Mev. In comparing the relative transition probabilities it must be remembered that the pairs are approximately twenty times as effective in producing ionization as are the gamma-rays, hence the latter are in all cases much more numerous.

It is interesting that although these pairs occur at definite resonance energies they do not coincide with the gamma-ray resonances. For example, at 920 kv the ionization due to gamma-radiation is nearly ten times as intense as that produced by pairs, while at 840 and 1190 kv the reverse is true. Clearly, therefore, the pairs are not produced by internal conversion of gamma-rays in the usual sense, but are emitted directly from a nucleus in an excited state. Presumably this is a state in O^{16} with j=0 and the transition is to the ground state which is known to have j=0. It is, however, possible that some or all of the pairs observed originate from a transition in Ne²⁰. If so, gammarays of approximately 7.5 Mev energy should accompany the pairs and we cannot exclude this possibility from our experiments so far. If the transition is in O¹⁶ alpha-particles should be observable at the pair resonances. Since no single quantum transition is allowed from such a state, the lifetime must be very long. Professor Oppenheimer has made a tentative estimate of 10^{-4} second for the halflife.

It seems probable that the pairs observed by Crane and Halpern⁸ at 600 kv-11 pairs per thousand quanta-are to be attributed to this process rather than to internal conversion.

> W. A. FOWLER C. C. LAURITSEN

California Institute of Technology, Pasadena, Californi September 27, 1939.

¹ L. R. Hafstad and M. A. Tuve, Phys. Rev. 48, 306 (1935).
² Bernet, Herb and Parkinson, Phys. Rev. 54, 398 (1938).
³ Dee, Curran and Strothers, Nature 143, 759 (1939).
⁴ Fowler, Lauritsen and Lauritsen, Bulletin Phys. Soc. Stanford Meeting, June (1939).
⁶ McLean, Becker, Fowler and Lauritsen, Phys. Rev. 55, 796 (1939).
⁶ W. E. Burcham and C. L. Smith, Nature 143, 795 (1939).
⁷ We are indebted to Dr. Burcham for communicating these results to us before publication.
⁸ H. R. Crane and J. Halpern, Phys. Rev. 55, 260 (1939).

Low Energy Gamma-Radiation from Lithium Bombarded with Protons

By means of the method described in the preceding letter we have investigated the radiation from Li7+H1 as function of proton energy. The target used consisted of separated Li⁷ with a stopping power of approximately 30 kev.¹

The filter used in front of ionization chamber No. II was 1.33 cm of lead. The readings of chambers Nos. I and II are shown in curves 1 and 2, respectively, and curve 3 is the difference between 1 and 2 (Fig. 1).

The resonance at 440 kev appears to be due entirely to the well-known 17.5 Mev gamma-radiation, while the radiation above 800 kev is strongly absorbed in lead.

We have measured the attenuation of the radiation at 1080 and 1290 kev and find an apparent absorption coefficient $\mu = 1.50 \pm 0.10$ cm⁻¹ in lead and $\mu = 0.12 \pm 0.01$ cm⁻¹ in aluminum. For annihilation radiation from N13 we find,

FIG. 1. Relative intensity of ionization vs. bombarding energy. Curve 1—radiation filtered by 0.15 mm lead. Curve 2—radiation filtered by an additional 1.33 cm lead. Curve 3—difference between 1 and 2.

with the same arrangement, $\mu = 1.43 \pm 0.05$ cm⁻¹ in lead. This gives the value 495 ± 25 kev for the gamma-rays at 1080 and 1290 key bombarding energy.

From this and from the character of the yield curve above 800 kev it seems reasonable to assume that this radiation originates from excitation of Li7 without capture of the proton in analogy with the well-known excitation of Li⁷ by He⁴. Rumbaugh, Roberts and Hafstad² have observed the same state in the following reactions:

$$\begin{array}{c} \mathrm{Li}^{6}\mathrm{+H}^{2}\mathrm{\rightarrow}\mathrm{(Be}^{8}\mathrm{)}\mathrm{\rightarrow}\mathrm{Li}^{7}\mathrm{+H}^{1}\\ \mathrm{\rightarrow}^{*}\mathrm{Li}^{7}\mathrm{+H}^{1}\\ \mathrm{\rightarrow}\mathrm{Be}^{7}\mathrm{+}n^{1}\\ \mathrm{Be}^{7}\mathrm{\rightarrow}^{*}\mathrm{Li}^{7}\mathrm{-}e^{-}. \end{array}$$

From the difference in proton ranges they find the separation of the states in Li^7 to be 455 ± 15 kev, and from the attenuation of the radiation following the decay of Be7, 425 ± 25 kev.

Although our value 495 ± 25 kev is somewhat higher there can be little doubt that the same state in Li⁷ is involved.

> W. A. FOWLER C. C. LAURITSEN

California Institute of Technology, asadena, California, September 27, 1939.

¹ We are indebted to Professor Rumbaugh and the Bartol Foundation for their kindness in supplying us with this target. ² Rumbaugh, Roberts and Hafstad, Phys. Rev. 54, 657 (1938).

On the Equality of the Proton-Proton and **Proton-Neutron Interactions**

A comparison of the ${}^{1}S$ proton-proton interaction and the ¹S proton-neutron interaction has been made recently by Breit, Hoisington, Share and Thaxton.¹ It is the purpose of this letter to add a remark to this subject. With the meson type of potential, $Ce^{-\lambda r}/r\lambda$, a variational calculation has been made of the binding energy of H³ of high accuracy (error <0.1 percent).² This calculation together with the value of the binding energy of H² and the scattering of