy), s=I,II,III (21)
where F(vs), G(vs) and H(vs) are the three linear combinations of the functions (nmams) :
F(vs)
H(vs)
Gvs) =d(m=n=0, n3=1),

}=2_%{<I)(17,1=1, No=MHN3z= 0)ii@(ﬂ1=ﬂ3=0, '}'L2=1)},
(22)

which will be recognized as the three wave functions for the three-dimensionally isotropic oscillator
treated in spherical polar coordinates. The coefficients a;, bs and ¢, are the following quantities:

(U=E)(J-K+1))} [(U=E+D+E+1))} (J+K)(J+EK+1))
_{ 27+ 0T+ | _{ (J+1)2T+1) } =—{ 27+ D) 2T+1) }
au:{(J—K)(J+K+1) %’ ={ K? }% . ={(J+K)(J_K+1)r,
27(J4+1) J(J+1) 27(J+1)
am={(J+K)(J+K+1) %, bygpes _{(J+K)(J-K)]%’ corre _{(J—K)'(J—KH)F
27(2T+1) JQ2JT+1) . 2J(2T+1)

and R(K') are the wave functions of the spherical top. These functions lead to the well-known values
for the first-order energy corrections

E®O=Jgh?/ Ao, Ert®=—ih*/40 and Epp®=— (J+1)§sh/ Ao.

With the aid of the function (21) where ¥ (V1 V,V}) is set equal to ®(V;)®(1n; =n3=0)®(V,=0) we
now evaluate the elements of the second-order matrix H®' for the states Vw;-+w; of which the
fundamental state is a special case where V;=0. For these states the matrix H®' breaks up into
three-step matrices with the elements Vyxu(Viri+vs @ $) i Yoru(Virr+ws i s). This will be true
because the functions ¥yxu(Vwi+vs : I, I, III) are the eigenfunctions of H®+H®' in which »s
is nondegenerate so that to this approximation the elements ¥V g p(Viry+vs ¢ 8) § Vogu(Vir+vs 1),
r¥s, may be neglected. Each step will again be diagonal in the quantum numbers J and M and
will have the following nonvanishing elements in K:

(K| H®'| K)Viysprs= (82/240) {Ro(Virr+vs) + fRi(Virs+v) +[(a2+¢ ) (f=K?*—1) — 2K (a2 —c:?)
+202K* |Rs( Vins+-vs) +aics [ f— K(K —1) PLf— K (K+1)¥](Rs+Ry)
+20,[ 2K+ 1)a:(f—K(K+1))i+ Q2K — e[ f— K(K—1) 1R,
F[6K?—5K?—TK +2(a+c2) (3f— 6 — 21K?)
12022 —cH)K(6f —19 — 14K?) R — [(a24¢:2) (24K 49— 4f)
4 (@2 — ) K (8K 25— 4f) TRe-+ 23 (2f — 6K? — 6K — 3)as
X(f—K(K+1))}—(2f—6K*+6K —3)ci(f—K(K—1))Y]Re}, (23)

8 The transformation matrix which transforms functions (10) into (21) may be obtained from Condon and Shortley,
The Theory of Atomic Spectra (Cambrldge Univ. Press, 1935), p. 76, when their discussion is made applicable to our
problem. This is not surprising since the case here under consideration is just a trivial case of the vector addition of
angular momenta in quantum mechanics. This method is particularly useful in obtaining the wave functions for combi-’
nation states between »; and »4 as well as for the overtones of »s and »,.
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(K| H®'| K+2) = (1/240){ —a:a:(+2)[f— (K+1)(K+2) P[f— (K+2)(K+3)
+20b:(+ D[ f— KK+ PLF— (K+1)(K+2) Fewci(+2)[f— KK —1) T
X[f—K(K+1)P4aici(+2)[2f—6(K+1)2]} (AwsRe/4%), (24)
(K+2|H®'|K)=(K|H®'|K+2),
(K|H®'|K+4) = (1/24) {[f— (K+1)(K+2) B[ f— (K+2)(K+3) 1} {aci(+4)
X[(Ro/2) — (Ra/4) T+ 28 f— (K +3) (K+4) Pasbi(+4) (Ro/4)
— 273 f— K(K+1)Pbici(+4) (Ro/4) — [f— (K+3)(K+4)
X[f— (K+4)(K+5) Faiai(+4)(Rs/2) = [f— K(K+1) L f— (K +3)
X (K+4)Pbibi(+4) (Rs/2) — [ f— K(K = 1) FLf— K(K+1) Foici(+4) (Rs/2) };
(K+4|H®'|K) = (K |H®'|K+4), (25)
where

Ro(Vwitvs) = (1/4)[188a5* — 2425 — 145 ((wa/w3) + (wa/w2)) $a + 3 ((we/w0a) + (wa/2) ) $a
— 27§05 Cos® 4 (45/2) ((ws/ws) + (ws/wa)) Sas®Coa® 14 (Ao/2) { 21d1 4 5ds+9d5 4 Tds
+3d10+10du~+-3(2Vi+1) [deo+dsi+ (5dis/3) 1+ 5da1+10dss — (5das/2) + 3dy+6das
—3day+3(2V2+2V1+1)dsy+9dss} — (Ao/4) { (5¢12/3ws) + (Tws+4ws) ca2/wa{ws~+ 203)
+ (Bws— 100s) €52/ (3 — 4ws?) + (€42 / 300a) +[ (2 V1 41) (Buws(ws?® — wa® — w1 ?)
- Seog(e0e — cog? —012) ) - Seon (01 — g —04) - Gconconeos Jeo (wrt et -ooet — 2eoreog?
— 2001 %w4% — 205%w42) "1+ [ 1000952 — 350012+ 20 (2 Vi1 )wyws 652 /oo (deos? —cr2)
[ Beaeog? — ot —n?) - Seoa(on? — 03t —cor?) -+ Soneon? s — 022) - o]
K (wet wsttwet — 2w0%ws? — 2w22ws? — 2w32we?) ~1 4 (3¢2 /1) [4(2 V1) wyewq — Sy
+12ws%]/ (4ws® —w1?) + 2 (dess+ Tes) ¢ /wa(ws 4 2ws) + 6102/ (wa+ 2ws)
4 (30V24-30 V4 11)cxc?/eor 4 (5/16) 15? fop+ 18 [Aeon? — 2o+ 2(2 Vi -+ 1 eoneon Jera?
Jw1(4ws? —w1?) + (2 V14-1) (30cs+ 18¢7 4 18¢12) (c1n?/wi) +30(c; +cr2) €5 /1 +18¢rc10/wn },
Ri(Vwitvs) = (1/240) { (ws® +3w22) $os? /waws(wa—-ws) 438242/ 2ws+ (s/ws) (Ao/3w2) 422 V14-1) Jon
+ (1 /e) 4 28 34?005 — 654+ Bwgs® — 2004%) [ewwoa (032 — 04?) + (1) A eon?)
+2(240/3w1®)(Scs+3c;+3cu+3c2) }
Ro(Vwi+vs) =R(Vwy),
Rs(Vitrs) = (1/240) {[L(3/4) (Twa? + Sws?) {25%/wa(wa? —ws?) ]— (3A0/wa)}(Cs/ 2w2)
+ [(we? 4 3ws?) fas? /ws(ws® —wa?) 1},
Ry(Viwr+vs) = (1) Ao) { (B525*/4ws) + 201 (A o/ws®)t — Fasca(Ao/wi®) i+ [(w + 30s?) fa? /woa(ws® —wi?) 1},
Rs(Vini+vs) = Rs(Vivy),
Re(Viw1+vs) = (fes?h?/4A%05?) ; the subscript 4 assumes the three values of s in (21).

The coefficients as, bs, ¢; which have already been defined are always to be associated with the quantum
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number K =K. In (24) and (25) a notation a(+42), b(+42), etc. is introduced to denote the values of
the coefficients as, bs and ¢; where the quantum number K is replaced by K+4-2.

In the same manner by setting ¥(V;V,V3) equal to ®(V;=0)U(r,) and &(Vi=0)V () we may
determine also the matrix H®’ for the state vs-+v3. From the foregoing it will become apparent that
for this state the matrix will split up into three sets of two nearly identical steps which are diagonal
in J and M, but have elements nondiagonal in K. The (K |K) elements are identical in form with
(23) where the parameters Ry( Vivi-+v3), etc., are replaced by Ry(va+v3), etc. These are given below :

Ro(vats i 1, 2) = Ro(vs) 4 (1/8) (102 1 3b:2) os?[ (wa/oo) + (eos/on) - (Ao/4) { (10F 1 23b:2) oy
+ (20 17F 3b:2) dog — (5= 17F 3b:2)dag+ 6dar+ 1 2das -+ 6d 3+ 36355}
— (Ao/8) {(30c5+18¢;) (c1z/w1) 4+ (1014-35:2) [ 2wscs?/ (dws? —ws?) ]
F[12w46102/ (dewrs® — we?) 436 (3wa~+2w1) [ 102 /w1 (2we 1) 14 (7 2£2) (3c152/ 8ws)
- [1 500305 —cos® —00%) 3 (107 1 2352)con (s — con? —0a?) Teg?

/ [w24+w34+w44 - 2w22w32 - 2w22w42 - 2w32w42] } y

R1(V2+V3 . 1, 2)=R1(V3)+(ﬁ/2/10){(6440/6013)%612—}‘(1:!:1/4:)/&)2

Ry(va+vs) = Re(vs),

— (1£1/4) 024 (Bun4-ws?) fwa(we? —wa?) ]},  (26)

Rs(vetws 1 1, 2) = Ra(vs) =Ru(ve+vs 1 1, 2) = Ra(vs) = — (1 2£1/4) ($a5?h/ 240) [ (Bwa? +ws?) /wa(ws? —w3?) ],

R5(V2+V3 : 1, 2)—‘R5(V3) =R8(V2+V3 : 1, 2)'—Rg(lla)

= == 3wt/ 240) { [ $25%/ (w2? —ws?) 1+ [ o (we? —wi®) ]},

Ro(ve+vs) =Re(vs); Ry(va+vs) =Ri(vs);

and

Ro(va4-vs) = Ry(vs) ;

Rio(ve+vs) = Ru(vs)

(K|H®'|K+2) = (K+2|H®'|K) = (32/240) {[2f— 6(K+1)*Jascs(+2) Ru+[f— K(K+1)
X[ f— (K+1)(K+2)Fbdi(+2) (2R — Ris) } 4 (52/2 A0) (Ru+Ris)
XALf—K(K—1)PLf—K(E+1) Feics(+2) —[f— (K+1)(K+2)

where
Ryu(vatvs) =Ru(vs);

XLf= (K+2)(K+3) Paai(+2)},  (27)

2R15(V2+V3 M 1, 2) =R5(V2+V3 : 1, 2)-—R5(V3)

and (K |H®'|K=4) which are entirely identical with those for the state »; given in (25).

Since the nature of the frequency », is entirely
analogous to »; the elements of the matrix H®’
for the states Vivi+v4 and v2-+v; may be obtained
from the relations (23) to (27) simply by replac-
ing RS(V1V1+V3) by RS(V1V1+V4) and RS(V2-|—V3)
by Ri(vo4»s) where these may be obtained by
replacing in R,(v;+4vs) the following quantities
which are included in parentheses: ({23, (o),
(wa, w4), (d1, ds), (dt;, dlo), (dISy dzo), (dm, d27),
(das, dos), (des, da), (1, c1), (ca, €3), (C5 €1), (Csy c10).
Thus for example Ru(Vwi+v) becomes
(Biaa/8Awwa).

The actual values of the rotation-vibration
energies for the above states may be had
by diagonalizing the corresponding matrices
H. This is most readily accomplished by solving
for the roots of the secular determinant
|(K|H|K')—EbsxX|, 8 being the Kronecker
symbol. The actual unperturbed wave func-

" tions xsu(v; ¢ s) for a rotation-vibration state 7,

7 being simply an index number running from
— J to +J, which are the limiting values of the
actual perturbed wave functions may now be
written as an expansion in terms of the wave
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functions ¥ g u(v; @ 5):

+J
xru(viis)= 2 Aru®Vreulv;ts), (28)
—7

where the coefficients 4 ;%) are the normalized
first minors of the secular determinant.

IV. THE SELECTION RULES AND INTENSITIES

To determine the selection rules we have to
determine what are the nonvanishing matrix
elements of the electric moment. To second
approximation the classical expression for the
body fixed components of this are the quantities:

I, = 4191+ A2qs+ B1Geqs+ Be(gegs+gsgs)
+ Bsqsqs+ Bsqigs+ Beqsgo+ Brqutt s+ Bagathc,

II, and II, being obtained by cyclic rotation of
g1, Go, 93} Qay G5y Q6; Uz Uy and u,. The matrix
elements of the electric moment are given by the
integrals

f)'(JKM(Vi ) Mgy (vi 2 8")dv

where Il are the components of II along the
spaced fixed axes; xs, k, ¥(v;:5) and xrx m
X (vi, s') the wave functions of the initial and
final states. The function xsxux(v;:s) may to
a good approximation be replaced by ¥sxu(v; : 5)
in computing the intensities because the actual
splitting of the rotation levels is small so that
all the 4;,4®, except the one where 7=K, will
be small. ;

Inspection of the quantity II shows it to have
no linear terms in g7, gs or gy. For the frequencies
»; and »; the above integral will therefore vanish
and they will consequently be optically inactive,
giving no bands in the infra-red. For transitions
from the normal state to the'states. Vi +v; and
ve+vs the above integral will not vanish so that
these frequencies may be expected to occur in
the spectrum.

In evaluating the integral for the electric
moment it is found that the selection rules for
the rotational quantum numbers are the same
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for v3, »;+v3 and »e+vs, from which the inference
may be drawn that also for higher combination
frequencies of this type the selection rules will
be the same. For J the selection rule is AJ =41,
0 or —1 as the transition is from the normal
state to the states »;, 1, 3, 11 Of »3, 111, rEspec-
tively, which verifies the conclusions drawn by
other investigators. In addition we have the
selection rules for M and K, AM =441, 0 and
AK=0. An interesting result which prevails is
that the quantum mechanical amplitudes are
independent of the quantum numbers J and K.
One obtains for the square of the electric moment
112, which is 2+ 11,24 11,2, simply

(= |mJx1)=1. (29)

The actual intensity of a spectral line, ignoring
all symmetry properties, will very nearly be
proportional to

I(J,K; J', K)=N()(J' | 1| J)(gs/gs), (30)

where N(J) is the number of molecules in the
state J and gs and g, are the statistical weights
of the state J and J’, respectively. For the three
cases AJ=—1, 0 and +1 the relation (30) will
become

I(J,K; J—1,K)=(2J-1)
Xexp (—E(JK)/kT),

I(J,K; J,K)=(2J+1)
, Xexp (—E(JK)/kT),

I(J,K; J+1,K)=(2J+3)
Xexp (—E(JK)/kT).

31)

These results appear to be in agreement with
those of Jahn derived from other considerations.

To arrive at the actual intensities the relations
(31) must be multipled by the appropriate spin
factor. This problem has been considered by
Wilson? for the cases where the four Y particles
are protons and deuterons and need not here
be discussed. For these cases the actual nuclear
spin factors for the various rotation states have
been evaluated and may be obtained by reference
to this werk.

9 E. Bright Wilson, Jr., J. Chem. Phys. 3, 276 (1935).



