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The Rotation-Vibration Energies of Tetrahedrally Symmetric
Pentatomic Molecules. I
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A complete theory for the rotation-vibration energies of tetrahedrally pentatomic molecules
has been derived to second degree of approximation for certain vibration states. In this discus-
sion the elements of the matrix H are given for the states Vj.vj p2 Vj,vj+v3 Vjvj+v4 v2+p3
and v2+P4. The selection rules gover'ning what transitions may take place have been determined
with relations for the intensities.

I. INTRQDUcTIQN

HE band spectra of tetrahedrally symmetric
molecules, of which methane is a typical

example, have long been known to possess
anomalies in their rotational structure. Not only
does the value of the moment of inertia Ao,
computed from the rotational line separation Av

by the relation Ao ——(h/4~'Av), vary from band
to band, but recent measurements' have shown
that the rotation lines themselves are not single
lines, but show multiplet structure. The first
effect has been explained in a theory originally
proposed by Teller2 and subsequently enlarged
upon by Johnston and Dennison' which shows
that the Coriolis interactions between rotation
and the threefold degenerate oscillations yield
corrections to the energies of these states so sig-
nificant that the relation for Ao becomes
(i'h/4w'Av) where i is a constant, varying from
band to band, which depends upon the nature
of the normal vibration and may be substantially
different from unity. The second e8ect has, for
the frequency r4, been accounted for by Jahn'
who attributes this splitting principally to a
Coriolis interaction between the optically active
frequency v4 and the optically inactive vibration
vm. The work of Jahn does not, however, take into
account any of the other kinds of interactions
which may be present, such as the centrifugal

expansion of the molecule, the Coriolis interac-
tions between more remotely separated vibra tion
frequencies and the effects of the anharmonicity
of the osciIlational motion, all of which are indi-
cated by experiment to be of considerable im-
portance. Jahn's work serves essentially to
emphasize the importance of obtaining a com-
plete theory for the energies of such polyatomic
models where all second-order effects are taken
into account.

In a recent paper' we have made just such
calculations for non-linear triatomic molecules
and have given explicit expressions for the ele-
ments of the energy matrix for the general rota-
tion-vibration state. In principle it is possible to
make such calculations also for the tetrahedrally
symmetric model, but in practice it is not feasible
to do so and it becomes necessary to treat each
vibration state as a separate case. We have deter-
mined the elements of the energy matrix accu-
rately to second order of approximation for the
states VIP] P2 VIP I+v3 V]PI+ l 4 P2+ P3 P2+ v4,

2v3, 2v4 and v3+v4. In this paper we desire to set
down our results for the first six of the above
states, leaving for a Part II the discussion of
the states 2P3, 2v4 and the combination states
betWeen v3 and v4.

II. DERIvATIQN QF THE ScHRQDINGER

EQUATION

The orientation is a system of body-fixed
coordinates x, y, s of the model which we shall
refer to herein is illustrated in Fig. 1. In their
equilibrium positions, the four identical

~ W. 8, Steward and H. H. Nielsen, Phys. Rev. 47, 8'78
(1935); W. B. Steward and H. H. Nielsen, Phys. Rev. 48,
862 (1935); A. H, Nielsen and H. H. Nielsen, Phys. Rev.
48, 864 (1935).

2 E. Teller, Hand und Jahrbuch Chem. Phys. 9, II, 43
(1934).

3 M. Johnston and D. M. Dennison, Phys. Rev. 48, 86
(1935).

4 H. A. Jahn, Proc. Roy. Soc. A168, 469 (1938).

8
~ W. H. Shaffer and H. H. Nielsen, Phys Rev. 56, 188

(1939).
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s=l

0 =pm(p, 8y, —y', 5p,).
(2)

The eu are the components of the angular veloc-
ities along the axes x, y and s and the bo, in the
above are the displacements of the atoms from
their rest positions in the x, y and s directions.

To be useful in deriving the Schrodinger
equation Eq. (1) must be expressed in terms of
the normal coordinates. To obtain these it will

be necessary briefly to consider the problem of
the oscillation of the molecule in the body-fixed
coordinates. There are in all nine degrees of ohcil-

lational freedom for this type of molecule so
that the above coordinates are not all inde-

pendent, It is convenient, therefore, to introduce
the nine intermediate coordinates which are
related to the x„y, and s, by the relatioos:

+3 a+ 2(gl/ml) b+2 l 1 2313 2'92)

22 a+ 2 (ill/ml) 51 2 I l+ 93 '92

+3 a+ (Pl/ml) $1 I 1+2 63+ 2 g2 (3)

F3= a+ 2(331/ml) $1+2 l 1 23t3+2'l2)

2;3
———2 (pl/m3) &i.

particles of masses en~ lie at the corners of a
regular tetrahedron, of which the edges have a
length 2(2)&a, and the X particle of mass m3 is
situated at the center of mass of the F particles.
From Fig. 1 the equilibrium positions of the five
particles will be seen to be the following:
1, (a, —a, —a); 2, ( —a, a, —a); 3, (—a, —a, a);
4, (a, a, a); 5, (0, 0, 0).

The kinetic energy of the molecule expressed
in the coordinates x, y and s will be:

T=-'2}gm, (i,2+j.2+2.2)++A cv
'

s=1 A

Q'D 3—0l 333+2+0 (v I, (1)
aP C

0. and P being summed over the values x, y and s
and the prime associated with the summation
nP meaning that l2&P. In the above the x„y,
and s', are the instantaneous values of the coor-
dinates of the particles, 'A„and D are respec-
tively the moments and products of inertia; 0
are the internal angular momenta, their values
being:

5 5

A, =g m(P, +2,y),2D p=p mn, P 33

FH".. 1. The orientation in a system of body-fixed coordi-
nates x, y, s of the pentatomic molecule.

4 4 4

i=1 j=l k-1

4 4

+2&42 Q'&334S+2&3Z Z'&')(~33+&*3)
j=l k=1 i=1 j=1

4 4 4 4

+ lit pl Q)) p/)I gl)IIS
i= I j=l. k 1 /=1

i=1 j=1 k 1

The corresponding y, and 2, are obtained from
(3) simply by replacing the coordinates ()i, pl,

)2by (P2, g3, I'2, rn) and ($3, q2, gl, f'3), respec-
tively, with appropriate changes in the equi-
librium coordinates. In the above p~ is substituted
for mlm3/(4ml+m3). It may readily be verified
that these conform to the usual requirements
that the centroid shall remain fixed and that to
zeroth approximation the angular momentum in
the coordinates x, y and s shall be zero.

We must next select a function for the har-
monic portion of the potential energy. To do so
we proceed as follows: We denote by Sij the
distance between two particles i and j and by
6;j their relative displacements from their posi-
tions of equilibrium so that Sij= Sij +8;;. We
shall adopt the perfectly general quadratic
function of the displacement coordinates bij

4 4

&3=2 I2%Z g'&; +&2&43'
i=1 j=l
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as the one suitable for our problem. In (4) the
single and double primes are used to indicate
that no two indices may simultaneously take
the same values. The X's are the force constant
factors. When 8;; are expressed in the inter-
mediate coordinates one obtains for (4):

Vo= ,'I kg-pf +2kggg;&, +ksPs;2

+kerf

+k Z, 'I-;I;},

where the constants

kg ——(Zy/3) —(K4/6),

2k2 = (4K'/~) —(2Z4/3) + (4Z~/6&) —(4K7/6&),

k, =4K'+ (4Z2/3) —2Z3 —(2K4/3)

+ (8Z5/6&) —2Z6 —(8'/6~), (6)

k4 ——2K'+ (X2/3) +3K3+,'K4-
+ (4Zg/6&) +Z,+ (4Z, /6&),

2kf, 2Zi+7Zg——+Z4+ (8K5/6&)

+Kg+ (8Zy/6*').

The actual normal coordinates, which we shall
designate by gl, g2, ~ ~ ~

g&, are simple linear com-
binations of the intermediate coordinates (3). In
fact it is readily veri6ed that oscillational kinetic
and potential energies take the following simple
form

~"+ ~0 2 I 2 (g /~3+~8g") + Z(g '/~4+~4')

+Z(6'/~2+~mgP)+ (g9'/~i+~igs'), (7)

where the intermediate coordinates g, , s; and t';
are taken to be the following linear combinations
of gi:

$~= (u~) (g~ cos y/caa" +g~+s sin y/co4&),

g~ ——(2m') '( —
g~ sin y/cog"+g~+~cosy/s&4&), (7)

(3——m5) &(u (2)&+ gg/co~'),

where the index Z takes the values 1, 2 and 3 and
0. takes, respectively, the values x, y and 2. For
the sake of brevity the following notation has
been adopted: u =ao2 &(g~ cos e~+gssin ei), e~= e~

+2s.(l —1)/3 where e~ is arbitrary;

sin y = W (2)-&I 1+t (2mnkg —ugka)'
cos p

/(8u~mskp' —(2mgkg —wgkg) ') g& }**,

a», ~
——2s v~, 2= I tk4+(k5/2) (1&3)J/m5}',

c03 4 —2rp8. 4
——

I ((ugka+2m~k~)

~ $(uyk3 2m, k—y) '+8@,m5km' j&)/4uym5 } &

To carry our calculations to the desired ap-
proximation, contributions to the energy from
the anharmonic terms in the potential energy,
cubic and quartic in the coordinates must be
taken into account. These have also been chosen
as perfectly general functions of the coordinates
which are tetrahedrally symmetric. They have
been designated by Ul and U& and are the fol-

lowing:

TABLE I. Basic transformation functions S~ required to remove the types of terms occurring in II& ) together fath the corre-
sPonding values of i(HOSf, -SpH& )).

sp

(-pk/h. &)

(gf /hvar)
(-2/h")(p"/3+-:~. p.&.)
(&/h) (Psgrgs+vrPrP. ) /(P ' —P. )'

f (2Pr Ve )Qr Pa+Vrpe(grPr+Prgr)ge+2pr Pr Psj /hpe(4pr Ve )
pr(pr ps p t2) Prgag t+ pa(pe 2 Vr2 p tS)grPag t 2pr pep tPrPeP t

+Pt(Vt —PrS —P )g gagtIh 1(pr +Ve4+Pt4 —2Pr Va2 —2Pt pp —2pr~pp)
(g,g,+p,p,)/h{vr —p,)

i(HID&Sp SpH&0&)

gk

pk
gks

carpe

Qr Qe

Qrgsgt
gr ps —prgs

S4 is the function which removes from H&» the Coriolis interaction terms which are of the type (qr pe —prqe) Pz. When these terms originate with
«gene»«osciilations the difference vr-ve occurring in the denominator vanishes. Obviously such terms cannot be removed from H& & by this
method.
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Ul Clglg2gg+C2(glg2g6+glgBg5+g2gBg4)+C3(glgog6+g2g4g6+g3g4g5)+C4g4gogo+C5(gl +g2 +g3 )g9

+C6(glg4+g2go+gBg6) g9+ C7(g4 +g5 +g6 )g9+ CB(uzgi +Byg2 +uzgB )

+C9(uzglg4+Byggg5+BzgBg6) + Clo(uzg4 +Byg5 +Bzg6 )+Cllgg

+Clg(uz +By +Bz )gg+ C13uzuyuzi
(8)

Ug dl(gl +g2 +go )+d2(gl g4+g2 g5+g8 g6)+4IB(gl g4 +g2 go +gB g6 )+4f4(glg4 +g2go +gBgo )

+do(g4 +g5 +g6 ) +d6(gl g2 +g2 g3 +gl gB ) +d7(glg4g2 +gl g2g5+ gggogo +g2 gBg6

+g3g6gl +gB glg4) +d8(glg2g4go+g2gBgiig6+gBglg4g6) +d9(g4 g2go+glg4g5 +g2g5g6 +gBg5 g6

+g3g6g4 +g6 glg4) +dig(g4 go +g5 g6 +g4 g6 ) +dll(gl go +gl g6 +g2 go +g2 g4 +g8 g4 +go go )

+d12g9(glg2g3) +d13(g2g3g4+glg3g5+glg2g6)gg+d14(g3g4g5+g2g4g6+glg5g6)g9+d15g4gog6gg

+d'6(uzg2g3g4+Byglg3g5+uzglg2go) +d17(uzglg5g6+Byg2g4g6+BzgBg4g5) +d18g9 (gl +g2 +gB )

+d19g9 (glg4+g2g5+gBg6) +d20g9 (g4 +g5 +g6 ) +d21(uz gl +By g2 +Bz g3 )

+d22[u ('g2 +gB )+By (gl +gB )+B (gl +g2 )]+d23(u B g3'+«.B.q2 +Byu*gl )

+d24(uz glg4+By g2g5+Bz gog6) +d25[uz (glg;+g3g6) +By (g3g6+glg4) +Bz (glg4+g2g5)]

dgo(u, u,gBgo+u, u, qgqo+ B„u,glq4) +d27 (B g4 +By g5'+ u, 'qo') +dgg(u, uyqo'+u, u, q,'+ u„u,q4')

+dgo(u '(qo'+ qo') +By'(g4'+ g6') +B.'(g4'+ qo') ) +doog9'+ d81g9'(B*'+By'+ u.')

+d 87uzu „Szgg+ d 88(B,'+By'+ Bz') .

When the complete kinetic and potential energies have been written down in terms of the normal
coordinates and expressed in the Hamiltonian .orm, one may proceed directly to obtain the
Schrodinger equation. We have made use of the method of Wilson and Howard' and later verified
the results by the variational method of Schrodinger. Ke shall give none of the intermediate details
here, but set down directly the appropriate quantum mechanical Hamiltonian expressed in orders
of magnitude. It is the following:

Ho = (Pg/220) +77vBQ (p,'+ g 2) +77v4+ (p;2+ g 2) +77vgg (pgg+ ggg) +77v, (pg'+ g, '), (9a)

where p, is the differential operator iI'8(8/Bg—,), P, the total angular momentum operator and Ao

the constant part of the moments of inertia.

iq'"' = (Zp-P-/~0—)+2@-P-'+ 2 E'P-6(P-Pg) iI3(3~»/~0) —'pg+ Ul (9b)

The summation n and P is over x, y, s, and the prime indicating that no two indices may at the same
time take thesame value. In the above', =(3203) '*[072 lu —2(2071) ggg] and P 77=F77 =(7725/2203)*g„,
r taking the values 1, 2 and 3 with aP equal to ys, xs and xy, respectively. The quantity p, is

equal to:

p.= I 3(qgpo gBpg)+34(g—opo gopo)+f34[—(v4/vB)'*(ggpo —qopg)+(volv4)'*(g5pB —gopg)]

+I 28[(vo/vg)'S. pl (vg/vB)'glpz, ] h4—[(v4/vg) 77zp4 (—vg/v4)'g4p. ,],
p„and p, being, respectively, obtained by cyclicly rotating the coordinates gl, gg, go, the coordinates

g4, go, go,'the momenta pl, pg, pB and p4, po, po in the relation py,y. For the sake of brevity the notation

' E. Bright Wilson and J. B.Howard, J. Chem. Phys. 4, 2M (1986).



v =g7 sin e, —g~cos e, and P =Pepsin e,—Pscos e„ i'~ ——(1—(3/2) sin y), 1'4 ——{1—(3/2) cos'y),
f 28

——sin y, f'n4 ——cos y and 1,4 ——(3/2) t'231 ~4 is introduced.

H'" = C+ZG.I'-'+ 2 Z'H-pP-I'p+ Zl.&.+Z (p.'/2&0)+ V2,

where

c= (@/4~ &) I (mp~+ g2p&+ gspl) f'~3'+ (g4p4+gsps+ gsps) t'M' —(4/3) 1 34L(»/») ~(g4pl+ g;p2+ gspa)

(9c)

+ ("4/») *(8p4+ g2p5+ gap6) ]+g7p7+ gsps+ 4g9p9 I,

G*= (4~~0') "I(h~'/») (m' —(g2'/4)+(3ga'/4))+(f 24'/~4) (g4' —(g5'/4)+(3gs'/4))+ (~.'/»)

+ (2/») g~'+ (4/3) (»»)-*13~( —mg4+(1/4) g~e —(3/4) gage) —2(2/»») '~*gQ I

H, „=(4mAO') 'I( —f'g4/2)(»») —
'(gggg+gmg4)+{3f gp/4»)gggm+(3&24/4')g4gg

-L(i-. / ):g,-(l-/") g.~L(6/"):g.+(3/4")'..&~,

I.= —(2 &o')-'IL(4/3")*"- (8/3 )'g Jp.+E(l..'/ )'g —(& '/")'g 3.
+L(l'24'/»)'e —(i 23'/») '*g~hp* I-

The quantities G„, G„H„„H„,I„and I, may be obtained from the above by cyclically rotating
+xi +pi Nsi pe& pw& ps' $~ g~a~ gal g4~ g5~ ge

The Schrodinger equation corresponding to
(9a) is separable in the coordinates and has the
eigenf unction:

0'(ng, mg, N9, J,—E'. ,iV}=XR(J,Z,M)C (Ng, mm, ea)

XC {n„n„n,)C (l, ,n, )C(n,) (10}

where R(J, Z, M) is the wave function of the
spherical top, C (n&, nq, nz) and C(N4, n5, m6) the
eigen functions of two three-dimensionally iso-
tropic oscillators of fI'equenc1es P3 a11d P4, I'espec-
tively; C(N&, ns), the wave function of a two-
dimensionally isotropic oscillator of frequency v2

and 4(s9) ls the wave function of a hneaf oscil-
lator. The n, are all integers and may be regarded
as the vibration quantum numbers associated
with the coordinates q, . N is a normalization
factor. The zeroth order eigenvalues become:

&'{Vi, Vm, V3, «, &)=(V~+I)h»

+ ( Vm+ 1)h»+ (Vg+ —,')h»

+{V4+-,')h»+ J'(1+1)h'/8~'Ao, (11)

where fo1 convenience the ' substltut1on V1=Ã9,

Vm=ng+ns, Va=n1+eg+n3 and V4 ——n4+n5+n6
is made.

The evaluation of the coI I ectlons to the encl gy
contI'1buted by II( ~ and II( ~ may be eRected by
perturbation methods, but is a formidable under-
taking when one considers the large number of
terms included in II&'& and II('& and the high
degree of degeneracy of the zeroth order energies.
The only terms in II&'& which can contribute in
6rst approximation. are the Coriolis terms arising
from the oscillations v~ and v4 and a linear com-
bination of the functions (10) can always be
found SUch that the GlatI ix of the8e w111 have
elements only along the principal diagonal. This
suggests the effectiveness of transforming II by
a contact transformation~ TII'1 ' into II&'~'

+H&'&'+H&'~' so that H&'&' wiB, to second
approximation, contain only the above Coriolis
terms. The evaluation of the second-order
energies will thus, in principle, be reduced to a
6rst-order perturbation calculation where the
wave functions to be use'd are the stabilized wave
functions of II&"', i.e. , the linear combination of
the functions (10) which diagonalize H&0'+H&'&. ',

VA shall denote by T(X) the transformation
function e'" (and by T '(X) —s " its i»«se)

~ See for example, J. H. Van Vleck, Phys. Rev. 33, 467.
(1929);0. M. Johrdahl, Phys. Rev. 45, 87 (1934).
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II(o) ' II(o)

H&1&' H&1» i(H&P&S SH 6&)

H&'&' =H&'&+ (i/2) [S(H&'&+H"&')

—(H &'&+H&'&') S]

(13)

The portion of jV&') which we wish to remove
consists of terms each of which is a function of
the normal coordinates g5 (or the conjugate
momenta p5) multiplied by a coeKcient which

which to second approximation may be written:

T=1+i&&S —'&-&SS' —(i/6)&&3$3+ . (12)

The transformed Hamiltonian will become to
second approximation TIIT '= II' =II(') '+'AII&"'
+&&SH"&' where H=H&" +&&H"»+ASH&" When
(12) is used for T (and T ') in the above indicated
transformation one obtains by equating together
like powers of X:

is either a constant. or a function of the angular
momentum operators I', for example apj, and

gI,P,'. When, as in the latter case, the coefficients
are functions of I' they may still be treated
merely as constants since the rotational part of
II&') is proportional directly to the square of I',
which commutes with all functions of 2' so that
(H&'&P —P H&'&) =0. In Table I is given the
basic transformation functions Sp' required to
remove the types of terms occurring in H&')'

together with the corresponding values of
i(H'S, S„H—&'&). .The complete S function will

be a sum of terms, each of which will be a basic
S„multiplied by an appropriate coefficient. It
will contain as many elements as there are terms
to be removed; each element in S being chosen
to remove a single term in II&').

The transformed Hamiltonian II' written in

orders of magnitude becomes:

II(o) ' —II(o) (14a)

({8/+p)[(g2pS gSp2)PS+(g3pl glpS)PP+(glp2 g2pl)PS]

(i-.j~.)t«-.f. g.f.)P.+(-g.f. gf.)P,+(-g ~. g.f )P.], -(14b)

H&'&' =H"&+ (6/2) [S(H&"+H&'&') —(II&'&+H&'&') S], (14c)

where

(i/2)[S(H&'&+H&l&') —(H&1&+H&'&')$]=VS+KG' P 2++'H' pP Pp+r QP 4

+ -ppZ'(P«'Pp')+ -p-pZ'(P-Pp+PpP-)'+ Z -p p[(P.Pp+PpP-)(»Pp+PpP. )
aP aP ale

—(P~Pp+PpP„)(P, Pp+PpP )]+rpP'. (14c')

In the above.'

= (3ls /4/p) ++(PS)++(V4) +C(VS)+ C(P4)+ J(VS) +J(V4) +Z(VS)+Z(V4)

—(c,' /49r) (vl'+vS'+v4' —21,'v, ' —2v, 'v4' —2v, 'V4') —'I v, (v3 P4 . Pl )gp (g4 +g5 +gp )

+V4(P4 PS Pl )g9 (gl +g2 +g3 )+Vl(P1 PS V4 )(glg4+g2g5+g3g8) +217lvlvSV4

—2vlvSV4PP1P4(gSg5+gsg6) +P2PS(glg4+ gsg6) +pSp6(glg4+g2g5) ]I (c9 /41I ) (P2 +PS +P4

—2VS p2 2p2 v4 —2p3 v4 ) {VS(vS"—v4 —v2 )(24, g4 +3&9 g5 +24, gp )

+P4(P4 VS VS )(34 gl +349 g2 +244 gS )+V2(P2 P4 VS )(gl g4 +g2 gp +g3 gp glg2g4gp

. glgSg4g6 g2g3g5g6) + 2$ISPSPSV4+V2VSP4[f&lP4(g2g5+gSgp) +Plf&5(glg4+gSgp)

+PSP6(glg4+gSg5)] I (ic»'/I ») {(1/3)—(P'g9' gp'Pp')+ 2(gpPpgp—' gp'Ppgp) I—
—(9c12 /82rvl(4VS 11')){(2v2—' —vl') (gl'+g8') +2PS'(p2'g8'+g2'ps ) +4vlvSgp (gl'+gS')

Iiormula continued on following page
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+PS'(Pv'qv'+gv'PT'+Ps'gs'+gs'Ps') j (c—ls'l«PR) f (6/48I'8) (Pv'q?' —g?'Pv'+Ps'gs' gs—'Ps')

+(3/8) g?'gs'+ (3/32) (gv'+ gs') (3—/ &6) [PS(pvqv'+gv'PT)+PT(psqs'+ qs'Ps)+PT'qs'+PS'g-' J

+(36/l6~)t Pv~q? P8gs gsPsg? PT +Pv g?P8g8 gs Psg?PT +P8 gsPvgv g?Pv'gsPs +Pvg?PB gs

—gs ps gvpv j j —((clcs/2?rvs) + (csc4/2?rvs) ) (glgsgsgs+glrjsgsgs+ gsgsgsgs) —(cscv/2?rvl) (gl +gR +gs )

X (g4'+q" +gs') —((3csc»/2~pl) go'+(3csc»/4vpl) (gv'+qs')) (qls+gss+qss) —((3c?c»/a~ p,)g,'

+(3cvc»/2?r»)(qv +qs ))(q4 +qs +qs ) (csclo/2?rvs)l q4 (ql Rqs Rgs )+gs (qs Rql Rqs )

+gs (gs Rgl Rg2 )g (9c»clR/4?rvl)g9 (g? +gs )t

where

&(P ) =(—c 'i» ) fq 'q '+ql'gs'+gs'qs'+(26/ii)(P glpsgspsqs —g p g Psq Ps) j

&(ps) = (cs'/«p4) (p4' —4ps') '
f L(gsgs+qsgs) '+ (qlgs+ gsq4)'+ (glgs+ gsq4) 'jvsp4

—(gl gs +gs gs +gl gs ) (P4 —2PS )+(2svs /Is)(plglpsgspsgs+plglpRgRpsgs+psqspsgspsg4

glplg3P8gsPS glplgRPRg6ps gspsg3p8g4p4) j 1

)«"—") 'f(2"—")(q"+q. +q')'+4" g'(q, +q'+g')
+2vs'Lpl'(qs'+ gs')+PR'(ql'+qs')+Ps'(ql'+ qs') l+ (2svs'/&) f:(Pl'ql'+PR'qs'+ Ps'qs') Pogs

—gops(gl Pl +qs PR +qs Ps') J j

E(ps) = (—cs'/4?r ps) (4vs' —vs')-' f (2vs' —vv') (gl'+ gs'+ gs' —gl'gR' —gl'qs' —gv'gs')

+4PRPS(?4* ql +NvsgR +244 gs ) "8 LPl(g2 +qs )+PR(ql +gs )+Ps(ql +g2 )3

+Ps )pl gl gl pl +ps g22 gs p2 J}~

The corresponding quantities for v4 are. obtained, respectively, by rep1acing c»' by cP; c~' by c3',
cs by c&' and cs' by v~0' and in addition by interchanging p3 by p4 and the coordinates and momenta
ql, gs, gs, Pl, PR, Ps, respectively, by g4, qs, gs, P4, Ps, Ps. Other quantities which occur in (14c') are

r....= (—12vRA, S)-'(i/PRR+2/Pls), r..»——(2/P12 —l/2PRR), r., 8 = (—1/32~226') (i 242/P4'+ F 232/PSR),

r...;= ( 6/&6~—13&o') f (t'24ps/P4' hops/—Ps'*) (4 q /46' P4hsgs/v?s') (hspsl —vd &RSPR/»—')

x (i 24qs/Pd —i'Rsgs/Ps') j;
ro = f 2cs(gl +qs +gs ) +2cv(q4 +gs +gs ) +6cllgs +3clv(gv +gs ) j (4?rAS~(3?rpl)~) r

G. = f(;/, l(q, —;q.--;q. )+(;/,)(q —;q.—:g")+(t.l(" — »r("+ ")«q"+q. »"
—(gs'+gs') /ps)+ 2p4(PS'+Ps') —2ps(PR'+Ps') J+ (i'23'/(ps' —ps')) t:(ps'+ p4') (ql'/ps —v?./ps)

—2PRpsx +2PSP1 1+(t24 /(PR —P4 ))L(PR +P4 )(g4 /PS —'Vs /PR) —2PRPV~+2PSP4 l,
~.v'= f (3asi») (av/P4)+—a»/(PSP4)'*+ (f34'/(»' P4')) (P4'—+3vs') / vs} qlqs+ f (3as/P4)+ (as/Ps)

+a»/(PSP4)s —(f84 /(Ps —P4 ) (3P4 +Ps )/P4} gsgs,

+here for the sake of brevity the substitutions have been made:

al ———CS(AS/6?rvs) &, a = —c (Ao/6?rr )&, a =(c l /6)(A, /2?rv )&,

av ——(csf 24/6)(AS/2?rv4)'*, as ——(csi'23/2) (Ao/2vrvs) 6, as ——(—c4|24/6) (Ao/2?rv4)&,
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c516 2 (Ap/2gl ) [(c2$24/P4 ) (v3/P4) (el/28/PR ) (P4/PR) ]q

a11= —
2 (A p/2 gr) *[(c4124/V4* (v3/v4) * —

(ccrc

23/VR') (v4/VR) *].

r„,„„r„,,„, G„', G, ', II„,', 13r„' are obtained from the above by eye/ic rotation of cI1, c72, g8', p1, pg, p8',

g41 g5I g6 8 P41 Ppt P6 7 VZ) VI z! Pgxl Pvvl P1 z'

We are now in a position to calculate by perturbation theory the alterations of the energy caused
by the second-order Hamiltonian. We shall treat each of the states Vqvq, v2, Vqvq+v3, Vgvg+v4, v2+v3
and vR+vc separately. In doing so we shall employ the degenerate perturbation methods for while
certain degeneracies have been removed those in the quantum numbers Z and 3f still exist. The
matrix H&'&' will be a step matrix with a step for each value ef J. Each step will have 2J+1 rows and
columns corresponding to the 2J+1 values of the quantum number E for a given J value. Since
II&'~' contains terms which are functions of P the degeneracy in Z is removed in'this approximation
so that these steps wi11 contain elements which are nondiagonal. The elements of the matrix II&'&'

are obtained for any one of the above states by evaluating the integrals

(v& ~ Z' {FI }v& . Z ) —]~@gx31(v&., $)H Vgx85(v&, $)dv,

where @J&34(v .' s) is the stabilized wave function for the state in question.
The state V&v&, of which the normal state may be regarded as a special case, is entirely non-

degenerate in the vibrational coordinates and the functions %'qxpr(v, s) is simply the function (10)
where all the quantum numbers V, save V&, are set equal to zero. For these states, the only non-

vanishing matrix elements are the (Z ~Z) and (Z ~Z&4) elements which are given below:

(Z ~l
~c ~

~
Z) V1„1=(5 /2Ap) {Rp(U1P1) +J(5+1)R1(V1v1)+J (7+ 1) RR( V1vl)

+[6J(1+1)ZR—SZ' —7Z4]RR(V1v1) }, (16)

where

Rp( V1v1) = (1/4) {27/2[(MR/M4) + ( M4 /M)R] I 32124 +3[(Mg/MR) + (M3/MR) ]I'28'+3[(MR/M4)+ (M4/MR) ]124'

—2 7 $23 f24
—9 }+ (3A 6/2) {3C1+cER+3dp+dp+ d18+2d11+d21+ d22 —

2 (d23+ dgg) +dgg

+d23+ 3d88+ (2 U1+ 1)(d13+dgp+d81) + (2 V1'+ 2 U1+ 1)d36 }—(A p/4) {cc'/3MR

+3CR'/(2MR+M4)+3CR'/(2M4+MR)+C4'/3M»+3(12MR' —Scop)cp'/M1(4M3 M1 )

+ 18(C5CR+C5C12+C3C12)/M1+3C6 [M1(M1 —
MR

—M4 ) +2M1MRM4]/(M1 +MR +M4 —2M1 MR

—2M12M42 —2MRRM42) +3(12vc —Sv1 )cg/M1(4M4 —Mc )+6cp /(2MR+MR)+6c16 /(2M4+MR)

+36(2MR' —Mc') c12 /M1(4MR M1 )+SC13'/16MR+3CR'[M3(cp3 M4 MR ) +M4(M4 M1 MR )

+MR(M2 Mg M4 ) +2MRM3M4]/(MR +MR +M4 2MR M8 2MR M4 2MR M4 ) }

—(2 V1+1) (A 6/2) {9(cp+ c&+c12) (c11/v1) +6MRC5'/(4MR' —cp1') +6M4c&'/(4M4' —Mc')

+18MRC12 /(4MR —M1 )+(3C6 /2) [M8(M8 M4 M1 )+M4(M4 M8 M1 )]/(Ml +MR +M4

2M1 M8' —2M1'M4' —2MR'M4') }—(Apc11'/4cp1) (30 V, +30V1+11),

R1(U1v1) = (l3/Ap) {(SMR' MRMR+ 2MR—)f28 /4MRMR(MR+MR) + (2 V1+1)/M1+ (1/2MR)

+ (SM2 MRM4+2M4 )124 /4M2M4(MR+M4) +I 34 (M8 M4) /M3M4(MR+M4)

+ (3Ap/2M1 )~[C5+CR+C12+ (2 V1+1)C11]+(k/2ApMR ) },
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Ra( V»4) = (—&'/6Ap') {(8/»')+ (5/2~2')+(3/4) (f23'/~3'+ t'24'/~4') },

Ra(V»a) (~ /4Ao') {(1/4pa') ',—(f-aa /4pa +f 24 /4p4 ) }

and

(E
~

H&2&'
~
Z+4) = {[f—Z(Z+1) ][f—(Z+1)(Ea2)][f—(Z+2) (E*3)]

X[f—(E&3)(E~4)]}'(52/4Ao) Ra( V»a) (17)

We have for the sake of brevity introduced the notation f= J(J+1) and 5= (73/22r).

The state v2 becomes excited when U2 is set equal to unity. This may take place in two ways, i.e. ,

by setting nv ——1, n8 ——0 or n7 ——0, n&=1, so that this frequency is twofold degenerate. It, also, is
uneffected by the presence of H"' and the stabilized form for that part of the wave function charac-
teristic of v2 is readily formed to be:

t7(va)

V(va)
=2 '{C(n&——1, 233=0) TC'(33& 0, ——333 1)}.—— (18)

The degeneracy in v& is removed by H&'&' and its matrix breaks up into two nearly identical steps in
the vibration coordinates with the elements UJ+~ UJ+ ~ and UJ+~ VJ+ ~. The elements
UJz~ ' VJz'~ vanish identically. These steps will again be diagonal in all the rotation quantum
numbers save E and the nonvanishing elements are the elements (E

~
E) and (E

~
Z~4), the values

of which are given below:

(Z
~

H'"
~
E) ()5)'/2Ap) {Rp(va .'1, 2) +J(J+1)Ra(va .' 1, 2) +J'(J+1)'Ra(va .'1, 2)

+[6J(J+1)E'—SZ2 —7E4]R3(va '. 1, 2)+E'R (V: 1, 2) }, (19)

where

Rp(v2 . 1) 2) Rp(0) + (3/4) {[(4pa/443) + ( p/paa4)p] at a+ [(op2/4p4) + (4p4/4pa) ]024 }

+ (3A o/2) {daa+2daa+ (—', —2)/6) (d23+dap+4E27+3daa+daa+6d„) }

—(Ao/4) {18cacaa/4pa+124paca /(44pa ppa )+12opacao /(4444 —
4pa )+18caacaa/&pa

+ 36 (3442+ 24pa) Caa'/&p&(24oa+opa) + (42 K 12)Cap'/164pa+ Cp'[ppa(4pa' —444' —opa')

+Gl4(cp4 4pa cpa )]/(opa'+433'+op4' —24pa'coa' —2&op'444' —24oa'&o4') },

Rl(va . 1) 2) =Ra(0)+ (5/A3442) {(1W 1/8) —(-', &1/8) [( 4pa +4pa ) f23 /(ppa 4pa )

+ (34pa +4p4 ) f 24 /(4pa 4p4 )]}i

Ra(va '. 1, 2) =Ra( V»4); Ra(va .' 1, 2) =Ra( V»a) )

R4(va 1 ) 2) & (35/8A34pa) {(3M +cp2a )123'/4&2' —~3') + (»2 +~4 )$24 /(&2 &4 ) +1 }

and
(Z~a& & ~Z~4).,=(Z~II ~Z~4) -„,. (20)

The state v3 is excited when U3 takes the value unity. This may take place in three different ways,
namely; when one of the three quantum numbers n&, n2, n3 is set equal to one, so that the state ~3

is threefold degenerate. This degeneracy is removed by H&'~' and the wave functions which we shall
require for our second-order calculations are just the linear combinations of the basic functions (10)
which will diagonalize H&'&'. lt is not difficult to show that the appropriate linear combinations of
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these' are of the form:

4 jxsr(r & .'s) = {a,F(va)R(K+ 1)+b,G(va)+c, H(vg)R(K —1)}+(Vq V2V4), s = I~ II) III (21)

where F(vs), G(v~) and H(va) are the three linear combinations of the functions (n&nqn~

F(»)
=2-*{4(n,=1, n~=n, =0)&~i'(nq=ng=0, n2=1) },

H(»)

G(v3) = C'(ng ——n2 ——0, ng 1)——,

(22)

which will be recognized as the three wave functions for the three-dimensionally isotropic oscillator
treated in spherical polar coordinates. The coefficients a„b, and c, are the following quantities:

(J—K)(J—X+1) "

2(I+1)(2I+1)
(J—K+1)(J+K+1)

(J+1)(2J'+1)
(9+K) (J+K+1)

2(J+1)(2J+1)
(I—K)(J+Zy1):

GII =
r ~II

2 J(J+1) J(J+1)
(J+K) (J—K+ 1) '

2 J(J+1)
(J+K) (J+K+1) i (J+K) (J—K)

2 J(2J+1) J(2I+1)
&III—

(J—K)(J—K+1) '

2 J(2J+1)

and R(K') are the wave functions of the spherical top Thes.e functions lead to the well-itnown values
for the first-order energy corrections

Zl~ ~ = Jig' /Ao, Frr = —i g5 /Ap and Zrrr = —(J'+ 1)fgk /Ao

'With the aid of the function (21) where @(V& U2U4) is set equal to C'(V&) C (nq ——ns ——0)4 (U4 ——0) we
now evaluate the elements of the second-order matrix jV&'&' for the states U~v~+v3 of which the
fundamental state is a special case where U~=O. For these states the matrix H&'&' breaks up into
three-step matrices with the elements @zxw(V~v~+vs .'s) ': Vgx~(U~v~+v~ '. s). This will be true
because the functions V~xsr(V~v~+vs '. I, II, III) are the eigenfunctions of H"&+H&'&' in which v&

is nondegenerate so that to this approximation the elements 4'qx~(Uqvt+v3 '. s):. 4'qrc~(V~v~+vs '. r),
r&s, may be neglected. Each step will again be diagonal in the quantum numbers J and 3f and
wi11 have the following nonvanishing elements in E:
(K

~

H
~
K)vll'g+vg (~ /2AO) {Ro(Vlvl+vs)+fRl(Vlvl+vs) +[(aP+c'2) (f K' 1)—2K—(a. ——c,')

+2b K']Ra(V~v&+v&)+a;c;[f K(K 1)]&—[f—X(—K+1)'](Rq+R4)

+2~b;[(2K+1)a,(f—K(K+1))'+(2K—1)c~[f K(K 1)—]']R4-
+[6fK' SK' 7X4+—2(a 2—+c')(3f 6 21K')——

+2(a ' —c')X(6f—19—14K')]R5—[(aP+c') (24K'+9 4f)—
+ (a '—c ')K(8X'+ 25 4f) ]R6+2 &b—;[(2f 6K' —6K 3—)a——

X(f—K(K+1))'—(2f 6K'+6K —3)c;(f K (—K 1))'—]Re'}, —(23}

The transformation matrix which transforms functions (10} into (21} may be obtained from Condon and Shortley,
The Theory of Atomic Spectra (Cambridge Univ. Press, 1935},p. 76, when their discussion is made applicable to our
problem. This is not surprising since the case here under consideration is just a trivial case of the vector addition of
angular momenta in quantum mechanics. This method is particularly useful in obtaining the wave functions for combi-
natiOn StateS betWeen v3 and v4 aS We11 aS fOr the OVertOneS Of v3 and v4.
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(Z (

H"&'
~
K+2) = (&&42/2Ao) j —a;a;(+2)[f—(Z+1)(Z+2)]&[f—(Z+2) (Z+3) ]g

+2b~b;(+2) [f—Z(K+1)]1[f—(K+1)(K+2)]&c,c;(+2)[f K—(Z 1—) ]&

X[f X—(K+1)]'+a;c;(+2)[2f—6(Z+1)2]}(ApM3Ro/4A), (24)

(Z+ 2
i
Hco& '

i K) = (Z i
H&2& '

i Z+ 2),

(K
~

H&g&'
~
Z+4) = (isg/2Ao) j [f (Z—+1)(Z+2) ]'[f—(Z+2) (Z+3) ]4}ja c;(+4)

X [(R /2) —(R /4) ]+2+[f (Z—+3)(Z+4) )&aCb;(+4) (R,/4)

—2 &[f Z(K—+1)]ob;c;(+4)(Ro/4) —[f (X—+3)(X+4)]&

XLf—(K+4) (K+3)]'a'a'(+4)(R3/2) —Lf—K(K+1)]'[f (K—+3)
X (Z+4)]gb,b;(+4) (Rs/2) —[f K(K—1)]g[—f K(X—+1)]pc,c;(+4)(Ro/2) };

(Z+4}H&2&')Z) = (Z}H&g&'(K+4),

where

Ro( V&v1+ vs) = (1/4) [18''23 —24''23 1+5 ((Mg/Ms) + (M3/M2) ) f'23 +3 ((M2/M4) + (M4/Mg) ) l 24

(25)

27kgs 024 +(45/2) ((M4/Ms)+(Ms/M4))l 23 1 24 ]+(Ao/2) j 21d&+Sds+9do+7do

+3d&o+ 10du+ 3 (2 V1+1)[dgp+ds1+ (5d13/3) ]+Sdg&+ 10dhg —(Sdgo/2) +3dg&+ 6dgo

—3dgg+ 3(2 V1 +2 V1+1)dsp+ 9dsg
'} (A p/4) j (5c& /3M 3) + (7M4+4M3) cg /M4(cip4+ 2M3)

+ (3M3 —10Cp4) csg/(Msg —4M42) + (c42/3M4) +[(2V1+1)(3M3(M3 —M4 —M&')

+Scp4(M4 Ms M& ))+SM1(M1 Ms M4 ) +6M&M3M4]co (o&1 +Ms +cp4 2cp1 M3

—2M12M42 —2M32M42) '+ [100M3' —35M&2+20(2 V1+1)M&M3]co'/M&(4Ms' —M1')

+L3M3(M3 M4 M2 )+SM4(M4 M3 M1 )+SM2(M2 M3 M4 )+6M2M3M4]

X(cpg'+M3 +cp4 2M2'Ms' —2M2'M4' —2M3'M4') '+(3cs'/Ms) [4(2 U+1)M&M4-SM&'

+ 12M4 ]/(4M4 —cp1 ) +2(4Ms+7cpg) cs /Mg(Ms+ 2cps)+6c&o /(Ms+ 2M4)

+(30V1'+30V1+11)c&1'/M&+ (5/16) c13'/Cog+ 18[4Cpg' —2M&'+ 2 (2 V1+1)MCM2]c»'

/Ml(4Cpg M1') + (2 V1+1)(30co+1Scg+ 1Sc») (c11'/Cp&) +30(cs+c12)co/Cp&+ 18c7c»/M, },

R1(V&v1+vs) = (0/2Ao) j (cps +3M2 ) f'23 /M2Ms(Ms+Ms)+3124 /2M4+(cs/Mg) (Ao/3M2)1+2(2 U1+ 1)/cp1

+ (1/Mg) +2&34'(Ms' —6M3'M4+3cp3cp4 2M4 )/M3M4(M3 M4 ) + (&2/ApM2 )

+2(2Ao/3M&3)&(5cs+3cs+3c&1+3c») },
Rg(U&v&+vs) =R(U&v1),

Rs( V&v1+ vg) = (Is/2Ap) j [(3/4) (7cpg +SM3 ) fgs /Ms(Mg —Ms )]—(3Ap/cpg) '(co/2cpg)

+ [(M4'+ 3Ms') f'~'/Ms(Ms' —M4') ]},
R4(V v+vs) = (Is/Ao) j (3123 / 4)M+st go(cA&o /M)s~ (goes(Ao/M—4 )~+[(M4 +3cps ) fs4 /Ms(M3 M4 )]},—

Rs( Ulvl+v3) =R3( Vlvl)

Ro(V v, +vs) = (t'232&32/4ApgM32); the SubSCript 2 aSSumeS the three ValueS Of S iu (21).

The coefficients a„b„c,which have already been defined are always to be associated with the quantum



number Z=Z. In (24) and (25) a notation a(+2), b(+2), etc. is introduced to denote the values of
the coefficients O,„b, and c, where the quantum number X is replaced by X+2.

In the same manner by setting %(V1V8V8) equal to C (V1=0) U(P8) and C'(V1=0) V(v8) we may
determine also the matrix II& &' for the state u2+v3. From the foregoing it will become apparent that
for this state the matrix will split up into three sets of two nearly identical steps which are diagonal
in 5 and M, but have elements nondiagonal in Z. The (Z ~Z) elements are identical in form with

(23) where the parameters R0(Vlvl+P8), etc. , are replaced by R0(v8+v8), etc. These are given below:

R0(P8yv8: 8: 1, 2) =R, (v8)+ (1/8) (10+1W3b,') f88'[(~8/~8) +(~ 8/~ 8) J+ (A0/4) {(10~1a3b )7f81

+ (20&1%3b;8)d88 —(5&1%36„')d88+6d87+ 12d88+6d81+ 36d88I

—(A0/8} {(30«7+18C7) («8/001) +(10+1.a3b;8}[2078~S8/(40788 —0088) g

+ [12~4CM8/(4~, 8 —~88) ]+36(3~8+2~,) [C,88/~, (2~8+~,)j+ (7+2) (3C,88/8~8)

y [15&08(0780—Cd88 —(d88) + 18 (10%1&35 )074(0048 —0088 —0788) jC98

/[(88 +008 +078 2078 078 —2(08 008 —2008 078 $1,

R1(v8+ v8 . 1, 2) =R1(78)+ (l8/220) {(620/0718) lc18+ (1m 1/4)/008

—(1a1/4){888[(30088+0048)/008(0088 —0788) JI, (26)

R8(P8+P8) =R8(P8),

R8(P8+P8 ~ 1, 2) R8(P—8) =R8(P8+P8 . 1, 2) —R8(P8) = —(1&1/4)(f88 l8/220)[(3008 +&d8 )/008(&78 —078 )j,
R8(P8+P8 . 1, 2) —R8(P8) =R8(V8+P8 . 1, 2) —R8(P8}

= +(3~8&/2&0) {[I88' j(~8' —~8') )+[I88'(~8' —~8') 1I

R8(P8+P8) R6(P8) & R7(P8+P8) R7(P8) i R9(P8+P8) RB(P8) t R10(P8+P8) R10(P8)

and

(Z
~

H&87'
~
Z+2) = (X+2 I

H&8&'
~
Z) = (I'88/220) {[2f—6{X+1)8ja;c„(+2)R»+[f—Z(X+1)g'*

)&[f—(Z+ 1)(X+2) ]&b;f7,(+2) (2R» —R18) I + (}8'/'?A0) (R»+R18)

X {[f—Z(Z —1)g-:[f—Z(Z+1) ~lc,c,(+2) —[f—{Z+1)(Z+2) ):
&& Lf—(X+2)(Z+3)1'~'n (+2) I (27)

where
R11(P8+P8) =R11(V8); 2R18(V8+P8 . 1, 2) =R8(P8+P8: 1, 2) —R8(P8)

and (Z IH' ' IX+4) which are entirely identical with those for the state v8 given in (25).

Since the nature of the frequency v4 is entirely
analogous to v3 the elements of the matrix II&'&'

for the states Vgvi 1v4 and v2+ v3 may be obtained
from the relations (23) to (27) simply by replac-
ing R, (Vlvl+V8) by R.(Vlpr+V8) and R, (v8+V8)

by R,(v8+P8) where these may be obtained by
replacing in R.(v;+v8) the following quantities
wh1ch are Included ln pal entheses: (I88 I 88)

(~8, ~4), (d1, d0), (&0, F10), (d18, d80), (&81, dn),
(d88, d88), (1f88, d80), («, «), {&8, «}, («, &7), {&8, «0).
Thus for example R11(Vlvl+ V4) becomes

{A{888/820078).

The actual values of the rotation-vibration
energies for the above states may be had

by diagonalizing the corresponding matrices
H. This is most readily accomplished by solving
for the roots of the secular determinant

~
(Z (H

~

Z') —R&x x
~, 4'x being the Kronecker

symbol. The actual. unperturbed wave func-
tions Xd8r(v; .'s) for a rotation-vibration state r,
v being simply a.n. index number running from
—J to +J, which are the limiting values of the
actual perturbed wave functions may now be
written es an expansion in terms of the wave
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functions 4'sxM(v; '. s):
+J

xsM(v&: s) = 2 ~zM' 'g'szM(v;: s), (2&)

where the coefficients A JM& & are the normalized
first minors of the secular determinant.

IV. THE SELECTION RULES AND INTENSITIES

To determine the selection rules we have to
determine what are the nonvanishing matrix
elements of the electric moment. To second
approximation the classical expression for the
body fixed components of this are the quantities:

flan ~lgl+~2g4++lg2g3++2(g2g6+g3g5)

+~3g5g6+235glg9++6g4g9++7g134g++8g4242&

II„and II, being obtained by cyclic rotation of
g] Q2 g3, g4, g5, qs, N„N, and n, . The matrix
elements of the electric moment are given by the
integrals

J xsxM(vj . S) llpxs'x'M'(vl .'s )ds

where IIp are the components of II along the
spaced fixed axes; XJ', x M(vj, $) alld Xjx
&((v, s') the wave functions of the initial and
final states. The function XslrM(v; '. s) may to
a good approximation be replaced by @zxM(v; '. s)
in computing the intensities because the actual
splitting of the rotation levels is small so that
all the A J,M'~&, except the one where v =X, will

be small.
Inspection of the quantity II shows it to have

no linear terms in g7, gs or g9. For the frequencies
v~ and v2 the above integral will therefore vanish
and they will consequently be optically inactive,
giving no bands in the infra-red. For transitions
from the normal state to the states, V~vi+v3 and
v2+v3 the above integral will not vanish so that
these frequencies may be expected to occur in
the spectrum.

In evaluating the integral for the electric
moment it is found that the selection rules for
the rotational quantum numbers are the same

for v3, vl+v3 and v2+v3, from which the inference
may be drawn that also for higher combination
frequencies of this type the selection rules will

be the same. For J the selection rule is 6J=+1,
0 or —1 as the transition is from the norma. 1

state to the states v3, ~, v3, ~~ or v3, qII, respec-
tively, which verifies the conclusions drawn by
other investigators. In addition we have the
selection rules for M and E, AM= +1, 0 and
hZ=0. An interesting result which prevails is
that the quantum mechanical amplitudes are
independent of the quantum numbers J and X.
Ope obtains for the square of the electric moment
II, which is II ~+II„'+II,. , simply

(Jirr'i J)=(Jirr2i J~1)=1. (29)

The actual intensity of a spectral line, ignoring
a11 symmetry properties, will very nearly be
proportional to

where X(J) is the number of molecules in the
state J and gJ and gJ are the statistical weights
of the state J and J', respectively. For the three
cases 6J= —1, 0 and +1 the relation (30) will

become

I(J, Z; J—1, Z) = (2J—1)
)&exp (—Z(JZ)/kT),

I(J, Z; J, Z) = (2J+1)
&&exp ( E(JK)/kT), —(31)

I(J, Z; J+1,Z) = (2J+3)
&(exp ( Z(JZ)/kT)—

These results appear to be in agreement with
those of Jahn derived from other considerations.

To arrive at the actual intensities the relations
(31) must be multipled by the appropriate spin
factor. This problem has been considered by
Wilson' for the cases where the four F particles
are protons and deuterons and need not here
be discussed. For these cases the actual nuclear
spin factors for the various rotation states have
been evaluated and may be obtained by reference
to this wcrk.

' E. Bright V/ilson, Jr. , J. Chem. Phys. 3, 276 (1935).


