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6. RANGE OF APPLICATION OF

THE MECHANISM

None of the discussion has involved the ratio
of the concentration of holes to that of x atoms.
Either of these may far outnumber the other.
In 'particular, the concentration of impurity
atoms may increase from zero up to the point
where interactions among the impurity atoms
become appreciable. The arguments, in short,
apply to, , the same range as do the usual "infinite
dilution" theories.

No use has been made of the periodicity of
the lattice. For this reason it seems that the

foregoing considerations ought to apply without
change to dilute liquid solutions, wherever the
hole theory of diffusion is at all applicable. It is
uncertain from the data' whether the solute-hole
molecule mechanism is commonly suitable for
accounting for diffusion in liquids —that is,
whether Qo commonly exceeds Q .

I am indebted to Dr. C. W. Hewlett, Mr. C, G.
Found and Dr. W. Shockley for several dis-
cussions on this subject.

' H. S. Taylor, J. Chem. Phys. 6, 331 (1938}.
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The theory of transport in gases taking into account
the full effect of quantum statistics is extended to include
mixtures as well as one-component gases. The method of
Lorentz, Hilbert, and Enskog, which was used previously
in the development of the quantum theory of transport
in a single component gas, is used again in this more general
case. As is to 'be expected, all transport equations have
formally the same dependence on velocity, temperature,
and pressure gradients as in the classical statistics, the
effects of diffraction and interference introduced by the

quantum statistics appearing only in the coefficients
themselves. Expressions for the viscosity, heat conduc-
tivity, pressure diffusion, and thermal diffusion coefficients
into which assumptions with regard to the interaction
laws may be introduced have been obtained. It is expected
that these expressions may form the basis for calculation
based on plausible assumptions as to the interaction that
will provide a relatively good test of these laws as well

as of the theory itself.

INTRQDUcTIGN

HE study of transport phenomena in gases
has been recognized as a most promising

field of investigation having as its objective the
determination of intermolecular forces. The
study of viscosity, heat conductivity and diGu-
sion by numerous early investigators together
with the rigorous analytical treatments of the
subject given by Enskog and Chapman have
demonstrated fully the sensitivity of the method
and the practicality of the calculations which
lead to the possibility of detailed comparisons
between theoretical results and . experimental
observations.

With the introduction of the quantum sta-
tistics, the study of transport phenomena in
gases took on a further significance, which was

to be found in the possibility of an experimental
test of these statistics. Certain discrepancies
between observational data and the results of
calculations based on the classical theory of
Chapman and Enskog had already appeared.
These discrepancies, which were observed for all
transport coefficients, were at first attributed to
the assumption of incorrect interaction laws on
the basis of which the theoretical results were
obtained. That this interpretation of the dis-
crepancies was inadequate was demonstrated by
Massey and Mohr' for the case of viscosity and
heat conductivity in single component gases.
The considerable improvement in the theoretical
results obtained by these authors when quantum-

i H. S. W, Massey and C. B.0. Mohr, Proc. Roy. Soc.
A141, 434 (1933):A144, 188 (1934}.
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theoretical cross sections were substituted for
the classical cross sections in the expressions for
the gas coefficients derived by Chapman was an
indication of the importance of having a corn-
plete quantum-statistical treatment of transport.

Such a theory of transport in single component
gases was given by Uehling and Uhlenbeck, ' and
calculations based on the theory applicable to
the gases H2 and He under the assumption of
elastic sphere interaction were given by one of
the present authors. ' The theory shows that the
modifications due to the quantum statistics are
of two kinds: (a) a diEraction eAect, which for
light gases of moderate density is appreciable
even at room temperatures; and, (b) an inter-
ference effect due to modifications in the
"Stoszzahlansatz, " which is inappreciable even
for the case of H2 and He' except at temperatures
in the neighborhood of the critical values. The
experiments of Itterbeek and Keesom' on . the
viscosity of helium at low temperatures together
with the results of previous experiments at higher
temperatures demonstrate the importance of the
diffraction effect. What discrepancies still remain
in the temperature dependence of the viscosity
coefficient are presumably attributable to the
simplifying assumptions used with respect to the
interaction laws. Numerical calculations of
Massey and Mohr, Massey and Buckingham,
and the authors' based on Van der Waals types
of interaction substantiate. this conclusion.

The second of the two quantum-mechanical
effects appears to be more difficult to detect.
The theory shows a density dependence for the
viscosity coefficient of He which is large com-

pared with the nonideality correction in the
neighborhood of 5'K.' According to the experi-
ments of Itterbeek and Keesom, this effect
appears, however, to be too small for detection
within the range of density variations in which

the theory may be presumed to be valid, and
the temperature dependence of the density effect

2 E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 4'3,
552 (1933).

3 E.A. Uehling, Phys. Rev. 45, 917 (1934).
4 Reference 3, Tables VII and VIII.
'A. v. Itterbeek and W. H. Keesom, Physica 5, 257

(1938).' H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc,
A144, 188 (1934).H. S.W. Massey and R. A. Buckingham.
Proc. .Roy. Soc. A168, 378 (1938).E. A. Uehling and E. J.
Hellund, Phys. Rev. 54, 479 (1938).

is difficult to separate from the temperature
dependence of the diffraction effect.

For these reasons the development of a quan-
tum theory of gas mixtures is undertaken. In
addition to the phenomena of viscosity and heat
conductivity, one now has also the phenomena
of diffusion to consider. The introduction of
diffusion processes into the problem leads to the
following interesting considerations. There exist
in general two types of diffusion; a pressure
diffusion, and a thermal diffusion. As is the case
with all transport coefficients, the diffusion
coefficients will exhibit temperature and density
variations which are characteristic of the diffrac-
tion effect and of the interference effect. Under
certain conditions, however, only the ratio of
these diffusion coefficients is important. This is
true for any experimental arrangement in which
a definite quantity of a mixture of gases is
allowed to come to equilibrium under the
influence of an impressed temperature gradient.
Equi1ibrium is established under these conditions
with variations in density of each component
along the direction of the temperature gradient
such that the processes of pressure diffusion in
one direction are just balanced by the processes
of thermal diffusion in the opposite direction.
This equilibrium situation is described by the
ratio of the pressure and thermal diffusion
coefficients. Unlike all other transport coefficients
this ratio does not depend on any single integral
over transport cross sections, but only on the
ratio of such integrals. One would expect,
therefore, that in this particular case the im-
portance of the diffraction effect is minimized,
and that the interference effect in the quantum
statistics is, in consequence, of relatively greater
importance.

A test of this expectation seems to be of
considerable importance from a theoretical point
of view. As a test of interaction laws the trans-
port process under consideration may be of
considerable sensitivity, since the thermal diffu-
sion process vanishes altogether in the classical
statistics for a particular interaction law. Also,
the temperature dependence of the ratio of
thermal and pressure diffusion coefficients is of

7 The inverse fifth-power law. See Sir James Jeans, The
Dynamical Theory of Gases (Cambridge University Press,
1925), 4th ed. , p. 324.
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importance for any process of isotope separation
which depends upon the establishment of an
equilibrium state under the infiuence of a
temperature gradient. In spite of the appearance
of only ratios of cross section integrals in the
description of this process, and the resulting
complete lack of temperature dependence in the
classical statistics for elastic sphere interaction,
there is no a priori reason to believe that the
temperature dependence in the quantum sta-
tistics is negligible for any interaction law.

From the point of view of isotope separation
there is still another consideration which may
be of importance. The ratios of cross sections
which appear must involve, necessarily, similar
and dissimilar molecules, and in a few cases, also,
molecules of opposite statistics. The large effect
arising from considerations of identity in the
theory of collisions is, therefore, of importance
in any consideration of separation of molecular
species of approximately equal mass.

No numerical results are included in this

paper, though preliminary calculations based on
the elastic sphere model have been made in
order to test the temperature sensitivity of the
ratio of the thermal and pressure diffusion
coefficients. In view of the known inadequacy of
the elastic sphere model to even approximately
describe the process of thermal diffusion these
calculations are not included in this paper,
though the results may be stated here. With this
type of interaction the ratio of thermal and
pressure diffusion coefficients shows a tempera-
ture dependence for the case of a mixture of
helium and neon of approximately 20 percent
between the temperatures of 10'K and 273'K
as compared with a variation of approximately
30 percent in addition to the T' for each gas
coefficient separately.

The formal theory of gas mixtures considered
here is developed in three sections. The general
theory of transport with a determination of the
fundamental transport equations valid for a gas
consisting of an arbitrary number of components
is given in Section I. In Section II the differential
integral equations for a gas of two components
is solved according to usual methods valid for
the case of infinitesimal deviations from the
equilibrium state. In Section III an application

of the variation method is made in order to
obtain explicit forms for the gas coefficients.

Numerical calculations based on the theory
and on the assumption of a five-parameter type
of interaction are in progress. These results will
be obtained for cases of particular interest and
published in a succeeding paper.

I. THE TRANsPGRT EQUATIQNs

The state of a gas consisting of X components
is completely described by the distribution
functions f;(x, r, t) which are solutions of the
following differential integral equation

where
D; = r;.8/Bx. +X;.8/Br;. ,

de =G;(m;/h)'dr;&dr;mdr;3

The distribution function f; of these equations
represents the number of particles of component
i per cell of phase space of which the space part
is taken to have the value unity. The notation
adopted here is to use Latin letters as subscripts
to designate the gas components, and to use
Greek letters as subscripts to designate the
components of vectors, with the repetition of a
Greek letter as a subscript in the product of two
quantities indicating a summation over the
vector components. The meaning of the remain-
ing quantities is as follows: r;, the components
of velocity of particles belonging to the ith
specie; X;, the force components per unit mass;
G;, a weight factor; g;;, the relative velocity of
two particles belonging to the ith and jth species;
m;;(Op)dQ where dQ=sin 6d8d@, the differential
cross section for scattering in which the direction
of the relative velocity is changed through an
angle 8 and falls into an element of solid angle
dQ after collision; m;, the particle mass; and h,
Planck's constant representing the volume of a
cell in phase space, The statistics are determined

Reference 3. See also R. H. Fowler, Statisticah Me-
chanics, .2nd Ed. (Camb. Univ. Press, 1936), Chapter
XVII.



by the value of 0;, being Einstein-Bose if 0;= 1

and Fermi-Dirac if 8;= —1. In this equation as
in all succeeding equations in which collision
integrals appear, primes are attached to functions
of the velocity variables when the values of the
variable after a collision are meant.

The general transport equations .for the gas
are obtained in the usual manner by multiplying
Eq. (1) by a function F;(x, r, t), representing
any additive property of 'the individual mole-

cules, and integrating over all velocity space.
Pcl forming this opel Rtlofl, lntI'oduelng ncw
velocity VRrlRbles 8' =f' —Q, where Q 18 Rny
function of x, t possessing derivatives with
respect to these variables, and de6ning

d/dt = 8/Bt+u. 8/vox.

the general transport equation becomes

BN„B—(n;(F;)p,)+n;(F;)i,—+ ( n( ,Ii. F) g)

8X BX

=I —+

iv.y (v p;)
A ) BV, Ava'

BF; BNp
v; +Q 6;;(F~), (2)

88gp Ay BXO

~'i(Fi) = 4J~A&IJI dbiIJ~gi'uiiidfl

X [F,.—F,. +F,I F. I

X tf''f' '(1 +0'f') (1 +0'f' )
—f'f'I(~+~'f'')(&+0. f'I') I, (3b)

where for the case of i=ja subscript 1 is attached
to certain functions to distinguish the two
velocity classes over which integration occurs.

The hydrodynamieal equations are obtRlncd
from Eq. (2) by allowing the function F; to
assume in turn the character of Inass, momen-
tum, and kinetic energy. The function u„ is
specialized to denote the components of mass ve-
locity of the entire gas, and a variable u; = (r; )A„

18 lntI oduecd to 1cpI"csent the same. pl"opeI ty fo1
each of the gas components. The hydrodynamical
equations then become

d P; Bms t QP;
+p, +(u; —u ) =0, (4a)BX„BX

dJ;a ~uII vs;aII ( dual
+j;. +

dt exp axp E dt )
BQ—j,II +Q 6,;(rn,1I; ), m=1, 2, 3 (4b)
Bxp

d(Q~/I') ~a'. Q'&j'-
+ =— +j;.] d;.—

dt Bx p, Bx ( dt)

6;;(F;)= d@;Jl d@;J"g;;uI;;(Pp)dQF;

&& If''f'(~+tl'f')(&+~ f )
P = Ii nnIIP=. Z Pii Pua=p Piuia~

Psj;.=p, (u;.—u.) =—P II;(u;.—u;.), gj;.=0,
P i=1 j=1

v

Average values Rre taken WItll 'tile distr1butlon
function, and n„. denotes the total number of
pR1'tleles pal unit volume of component 'b.

Symmetry considerations lead to the following p, = —', Q p,
properties for 6;;(F,)

P-I = ZP'«p,

p= Zp*,

6;;(F~)=-,'d@, dy; i g;;uI;;dn

3

Qi= 2Pv'(IIia&ia)Av= g+P,aa= ~P;, Q= ZQ',

gva 2 P ( vSvaSvISIIII)Avv

for ~ Wj, (3a)

$8Q~ 3Qpg-+
i&xi ax.j
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Eqs. (4a, b and c) are, respectively, the con-
tinuity, hydrodynamical, and energy equations
for the individual components of the gas mixture.
The quantities j, , q; and Q; are, respectively,
the mass current, heat current and kinetic energy
density of the ith component in the gas, and

p p and S p are, respectively, the stress and
strain tensors for the gas as a whole.

The hydrodynamical equations for the gas
mixture are now obtained by summing Eqs. (4)
over all components. Using Eqs. (5) and the
relations

N N

g 6;;(mp; ) =0, g 6;;(-,'mp;. v, ) =0,
st 7

which follow from (3a and b), one obtains for
the entire mixture

dp 8Q„—+p =0
dt Bx

(6a)

OPS P dice= —
p ++p;X... n=1, 2, 3 (6b)

Qgp dt i=1

d(Q/p)
p + Pap+as+ g J~a~~a.

dt Bx i= 1
(6c)

Equations (4) and (6) are exact. The form of
these equations in zeroth approximation is of
some interest. In this approximation all mean
values quantities are evaluated for an equi-
librium state of the gas. Since there are %+4
gas parameters, p, , u and T (f= 1, 2, ~

¹

0.=1, 2, 3), describing the equilibrium state of
an N component gas, there must be just %+4
zero-order hydrodynamical equations. These
equations may be obtained from (4a, 6b and 6c)
by introducing the conditions of spherical sym-
metry into the evaluation of pi p, qi„and ji .
The form of the equations will be given in the
next section in connection with the determination
of the first approximation to the nonequilibrium
distribution function.

In the summation over i in Eq. (4c) two of the
terms are conveniently grouped, and with the
use of Eq. (4a.) put in the form

d(Q'/p~) Q' ~j'. &Q'

dt p; Bx dt Bx

where the constants N„are necessarily the same
for all gas components.

Proceeding to the next approximation in the
determination of f;, its form given by (7) is
substituted into Eq. (1), and second-order
quantities are neglected. This corresponds to
the introduction of f;& i into the left member and
the neglect of products of the pi in the right
member of Eq. (1). Defining

x;= ~'/(1+ ~*f'"')

one then obtains an integral equation for
which is

gf (oi

+D'(f'"') = —E I' (x)
Bt 7'=1

where

I* (x) =]"d0
~

g' ~' (~~)«f' "'f "'

(10)

X (1+e,f;"')(1+~;f ")[x'+x;—x'' —x&'] (11)

Considering now the homogeneous part of Eq.
(10), multiplying it by x;d4; and integrating,
one obtains

r. Lx, x];;=0, (12)

II. SOLUTION OF THE BOLTZMANN EQUATION

{}1. Principle of solution

Applying the method of Lorentz, Hilbert and
Enskog to Eq. (1) we seek an approximate
solution of the form

f'=f""(1+v '),

where f,~'~ is the equilibrium distribution func-
tion, and q i is a function of the velocity, temper-
ature, and pressure gradients within the gas,
and expresses in first approximation the de-
parture of the actual distribution function from
that corresponding to the equilibrium state. The
equilibrium distribution function is determined
by the vanishing of the collision integral in
Eq. (1). M u1tiplying this integral by In f;/
(1+8;f;)dP,, integrating, and using Eqs. (3a and
b) one obtains in the manner familiar from the
development of the II theorem

f "'= LA ' exp Im;(r;, —u, )

X (r,. u.) /2kT —
I
—8,7-' (8)
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where for functions I" and
components

[F, G];;=J
d&„F;I,;(G)

G of the velocity restricted. The existence of null solutions of Eq.
(10) permits the imposition of auxiliary condi-

tions on the solution xi which are taken to be of
the following form

= Jtd@&Jtdp; g,;u&ii(tlat)dQ
l

Xf'" f,"'(1+g'f'"')(1+g,f;"')
X F,LG,+G;—G,' —G, ]. (15)

f&o&rp, d&/) . l.lf.&o)(1+gf&o,&),x d&/). 0, (19a)

N

prN;J" (r,. u.)f—;&'&q;dip;
4=1

N

As in the derivation of Eqs. (3a and b) one =go)),.
J

(r, u)f—,«)(1+g,f,&o))x.,d. &/), =0,
may write i=1

n=1, 2, 3, (19b)

I F, G]' =-: O' 4; "g' ~' (gv)f'"'
J

Xf'( ) (1+g'f'( )(1+gf &)''
X (F; F)(G,+—G G,' G'—)—

for i Hj, (14a)

LF, G]"=-: d4' t d4'& "g"~ '(gv)f'"''J
Xf, ( ))'0(1+g f (0))(1.+.g.f. (0))

X (F'+F') F,' F,)')— —

Qo)o; l (r; u») (r—; ua) f,—(o) ipid&t),

= P))o„ l (r;.—u.)(r;,—u.)f;('&

X (1+g;f, (o))x;d&l); =0. (19c)

The physical interpretation of these conditions

is that the macroscopic description of the gas in

terms of the %+4 parameters p;, st and T is
unaltered by the perturbation. Thus, from Eqs.
(7) and (19)

Then
X (G;+G,&

—G —G;)'). (14b)

[F, F];;+(&F,F];, 0.
p, =m;Jl f d@;=rii;Jlf, &o)dy;, (20a)

The solutions x (o) of Eq. (12) are null solutions
of Eq. (10). In order that such solutions exist it
follows necessarily from (12) that

Z Lx"', x"']*i=r, LX"' x"']"
sf

+2 II x'" x"']'i+Lx"' x"']"}=o (16)
i(j'

Since, by Eq. (15), every term in this sum is

positive definite, null solutions are those which
fulfill the relation

X.(0)+X .(0) X.(0) ' X.(0) ' 0

i, j=1, 2, /o', (1/)
or

Xi ~i+CO~ i~ia~ia+51 'Caria,.(0)

containing five arbitrary. constants which are
functions of x and t, and of v hich only one may
be different for the diA'erent components. The
form (18) of x, (o) follows strictly from (17) for
spherically symmetric molecules without internal
degrees of freedom to which the theory is

N N

pua Qpiuia Pmi ri»fid&/)i

N
= p))o; l r;,f,&o)d&/);, (20b)

N N

po =Q pioi = o go)ii (ria ua) (ria ua) fidpi

N

o&$&J
(r;» ua) (r;a u») f—; '&d&t);-

i=1

N

=o Q P, =o Q p&W, (Tp, *'), (20c)

where ei and e are the kinetic energies per unit
mass in component i and in the entire gas,
respectively. The last two forms given in Eq.
(20c) follow from the definitions given in Eqs.
(5) and the well-known form of the equation
of state for ideal gases. '

'G. E. Uhlenbeck and E.-A. Uehling, Phys. Rev. 39,
1014 {1932).
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If Eq. (10) is multiplied by x;('&d4;, integrated
and summed over i, the right member vanishes
by (14a and b and 17). Setting successively all
but one of the N+4 arbitrary constants in x;(')
equal to zero, one thus obtains N+4 equations
representing the orthogonality conditions which
must be fulfilled in order that Eq. (10) possess a
solution. These conditions may be written in the
form

()f (0-).
)I m, +D,(f,"&) d(t);=0,

Bt

(', =1, 2, X, (21a)

gas" one can now show that iF a general solution
x of Eq. (10) is decomposed into a term satis-
fying the a.uxiliary conditions (19) and a term
which is a null solution of the form (18) with
constants a, , coandc (i=1, 2, X;a=1, 2, 3),
the constants can without loss of generality be
chosen equal to zero at '=to, and they then
remain equal to zero for all values of t. If a
solution of Eq. (10) is obtained, then, subject to
the condition that the gas parameters satisfy
Eqs. (22), the auxiliary conditions (19) may be
imposed and remain valid for all values of the
time.

-()f, (o)

+D'(f'"') d~;=0,
Bt

0!=i) 2, 3)

()f, (0)-

Q ~I m;r;, r;. +D„(f;('&) d(.t„=0.
Bt

(21b)

(21c)
$(a= (r(a . )(a)Ci', (23)

) 2. Decomposition of the integral equation

Returning now to Fq. (10) the left member is
transformed by the introduction of f;('& from
Eq. (8) and the substitution of new velocity
variables P; for r; according to the de6nition

One may readily show" that these conditions are
equivalent. to the requirement that the param-
eters p;, I and T of the equilibrium distribution
function satisfy the hydrodynamical equations
in zeroth approximation. Since this approxima-
tion is obtained by introducing the conditions
for an equilibrium state, one evaluates the
various mean value quantities of the transport
equations under the assumption of a spherically
symmetric velocity distribution. Thus, one has
in this approximation

I,;=I, g;=0, g;=0,

p(a() =p(t)ap~ pa() =pt)as

Then from Eqs. (4a, 6b and c) the zeroth approxi-
mation to the hydrodynamical equations equiva-

lent to the orthogonality conditions (21) are

where c;=m„/2kT. Then Eq. (10) becomes

f,"' d ln A, r,' dT
+Ae-"' dt T dt

(1)nA; ( du)
c,-'* ax. E dt ) T ax.

Bs
+2k' 5'p

Bxp
= —2 I' (x) (24)

d ln A; de; (1 dp; 3 i dT')
= -+~d-

dt dt E p; dt 2 T dt )

The time derivatives in the left member of this
equation may be eliminated by making use of
the following relations:"

dp; BQ
+p, =0, )=1, 2, N

Bx
(22a)

Bl An; p; (1 ()p; 5 1 ()Tq

ax )ikT) p; ax 2 T ax &
(25b)

&=i) 2) 3,

d(Q/p)
P = P

dt 8x

Qp dQ~
p +Q pB(ay

Bx dt
(22b)

(22c)

with W;(Tp; i), the function defined in (20c), an
adiabatic invarian t. In accordance with the
discussion of )1 all time derivatives of the gas
parameters must fu1611 the hydrodynamical equa-
tions in zeroth approximation. Then (25a) and
(25b) must be evaluated subject to the conditions

As in the classical theory of the one component

"Reference 2, note 2.

» D. Enskog, Xinetiscke Theoric der Vorgangein massig
verdunnten Gasen, Dissertation (Upsa1a, 1917).

'2 Reference 2, note 3; Phys. Rev. 39, 1.014 (1932).
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Denoting d~i= dg;ld(i2d);~, so thatgiven by Eqs. (22) and the vanishing of the
total time derivative of W;. For this purpose,
Eq. (22c) is expressed in the form

(PALS, '2(

d@,=G,
I

—'
I

c,—:d,,
E. h)

dT/dt= —-', Tau /ax,
which is obtained in the following manner:

p ~

Q= 2p= 22RT Q W„(T-p, 2),
i=1 3Ii

(26)
the collision integral written out in full becomes

(nt, ) '(c;+c,i *

(x) =G,
I
—

I I'Ek) & cc;)
XF,(A,)F,(A,)J,, ()t), (29)

d(Pi P dT Pdp RT~ Wdp;—I-I=— ——+
dtEp) pT dt p2 dt p '=l M; dt

where

J,, (X) =F (A„)F; (A;)~"d~;Jl V;;2e;;(a&)dn

R1N p; de;
+

p i 1 Mi dt
and

Xf,.((&) 'f ((&) '
(1+a,.f,. ((& & )

X(1+a,f;('&)()t;+x;—x —x,') (30)

dlnA;
=0 (27a)

alnA, ( du i 1 — 5 paT
ax, i dt) nkT 2 Tax

The second and third terms of this equation
vanish as a consequence of (22a) and the fourth
as a consequence of the adiabatic invariance of
W;. Introducing Eqs. (22a, b and 26) into
Eqs. (25a and b) one obtains

j. Q dQ
Fs(A,) = (30a)

I'(S+1) () (1/A;) exp u —B,

is the Sommerfeld integral.
Equation (28) with I,; defined by Eqs. (29)

and (30) must be solved now for x, in order to
determine the distribution function to the first
order of approximation. We consider here only
a two-component gas and restrict all further
considerations to this case. Writing out Eq. (28)
in full one has then

ap' p' " (ap; fl('&' 1 1 BT( 5 pl i+ —p'"'- ——P —»" - I (27b)
ax. p =i&ax. i Ale —'1' cl' 7 8x E 2 nikT)

Then the integral Eq. (24) becomes

f;(')' —
1 1 a T ( 5 p;

A;e "' c,' T Bx 4 2n,kT)

r(2 & (au„aup'&(
+I &;.&;p—B.p II +

3 axp ax~

2ci' (~Pi'-p, x,. I

&ax. )
p ~ N (QP ~ ) N—ZI -p»-

I
=-~1'(x) (28)

p 1'=1 ( OX' ) l'=I

In the collision integrals I;;(x) it is convenient to
introduce in addition to the variables &; a new
relative velocity variable 7i; for the gi; de-
hned by

(c;+c;i
~' =~'

Ii c;c; )

& (au~ aup)
+I help Bp I—

I

—+ I

E. 3 ) Eaxp ax.)
2Cl'

Pl

p2 a&()l pl ap2 plp2
(la (%la ~2a)

P BX~ P t9Xr2 P

(m&i ' 2'
= —G,

I

—
I
—F, (A,)J„(,)

(. k) c,'

(n22'& (cl+c2) 2

I
c2-'Fi(Ai) Fi(A2) Ji2(x), (31a)( k ) ( clc2 )

f2('&' -1 1 BT( 5 P, i
Ale '~' c2& T ax E 2 n2kT)

( r2' ) (au. Bup)
+I &2.&2p

—'p II +—I
E 3 ) & axp ax.)

2C2 pl ~p2 p2 ~pl p2pl+ $2- — —— —— (X2.—Xl.)
P2 P Bx~ P Bx~ P
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(mi) (ci+c2$
G,

(

—
I ]

—
1

ci-*F&(A()F&(A2) J21(X)4h) (, C(C2)

(m2q ' 2'
—G2I —

l
—F&2(A2) J22(».

( &&2 J C22

obtains the following component equations for
the individual functions

fi("'e'~' ni ( 2m2
I J»(X.)

mi&A(F2(A&) n2 Emi+m2)

The solution of these equations is to be obtained
subject to the auxiliary conditions (19) which
now take the form

f ((&&'e 2

=J21(X.)
m2'* A 2F&(A 2)

y J12(X.), (34a)

j~f' "&(1+8'f'"') x'd~' = o, 2=1, 2, (32a) n2 f 2m(
+ I ( J»(X«) (34b)

n, Em(+ m2)

G1mi jt $(af1 (I+elf 1 )Xid(01

+G2m2 J~f2af2 (1+eif2 )X2d~2

n=1, 2, 3. (32b)

G 2JI f. g f ((&&(] +|& fi( &)Xid(01

+G2m2'*j hah. f2"'(I+(&2f2'")X2d~2=0. (32c)

ni t' 5 pi i f ('1&'e'~'

mif & 2 nikT) A(F((A&)

n ( 2m2

~
J„(e.)+J„(e.),

n2 Emi+m22

n, (r 5 p2 q
f2('&'e*'

b. /

r2'—
m2& 0 2 n2kT j A2F((A2)

sg (' 2mi=J»(+-)+—
( I J22(+-)

ni (.mi+m2)

(34c)

(34d)

Since Eqs. (31) are linear, and all temperature,
velocity and pressure gradients and the external
forces are arbitrary, the solution y; may be
decomposed into a linear combination of twelve
functions X, , 4', and II; p ((2, p= I, 2, 3;
II; p

——II;p ) with coefficients depending on the
gas constants and parameters together with their
gradients. Thus, we may express

$ ' X(a p2 (&Pi
x'=

nln2 Emi+m2) kT p Bx

pi ~Ps pips e;. aT
+ (X2a Xla) . +

p 9g~ p T Bx~

II;~p It'BQ BNp)
(33)

(2kT) & ((»xp Bx.)

Introducing this form of x; into Eqs. (31) and

using the relation

(2m';kT$ ~

p„=n,m, =m,o,
~

which follows directly from (8) and (20a), one

As in the simple gas theory" one can show from
the form of these equations as linear integral
equations of the second kind that the functions
X;, +; and II; p are necessarily of the form

X;.= &;.x;("),
0; =$; f,(r'),

(35a)

11( p=(f, $;p —21r 2f'&, p)ir;(r2) —(35c).
In terms of the solutions of Eqs. (34) a formal

expression for the distribution function may now

Is D. Enskog, reference 11, p. 37.

( r2 y f (0&ea,

3 ) A(Fi(A&)

ni (' 2m2
Jii(II p)+ J12(II,p), (34e)

~, Em, +m, i

t r2 $ f ('&'2~ 'e2
n2I f.2-bp &-p I—

3 ) A2F, (A,)

n2 (' 2mi=J21(II p)+—
~ ( J2,(II p). (34f)

n, Em, +m2)
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be given. Using Eqs. (7), (8), (9), (33) and (35)
one obtains

( mlm2 ) & f;&'&e"
t

f'=f'"' 1-
nln2 Eml+m2) A;

ti»Xi P2 v&pl Pl 3p2
X

kT pox p Bx

P1P2 itag'i ~ T
+ (X2 -Xl) +

p T Bg~

r p $ vrv (BQ» 82ip'&

+I &'.&' —'-
I I

+
3 ) (2kT)2 48xp Bx )

2=1, 2, (36)

giving the distribution function in a form con-
taining unknown functions which depend only
on ~ . Using this form of the function all phe-
nomena of transport may be considered, and the
transport coefficients may be evaluated. The
riumerical values of these coefficients, in which
we are particularly interested, may then be
obtained by a variation method which will be
discussed in succeeding sections.

$ 3. The diffusion coeEcients

The gas coefficients which we now seek to
evaluate are found as constants in the evaluation
of the mean value quantities of the hydro-
dynamical equations. . Referring to Eqs. (5) the
quantities to be evaluated are

i 1-= -i2-=(plp2/p)(2il--222-)

Piap = Pi(2&v»2&ip)Avv

~ —1
gaia

= 2 Pi(2&iar&ier&ie)Avv

the remaining quantities p, , u and

3

Qi= 2pi= 2 g pvaa

1 1
fir& deal

——f2r2 dvt&2

nj n2~

Gl
fib d~l

nlc&2( k )
Gg (m2y '

p
ll f2b.dvp2.

n2c2'E k &

(2kT) vr& ( mlm2 '& '* Glml t-
2

I I ll f &12e&'~'

k nin2 Kml+m2) —nlA 1

X $1~Xldiv&1
Gym' p

~ f2" e&vpv22X2dip2, (38a)
n,A,~

(2kT) ~~ ( m, m2 q ~-G,mi (.
KV=2k (0)~g~12

n,n, im, +m, )
Gmml p

)&$1'plda)1 — —
l

f— 2"&'e'v'f2'$2dvd2 . (38b)
n2A2&

In these integrals, which contain the square of a
single vector component $1, the distinguishing
subscript 0. has been dropped. If we now multiply
Eqs. (34a and b) by $1X&dcoi=xld»&1 and $2X2dlll2

=Xmdcom, respectively, and integrate, and then
substitute the left member into Eqs. (38a) one
obtains

2 1 (m~m2 q~

(2k T) & nln2 &.mi+m2)

ni ( 2m2
X —

I
—

I i

X1J&1(x)deal
n2 4 i+m2)m

Introducing fl and f2 as given by Eq. (36) one
obtains

P2 ~pl Pi 3p2I1~—up~ = —t(—
p Bges p ages

papa ~T
+ (X2 —Xi )+V, (37)

p OX'

where

remaining unchanged from their values as given
by the equilibrium distribution function by
virtue of the auxiliary conditions (20). Consider-
ing first the case of diffusion we evaluate the
quantity (iil —212 ) given by the equation

+
)tX1 712(X)div&1+ )tX2/21(X) div&2.

n2 ( 2ml
l X2J22(x)d~2 . (39a)

nl Eml+m2)
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Similarly, multiplying Eqs. (34a and b) by
$14'id%1= Vld4&1 and f2/ d~2= 42d~2, respec
tively, one obtains

2k 1 (mim, )-:

(2kT) '* ninn 4mi+m2I

nq ( 2m2
x —

{
' ViJii(X)devi

n2E. mg+m2) ~

{F,G+H} = {F,G}+IF,H}, (43b)

{F,cG}=c{F,G}, (43c)

{F,F}—0. (43d)

Other properties of this operator which will be
required are the following. The equation

{x,x}=o
can have only the solutions

&(s =Ci+ COPia gaia+ mq Ca(i'ay+ +1+12(x)d&i+ +2A1(x)d&2j
where a&, a2, co, c&, c.„and c3 are six arbitrary con-

Bu ( 2mi stants. But solutions of this form must vanish
+—

{ I
' +' »(X)d~2 ( 9b) identically if they are to satisfy the auxiliary

ng E.mg+m2& &
conditions (32). Secondly,

In a manner analogous to the definition of the
operator [F, G],; on functions F and G of the
velocity variables r; and r; given by Eq. (13)
we now define new operators on functions of the
velocity variables P; . With I'; and G; functions
of the variables &;, F; and G; functions of $, , we

define

{F,F}{G, G}—{F,G}'. (44b)

The existence of this property may be shown as
follows. Form a function II out of functions Ii

and G in the manner

II= G{F, F}—F{F, G}.
Then

(4o) «II, II}={F,F}[{F,F}{G,G}-{F,G} ]=-O.

[F, G];;=[G, F];„, (42a)

[F, G+II];;=[F, G]„;+[F,FI];;, (42b)

[F, cG]„;=c[F, G];;, (42c)

[F, F],, o, (42d)

[F& G]in+ [F G]21 [G F]12+[G F]21, (42e)

[F, F],.+[F,F]„O,
where c is a constant. Also

{F,G}={G,F},

(42f)

(43a)

where the operator J;;(G) is defined by Eq. (30).
Since only operators on functions of the $; will

now appear, no confusion with the operator
previously defined by Eq. (13) will arise. Also,

we define the operator

ni f 2m'
I LF, G] +LF, G]

n, (mi+ m2)

n2 f' 2mi
+I F, G]»+—

I

—
I LF, G] . (41)

nl Km1+m2)

These operators have obviously the properties

According to the above properties the result then
follows immediately. Finally, if

{F,F}{G,G}—{I",G}'=0,

where I" and G are two functions satisfying the
auxiliary conditions, it is necessarily true that

I =cG, (44c)

~ (mm, q-:

I
{x,x},

(2kT)' nin2 Emi+mg)

2k 1 ( mimg )l
zv= { I

{+x},
(2kT): nin2 (mi+m2)

{4,X}
v=k

{x,x}

(45a)

(45b)

(45c)

where c is a constant. This result follows as a
consequence of the property that if {II, R }= 0,
II is of the form (44a). But G and F cannot be
of this form and simultaneously satisfy the
auxiliary conditions.

Returning now to the expressions for rc and ~v

one may express these coefficients in terms of the
operators defined. Thus
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The method of evaluation of these coefficients
and the determination. of the unknown functions
X, 0 and II may now be discussed. For the case
of the function X let us define functions L which
satisfy the auxiliary conditions (32) and which
belong to a class defined by the equation

] (v $ f (0) Svv

{L,I.j =
I L,deal

m, :~ A lFi(A, )

~ )2f2(&)'Svvv

L2d2 ~

m2'*J A2F (A2)

Using the integral Eqs. (34a and b) this condition
is. found to be equivalent to the equation

Taking this difference and summing over the
two components one obtains

5—Lpl(ni- n—-)+p2(»- n—-)5
2

1(2kT) 3
( ( 5 pg

} mG,
, ~f &,.

2&k ) & & 2nkT)

(
+m2G2 "f2b.{

r2'—
2 n, kT)

The distribution function (36) is now introduced
into this expression giving the result

{I,L}= {L„xj.
Since the properties of this operator yield

(46) 5
(Ia LPl(2(la 2Aa) +P2(2(2a 2(a) 5

2

it follows that
{X—I., X—Lj 0,

{x,xj- {I., I.}=0. (47)

P2 ~PS PX ~P2

P OX' P BX~

But, according to the discussion following Eq.
(44a), there exists none but vanishing solutions
of the equation {X—I, X—I.}

=0, and, there-
fore, the equality sign of Eq. (47) is valid only
for L=X. Then I may be determined as that
function L satisfying the auxiliary conditions
which maximizes {L,L},and which gives, there-
fore, to the coefficient ic the largest possible value.

$ 4. The heat conductivity coefficient

In order to determine the heat conductivity
coefficient one evaluates the heat current density.
For each gas component

(Iia 2 Pi( ia&Vi(i&i p/Av
= 2mi) fisia&i pvipd@i

miG, (m;q '
fifiarv' d(vvi.

2c2 (k) &

where

Pip2 BT
+ (X2.—Xi ) —l(i, (48)

p OX'

(2k'')2 ir' ( m, m2 q
'*

k ln2n4ml+m2)

(2kT)' 2r' ( m, m2 ):
k' nln2 (ml+m2)

mlGl p ( 5 pl
X fl( &" ti { &2 —— }Xid~i

A, & 0 2nlkT)
(49a)

m2G2t ( 5 p2 q+ l~ f2 c $2 {
&2 }X2d(vl2

A2 ~ E. 2 n2kT)

For the purpose of calculation it is convenient to
consider the diA'erence between this quantity
and the quantity

mgogI. ( 5 pg y
X l fl(&s" 5( I 'l

Al " 0 2 nlkT)

(49b)

5 5 Sp;
pi(&ia)Av = pi(2ii(a 2ia) =

I
fi&iaditli

2 2 2n, ~

5 p; 6;(rn;p '
=-——

{
—

} tf, p,.d, .
2n;c }k) ~

m2G2t. ( 5 p2 &+—f2"'*s"'$2
{ ~2 }$2d&2 .

A, J & 2n2kT)

Multiplying Eqs. (34c and d) by glxlda»=xid~i
and &2X2dcu2 ——X2d(02 respectively, integrating and



830 E. J. HELLUND AND E. A. UEHLING

substituting into Eq. (49a) one obtains

(2kT)'p mim2 q '-ni ( 2m2
v1

nin2 (mi+m2& n2 (mi+m2)

and d). Then
) y&zv'T
X&0,
X&'A~ unless v=0.

(52b)

X t X1J11(%')dc01+,I X1J12(%')da&1

+ X2J21(%)d222

n2 t' 2m, },X2~22(e)d»
ni (mi+m2~

(2kT) t' mim2 i '
1{X+}=-T.

n,n2 (mi+m2)

Like X, the function 0' may be determined by
a variation process. Consider a class of functions
3f fulfilling the auxiliary conditions and defined

by the equation

ni i ( 5 pi q fi""e''
{M,M}= (,{ r,'— }

— M,d~i
mi'*& E 2 n,kTI A1Fj(A.1)

n2 I' ( 5 p2 p f2' ie"
+ $l '—

l
Md

2 n2kT) A2F2(A2)

(soa)
According to Eqs. (34c and d) this condition is
equivalent to

Similarly, multiplying Eqs. (34c and d) by
gigidi21 ——4'idi21 and &2$2dg2=@2di22, integrating
and substituting into Eq. (49b) one obtains

(2kT)& t' mim2 y '
l

2nin2T (mi+m2)

Combining (37), (48) and (50a) one obtains
finally

5
g. =—Lpi(ui. —u.)+p2(u2. —u.)j

2

it follows that

{M,M}= {M, %}.

{@-M,@-M}~0,

{@,+}—{M,M}~0.

Thus, 0' may be determined as that function 3f
satisfying the above conditions which maximizes

the coefficient 'Ai.

{}5. The viscosity coefficient

where

8T
+VT(u, —u2 ) —7, (51)

Bx~

We consider now the stress tensor and evaluate
the quantities p e and p p. Since—

piae = pi(&ia&v p)av ™iIfgaia&v'pd t&i

) =) g
—av'T. (52a)

According to the property expressed in Eq.
(43d), the coefFicients ii and Xi are positive
definite quantities. Also, evaluating a) i and ff,'v'T
from (45a and b and 50b) and using (44b) one
finds that the quantity ) &

—~v'1 is positive
definite. The latter may never vanish, however,
for according to (44c) the expression

(m;) 2

G,m,
l

—
} c; "2Jt f;$; &,p-d22

k

one obtains

(2k T)"'
Gimi'Jt fi)1 pi„di21

h3

2k ( mim2
KX1KvT=

(nin2)' &mi+m22

X[{X,X}{4', 4 }—{4,X}2] p,.—P=

can vanish only if 0 =cX where c is a constant.
But such a relation cannot be fulfilled since +
and X must simultaneously satisfy Eqs. (34a, b, c

+G2m2 Jtf24a522div&2

(2kT)"'
Glm1'*

I fll (1a }div11
k' ~ i, 3)

+G2m2'J f2l ~2a ———Idid2 .
3)
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Introducing (36)

(Bzl Bny)
Pay= P{ +

(ay axi
2 BQ BQ„BQ,

p p p 2
3 Bx 8p Bs

(53a)

(53b)

known functions will be found in this manner,
and discussed in the succeeding section.

III. DERIvATIoN oF I" xPREssIoNs FoR THE

GAS COEFFICIENTS IN TERMS OF

KNOWN FUNCTIONS

tl 1. Method of solution

where

(2kT)' m' ( mim2 i &

{~,n, Em, +~,)
Gynsy'

X I
fi&"'e'~'&i '$i 'ir, d(oi

Ag

For the purpose of this section it is convenient
to consider a slight change in notation. Hitherto,
all functions of velocity variables have been
regarded as defined in their respective spaces (~
and &i . We shall now regard each function as
defined over the combined velocity space of two
particles, and introduce a new operator on
functions II and X defined in this six-dimensional
space as follows:

3 (2kT)' ir' ( mim2 i &

2 k' n,n, &mi+ mai

Gimi1 p ( 7'i $
X —

I
fi&'&'e"'{ Pi, ' ——}x,d(o,

Ai~ E 3i

+—I f~""&"'{4' ——}~~d~~ .

In the evaluation of this coefficient it will be
sufficient to consider only the second form, and
to restrict our considerations to the functions

Proceeding then as before with Eqs. (34e and f)
one obtains finally

3 (2kT)'( mimi y
1

p= —
{ } {II,II}.

2 nini E mi+ mb)
(54)

As is the case with the other two functions,
II has a maximal property, such that of all
functions N defined by the condition

{Al, X}= {X, II }

and satisfying the auxiliary conditions, II is that
one which maximizes the coefficient p. Alf of the
gas coefEicients may be evaluated, therefore,
with the help of a variation method. Explicit
expressions for the gas coefficients in terms of

]— i ( ) i ( 2) d~iJ d&i

XJ yigvig(8y)dQ(H —II')(Z —X')

Xfi"'f2"'(I+gifi"')(1+llifi"') (55)

Then for two functions II= FR+F2 and X=G~
+G2 where F~ and G~ are defined so as to vanish
in the subspace 2, and F2 and G2 to vanish in
the subspace 1, the operator defined by Eq. (41)
becomes

ni ( 2m'
} [F„G,]»

n2 I m~+m~&

+[Fl+F2 G1+G2]

nm( 2mi
+—

{ } [F2 G2]~i (56)
n, &m, +m, i

since, obviously, from a comparison of Eqs. (55)
and (40)

[Fi+Fi, Gi+Gg]= [F, G]ig+[F, G]2i, (56a)

where, in the left member each function appear-
ing is regarded as defined over the combined
space, and in the right member all functions are
defined separately in both component spaces.
The purpose of this change of notation is that
we have now a notation for a portion of the
operator {H,E}which occurs when one term of
II or X or both vanish over the entire space.
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Conforming with this notation the solutions
of the integral equations, X, 0' and II, must be
regarded as functions of six variables; e.g. ,

X=Xl+X2,

where Xl vanishes in region 2 and X2 vanishes in
region 1. The quantities {F,G} appearing in the
expressions for the transport coefficients derived
in the last section may be taken, then, as of the
form given by Eq. (56) without altering their
meaning.

The procedure now, as indicated in the
previous discussion of the maximal properties
of the solutions of the integral equations, is to
choose complete sets of linearly independent
functions which individually fulfill the auxiliary
conditions (32), and from which linear combina-
tions may be formed which belong to the proper
functional class as defined, for example, in

the case of the function X, by Eq. (46). The
constants of this linear combination are then
to be varied in order to satisfy. the maximal

property. '4

Since both X and + are proportional to & and
depend otherwise only on r' one set of (2r&+1)
functions, 7&& ) I&

&") hq&"& (r=1, 2 r&), may be
used in the determination of these solutions.
Similarly, we determine that solution H which

is proportional to (P——', ~'), and in terms of
which the viscosity coefficient may be evaluated,
by choosing a set of 2n functions, kl("), k2(")

(r=1 2 n), each of which is of this form.
Sets of functions of this character, which satisfy
also the auxiliary conditions may be chosen,
then, as follows:

P1P2 (1$(o)— in region 1;
p n&(m&) l

h2'"'=0 in region 1;

I'(r+5/2) F,+((A2)
in region 2

I'(5/2) F&(A u)

for the first set, and

kl = ($1 3 Tl ) rl ' in region 1;

=0 in region 2;

k2(") =0 in region 1;
= ($u ——', r~') r~'" ' in region 2

for the second set. Since these functions satisfy
the auxiliary conditions, any linear combination
of them also satisfies these conditions.

f 2. Series developments for the gas coefficients

In order to determine X we consider the
function X'"' given by

y&n) p&0)I&&o)+.Q(p&&r)$ &t')+p&&r)$2&v)) (57)
r=1

and determine the coefficients P so as to minimize
the quantity

II„={X—X&"&, X—X&"&}.
Differentiating II„with respect to each of the
P's one obtains the following set of algebraic
equations

{k&'& X'"&} = {k&'& X}

(r=1, 2, e; s=1, 2). (58)

{a.&"& x&"&}={a.&"& x}

It follows from (57) and (58) that

{x'"&,x&"&}= {x&"&,x}

pl p2 $9

p n2(mg) i

and that
in region 2;

a„={x,x}—{x&-&,x&-&} o.

I'(r+ 52/) F„+;(A,)-
h &') =f jn region 1; Solving Eqs. (58) for the P's and introducing

I'(5/2) F)(A&) the results into Eq. (57) one obtains

=0 in region 2;

j4 For a complete discussion of this procedure together
with questions of convergence see Enskog, reference 11,
pp. 71—87. where

g (2n+2)

X (n)

D (2n+1)
(59)
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A (2j+2)

{$(0) k(0) }

{k (i& &&&(o) }

jkl(i) k (0)
}

{@(o& kl(7') }{jr'(0& k~(i) } {k(0) X}

{kl(i) k (i) }{k (i) Jzl(i) }{kl(i)

jkl(i) k((i) } {kl(i) kl(i) } jkl(i)

{$(0) k(0)} . . . {k(0) k((j)}{k(0) kg(i)}

D(&i+i) —{ki(i) k(0) } . . . {ki(i) Jgl(i) } {ki(i) kl(i) }

jkl(i) k(o)} . . . {k (i& k &l&} jk (i) k (i&}

jk&'& X}k&'&
X(n) +p p(r)

r=l
(60)

where

The ratio of determinants occurring in Eq. (59)
may be rewritten as a series, and takes the form

k&o' X} {k,") X} . , jkl&"& X}.Then

j p(r) p(r) }
(2r+2) (2r+2) (2r+2) (2r+2)

~2r+2, 2r+1~f 2r, 2~ $ ~2r+2, 2r~f 2r, 2r+l. g
$2r+1, 2r+2 f $2r+1, 2r+2 f

(2r—1) (2r+1)
D D

where 8(2r+2) is the determinant A('r+') in which
this replacement has been made. But all of the
elements {k)&'&, x } and {kl&'&, x } in 8&"+'&

vanish. This may be shown as follows using
Eqs. (56) and (56a)

(2r+2) (2r+2) (2r+2) (2r+2)
A2r+2, 2r+lA I 2r, 2t $ ~2r+2, 2rA J 2r, 2r+lg

$2r+1, 2r+2 f $2r+1, 2r+2 fP (r)
(2r—1) (2r+1)

D D

and AI, ,
~(2&+2) is the cofactor of the element in

the kth row and lth column of A&"+'&. We now n~ ( 2m'
form the quantity {X&"&,X&")}. In order to } [k& &, X],l
obtain this expression, we observe that if h is

s2 (ml+m2r

any of the functions k('), h (r—') h2("—') then
both of the quantities

+ [hi&i&, Xl+X2j

Bl ( 2m'
} Lk"' X]ll+[k"', X])2

112 Eml+m2)(2r+2)
0 Af2, 2 $ and

(»+2)
k, A(2„,

$2r+1, 2r+2 j
Using Eq. (34a) and the definition of F,(Al)

vanish, since in both cases one obtains a determi- give~ by Eq (30a)
nant with two equal rows. Then

{p&'& k&" }= {p'& p" } =0, (r&s). (61) jki"' X}= I P f (0) er& k (j)do&
ml'A )F&(A l)"

Using Eqs. (58), (60) and (61) one then obtains

{p(r& X(~) }
—{p(r) p(r) }

—{p(r) X} (62)

Now using Eqs. (58a) and (62) the result

{k«&, X}'
{X&"&,X&"&}= +p{p&r&, p&"&}

{@&o& Jz(o) }

follows. The expression {P&"&,P&"&} may be re-
written. From Eq. (62) it follows that {P&"',P&")}
is given by E(") if each element h(" hl() h2()

~ .k2(") in P(") is replaced, respectively, by

2' 3 " ss

Bml'Fi(Al) 2 () (1/Al)e' —t&i

I'(j+5/2) F;~i(A l)
X ds

I'(5/2) Fi(A l)

g2+k

+j — ds =0.
(1/A l) e' —el

The determinant 8(2"+2) is now conveniently
expressed in terms of the determinant D('r+".
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One then obtains

{P (r) P (r) } {k (0) X j
2

(2r+1) (»+1) (2r+1) (2r+ 1)
1, 2r +f2r, 1 1 D1, 2r+1DJ2r, 17

$ 2r+1, 2r+1j g 2r+1, 2r f'

X (63)
(2r—1) (2r+1)

D D

As in the one component gas theory one can show
that if the integral equations (34a and b) possess
finite and continuous solutions, the limit as n
approaches infinity of {X&"&,X&"&j is {X,X}.
Therefore, from Eq. (45a) one obtains for the
gas coefficient ff,

22 1 &/ mim2

(2k T)'* n, n2 Lmi+m2)

{k&'&, Xj'
X +Z {&&'&, ~&"&} (64)

{k&0&, k"&}

with {P&"&,P&'&} given by (63). This coefFicient
is thus expressed completely in terms of known
functions since the quantity {k&0&, X} may be
evaluated by integration of Eqs. (34a and b).

In order to determine 0' and the thermal

conductivity coefficient associated with it one
considers as before a function 4'(") formed as a
linear combination from the set h('), h1('), ~ ~ h2(").

One obtains then as in the case of X(") the result

(2n+2) {t2 (0) + j I2 (0)
@(n& — — ++Q(r)

{k&0& k(0&}

where C""+') is the same determinant as A(2"+')

with + replacing X and Q'"& is the same as 2'& "&

with the same replacement. The quantity
{k&'&, + j unlike {k"&,X j vanishes, as may be
shown in a manner analogous to that used above
to prove the vanishing of {k,&/&, X}, and using
finally the relation p/nkT= F2/2(A)/Fl/2(A).
Then

q, (n) QQ(r)
r=1

Of the two thermal conductivity coefficients,
the coelF&cient ) given by Eq. (52a) is of the
greater interest. In order to determine it the
expressions {4'& "&, 4'} and {4'("&, X} must be
evaluated in addition to {X&"',X} already
obtained. Denoting

{ki&'& hi&"&j

P(2r+&) —{k (r) k (i) j

{k (i)

{ki&"&, lz2&"&j {ki&'&, @}
(r) k (r) } {k (r) @}

{k2& & +} 0

(66a)

one finds

(2r+1}—&'2r+1, 2r+1y
/ (2r) K' (66b)

{X e&"&}2

{@(n) @}
{X&"&,X}

(2r+1) (2r+1) (2r+1) (2r+1)

P(2 +1) ~2r+1, 2r~f 2r—1, 2r—1$ +2r+1, 2r—l~f 2r—1, 2r
n g 2r, 2r+1 f $2r, 2r+1 f

G (2n) (2r—2) (2r)
6 G

where 6&0& is to be set equal to unity. Taking the and using Eqs. (52a), (50b), (45b and c) one

limit of this expression as n approaches infinity, obtains

(2r+1) (2r+1) (2r+1) (2r+1)

(2kT)' ~2r+1, 2r~f 2r—1, 2r—11 ~2r+1, 2r—1~f 2r—1, 2r
C ) (' m1m2 ) ' ~ '

2r+1 I

2n, n, T &m, +m2) .=i
(67)

Similarly, the function II and the viscosity introducing a function ID") expressed as a linear

coefficient associated with it are evaluated by combination of the functionsk1('), k2"), . -, k2(").
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Proceeding as before and denoting

{k&(() k&&&) }

y &o~+)& —{k,&~& k, (a&}

{k&&" II}
(2r) (2r+1)

one obtains from Eq. (54)

{k(&&) k (~) } {k &() II}

{ko&"& ko&"&} {ko&"& II}
{ko("& II}

(68a)

(68b)

(2r—2) (2r)
Z K

(2r+1) (2r+1) (2r+1) (2r+1)

3 (2kT)l L 2r+1, 2r~f 2r—1, 2r—11 L12r+1, 2r—lLif 2r—1, 2rgT)* ( m&mo $2r, 2r+1 f $2r, 2r+1 f

2 n,n, Lm, +m, )
(69)

Finally, the thermal diffusion coefficient may
be developed from the relations already obtained.
Referring to Eq. (45b) one finds that it is the
limit of the expression {X&"&, 0'"& } which is

required for this purpose. This may be obtained
from Eq. (60) for X&"' or from the correspond(ng
equation for 0("' to give

n n

{X(n) @(m) } g {P(r) @(n) } PQ(r) X(n) }
r=1 r=1

Passing to the limit in the summation over n and
introducing the result into Eq. (45b) one obtains

(2r—1) (2r+1)
D D

(2r+2) (2 r+2) (2r+2) (2r+2)

2k I ~2r+2, 2r+1~f 2r, 2r $ ~2r+2, 2r~J 2r, 2r+1L
m&mo 2r+1, 2r+2 f $2r+1, 2r+2 f

Kv=
(2kT)& n(no (.m&+moJ

(70)

where
{k&'& k&" } {k"',k&"'}

(() k(o)} {k (&) k(&&)}
m(2+ ) = ~ ~ ~ ~

{ko("& k&'&} {ko&"&, k&'"'}

,

{k&'&, X}

{k(o& k &.)» 0

{k&(&) ko(r) }{k((() @}

{ko(~) ko(~) } {ko(~) +}

0 0

(7 I)

The coefficients characterizing a mixture of
two gases are thus completely determined and
expressed in terms of known functions. The
diAusion. process depends on K and v, the heat
conduction on ) and v, and the viscosity on p.
In order to obtain numerical values of the
coefficients there remains the evaluation of

integrals of the type {k "', k & }; {k "&, X } and

{k, & "&, II }. Integrals involving the unknown
functions are evaluated by direct substitution
from the integral equations. These calculations
with reference to particular gas coefficients will
be given in a succeeding paper.


