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The activation energy Q for diffusion in a dilute metallic
solution cannot be less than the activation energy Qo for
self-diffusion, if the solute atoms can move only through
the medium of "holes" which diffuse to them from the
solvent lattice, displace them, and leave in another dir'ec-

tion. Since the experiments show that generally Q, (QfI'an
alternative mechanism is required. Solute atoms which are
not so firmly bound in the lattice as are solvent atoms will
tend to trap holes to form solute-hole molecules. These
molecules can move as units through the dense solvent
lattice by cycles of inversion and re-orientation. This

mechanism yields for the diffusion constant the value

D=x* exp [—(W+S)/ZZ"j,

where W is the energy required to form a hole adjacent to a
solute atom, and S is the activation energy for re-orientation
or inversion of a solute-hole molecule. Q,{=—W+S) may be
much smaller than either Qo or the binding energy of the
solvent. 2*should be significantly less than the correspond-
ing A for self-diffusion. Both these predictions are in
accord with the data. - The same considerations should
apply also to diffusion in liquids.

1.THE PROBLEM AND THE PROPOSED MECHANISM

Stiegman, Shockley and Nix' (SSN) decide
from energy considerations that diffusion in
dilute solid metallic solutions probably occurs
through the medium of vacant lattice sites
("holes" ) rather than by simple interchange of
position between pairs of atoms or by a process
involving interstitial atoms. According to the
hole theory the diffusion constant, they say, is

D =vP exp [—(Ho+ J*)/RTl
—=A exp [—Q,/RT], (1)

where v is the frequency of the atomic vibrations
and 8 is the lattice spacing; Hp, the energy re-
quired for forming a hole in the solvent lattice,
is of the order of the binding energy and J„
the activation energy for passage of a solute atom
into an adjacent hole, is presumably considerably
smaller. The data accumulated in Table II of
SSN show that for a given solvent Q, has its
greatest value (Qo) for self-diffusion and may be
as low as Qo/2 for other solute elements. They
conclude: "If hole diffusion is the dominant
process, the energy Ho should be the same for a
given solvent (the concentration of the solute in

all cases is small) and therefore all changes in Q
should come from J . We are, therefore, forced
to assume either that J is at least as large as Hp

and is very sensitive to the nature of the solute
or that another process of diffusion is involved. "

1 J. Stiegman, K. Shockley and F. C. Nix, Phys. Rev.
SO, t3 (1939).

Actually. the matter is more desperate than
SSN indicate. Eq. (1) gives correctly the dif-
fusion constant for self-diffusion and for the
diffusion of solutes for which J,)Jp, Jp being
the activation energy for passage of a solvent
atom into an adjacent hole. But to the cases of
pra.ctical interest, where Q, (Q0, Eq. (1) does not
apply. Briefly, the diffusion of the solute atoms
is finally limited by the rate at which holes
diffuse to them from the hinterland of the
solvent. Even if J,=0, D should exceed D p only
by a numerical factor of the order of the coordi-
nation number, and Q, should be identical with
Qo. This conclusion seems to be inevitable so long
as diffusion of solute atoms is supposed to occur
by means of holes which approach from the
reaches of the solvent lattice, pass through
solute atoms and displace them, and retreat in
another direction.

There is another mechanism of diffusion, in-
volving holes, which avoids this impasse. If the
binding between a solute atom and its neighbor-
ing solvent atoms is less tight than the binding
between neighboring solvent atoms, holes will

appear preferentially in sites adjacent to solute
atoms. Statistically the lattice will contain a
certain concentration of solute-hole molecules;
the fraction of the solute atoms instantaneously
associated with holes to form diatomic molecules
will be

s exp [—W/RTj,

where s is the coordination number and W is the
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energy required for removing a solvent atom
from a site adjacent to a solute atom. A solute-
hole molecule can proceed amoeba-like through
the lattice by cyclic changes in its orientation—
that is, by cyclic rearrangements of the sur-
rounding solvent atoms —without having to wait
for an additional hole to diffuse to it from the
solvent lattice. It is this random drift of solute-
hole molecules which is proposed as the dominant
process in the diffusion of solute atoms, in the
cases where Q, (Qo. This mechanism yields for
the value of the diffusion constant

D, =A* exp L
—(W+S)/RT]

—=A* exp [ Q,/RT—],
where 5 is the activation energy for passage of a
solvent atom into an adjacent hole, when both
the solvent atom and the hole are near neighbors
of a solute atom. Neither of the two terms now

composing Q is directly related to Hp, J'p, or J
defined above. It appea, rs that Q, need not be
restricted to a narrow range of values; it may be
considerably smaller than either Qp or the
binding energy of the solvent. A* should be
smaller than the corresponding A for self-
diRusion by a factor which decreases expo-
nentially with the number of moves a trapped
hole must make to complete a cycle displacing
the solute-hole molecule by one lattice-spacing.
Some such trend appears in the A values in
Table II of SSN: for Cu, A,/A*)100; for Pb,
A, /A* —12. The serious uncertainty of measured
or calculated A values limits, of course, the
worth of this apparent agreement.

The arguments basic to these statements are
presented in the following sections.

2. DIFFUSION CONSTANT FOR HOLES

Consider a crystal containing ¹,normal atoms
a and

¹
holes 0. In equilibrium, when the free

energy is a minimum,

Xp/1V, =f=exp P Hp/RT]. —

Each hole occasionally moves a distance of one
lattice-spacing p. Each such move is assumed
independent of all preceding moves —this is true
if the frequency n of moves by a particular hole
is small in comparison with the frequency u of
the atomic vibrations. If Jp is the activation

energy for passage of a hole to an adjacent
lattice site,

n=v exp L
—Jo/RT].

After n moves of a particular hole (which will on
the average require unit time) the vector dis-
placement' of the hole from its original position
will be

each vector P; having one of the several possible
directions. Forming the scalar product of each
side by itself, and averaging over many holes
each of which has made n moves:

yo )A (ZPi 'P ')A +(ZZP ' Pj)A 'np

the products P; P; being as often positive as
negative. The expression np is clearly identical,
except for a numerical factor determined by the
geometry, with the diffusion constant Dp for
holes in the diffusion equation

&O =DP~'ÃP ',

that is,
Dp nPo= vP——' exP [ Jp/RT]—

'

This same device will be generally used here-
after: an (5')A„will be calculated and set identical
with the corresponding diR'usion constant D.

3. CONSTANT OF SELF-DIFFUSION

A move by a hole is obviously identical with
a move (in the opposite sense) by an atom. Let
a few of the u atoms be marked (for example, be
made radioactive). The probability that a single
move by a particular hole will also be a move of a
particular marked atom is 1/X . The total dis-
placement S, of a particular marked atom from
its original position, after the ¹ holes in the
crystal have made an average of n moves each,
will be given by ¹p¹,
It follows that

Dg =fDp= Do exp t Hp/RT]
=vP' exp I: (Ho+ Jo) /RT]. —

2 This method was suggested by M. J. Polissar, J. Chem.
Phys. 6, 833 (1938).
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That is, the diffusion constant for self-diffusion
is smaller than the constant for hole-diffusion

by a factor which is just the fractional concentra-
tion of holes. The division of Qp into two terms,
one the energy Ho required to form a hole and
the other the energy of activation Jo for an atom
to move into an adjacent hole, is patently
justified.

4. CONSTANT FOR DIFFUSION OF IMPURITY ATOMS

Let the few marked a atoms be replaced by
chemically-different atoms x. If an x atom re-
quires an energy of activation J,& Jo for moving
into an adjacent hole, the probability that it
will so move is only exp [—(J,—Jp)/RT] times
the probability that a marked a atom in the
same position would move into the hole. It
follows that

D =D exp [—(J,—Jp)/RT]
= vp' exp [—(Hp+ J,)/RT]

=Ap exp [—Q,/RT].
(2)

This case of J,&JO appears, however, to be
without practical interest, for Table II of SSN
shows that Q, (Qp for all the dilute metallic
solutions listed there. It is clear on reflection that
Eq. (2) is not a.pplicable when J,(Jp—that is,
when an x atom is more likely than an a atom to
move into an adjacent hole. The successive
moves of an x atom are then not generally inde-

pendent, for the x atom will interchange posi-
tions with an adjacent hole a number of times
before the hole can escape by capturing one of
the a atoms; it is certainly not legitimate to
count these to-and-fro moves as contributing to
the mean square displacement of the x atom
from its original position. An upper bound for

D„ if only this mechanism of hole-capture-hole-
release is operative, can be calculated as follows:
Consider the case most favorable for x atom
diffusion, in which J, has the extreme value zero.
Imagine each x atom surrounded by a "sphere
of influence" containing several a atoms, and
assume that whenever a hole reaches the bound-

ary of this sphere it inevitably and immediately
gravitates in to the x atom and displaces it by
one lattice-spacing, passing out of the sphere in

another direction. The probability that a single

move of a particular hole will place it on the
boundary of a particular sphere of influence is

b/X„where b is the number of a atoms on this
boundary and is of the order of magnitude of
the coordination number. This by assumption is
also the probability that a single move by a
particular hole will result in a move of the
particular x atom in this sphere. The total dis-
placement S, of the particular x atom after each
of the Xo holes present has made an average of n
moves will be given by

(S.')A„bn p——'Xp/X. ,

and it follows that

D, =bD„.

The diffusion constant, even for J =0, is seen
to exceed the constant for self-diffusion only by
a factor of the order of 10, and the Q values for
the two are the same except for a possible
temperature dependence (presumably negligible)
of the size of the sphere of inHuence.

This mechanism, in which the holes diffuse to
the impurity atoms, displace them, and move on,
is clearly in disagreement with the values of Q
in Table II of SSN, not essentially because those
values are markedLy smaller than Qp, but because
they are at all smaller than Qp. The alterna, tive
mechanism of molecule-motion, which avoids
this limitation, is developed in the next section.

5. FORMATION AND DRIFT OF SOLUTE-

HOLE MOLECULES

The holes in their equilibrium distribution
(which they will attain relatively rapidly, since

they diffuse rapidly) will not be scattered at
random in the lattice, but will tend (1) to cluster
around x atoms if these are not so tightly bound

to their neighboring a atoms as c atoms are
bound to one another, and will tend (2) to avoid

contiguity with x atoms if the x —u binding is
more firm than a —a binding. This is readily
seen either by considering the probable moves of
a hole in the vicinity of an x atom or by using

the Boltzmann theorem to find the average local
equilibrium concentration of the holes. Case (2),
in which the holes detour around x atoms, yields
a slower diffusion for x than for c atoms and
hence is without practical interest. In case (1),
where x atoms are more likely than a atoms to
have holes associated with them, it is convenient
and legitimate to speak of xo molecules as
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statistically present in the lattice. In the simplest
situation, where the disturbing influence of an
x atom extends not far beyond its nearest
neighbors, the fraction of the sites adjacent to
x atoms which will in equilibrium be vacant is

exp [—W/RT],
where 5' is the energy necessary for removing
an a atom from one of these sites. The fraction
of the x atoms instantaneously associated with
holes to form a diatomic xo molecules is therefore
approximately

s exp [—W/RT],
where s as before is the number of nearest
neighbors.

It remains only to notice that an xo molecule
can travel, unassisted by additional holes,
through the u lattice. A typical cycle which
restores the molecule to its original configuration
and orientation but leaves it displaced by one
lattice-spacing is shown in Fig. 1, the lattice
being approximated by a plane square array.
The diagonal orientation of the molecule in this
simple array (I'ig. 1 (3) and (5)) is a sort of
excited state —in a more complicated lattice so
wide a separation between x and 0 might never
have to occur in the course of a cycle (for
example, it would not occur in a plane hexagonal
array).

The rate of diffusion by this. mechanism can
be estimated very roughly as follows: Consider
first the case in which inversion of the molecule
requires less energy of activation than does
re-orientation —that is, the x atom is more
likely than an a atom to move into the trapped
hole. Suppose that m moves of the hole are
necessary for completing a displacement-cycle,
and that each move can occur in q directions
only one of which contributes to completion of
the cycle. The probability that a given sequence
of m moves will complete a cycle and so advance
the molecule by one lattice-spacing is 1/g . In
the time required for n moves of a trapped hole
(n))m) the molecule will have moved a distance
S& given by

(Sd')A, ——np'/mg,

where p as before is the lattice-spacing. The
diffusion constant for xo molecules is therefore

Dd vp'/mrI" exp [ S/RT], —— —
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FIG. 1. A cycle of inversion (1—2) and reorientation
(2-6) which moves a solute-hole molecule one lattice-
spacing.

where S is the activation energy for moving an
c atom into an adjacent hole, both the a atom
and the hole being in the immediate neighbor-
hood of an x atom. Correspondingly, the diffusion
constant for x atoms generally, whether asso-
ciated with holes or not, is

D, =svp'/mg" exp [—(W+S)/RT]
=A* exp [—Q,/RT].

With this mechanism Q, again appears as the
sum of two interpretable terms, but neither of
these is directly related to the work necessary
for forming a hole in the a lattice, nor to the
activation energy for moving a hole about in
the e lattice, nor to the activation energy for
moving an x atom into an adjacent hole. It is
plausible (though not essential) to suppose that
if W(HO, then also S(JO. At any rate, Q, is
left largely unrestricted, and it is entirely
reasonable that Q should generally be larger for
self-diffusion than for the dift'usion of any solute
whose solubility increases with increasing tem-
perature. Since s, q and m are all of the same
order, evidently A*, with this mechanism, should
be significantly less than the corresponding A
for self-diffusion, calculated on the basis of the
other mechanism.

In the second possible case, where the activa-
tion energy for passage of the x atom into the
trapped hole exceeds that for passage of an u

atom into the hole, the rate of diffusion would
be limited by the rate of inversion of molecules
rather than by the rate of re-orientation. S as
defined above would then be replaced by the
activation energy for inversion, and A would be
larger than A* estimated above. This case
seems less likely to occur than does the alter-
native discussed in detail in the two preceding
paragraphs.
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6. RANGE OF APPLICATION OF

THE MECHANISM

None of the discussion has involved the ratio
of the concentration of holes to that of x atoms.
Either of these may far outnumber the other.
In 'particular, the concentration of impurity
atoms may increase from zero up to the point
where interactions among the impurity atoms
become appreciable. The arguments, in short,
apply to, , the same range as do the usual "infinite
dilution" theories.

No use has been made of the periodicity of
the lattice. For this reason it seems that the

foregoing considerations ought to apply without
change to dilute liquid solutions, wherever the
hole theory of diffusion is at all applicable. It is
uncertain from the data' whether the solute-hole
molecule mechanism is commonly suitable for
accounting for diffusion in liquids —that is,
whether Qo commonly exceeds Q .

I am indebted to Dr. C. W. Hewlett, Mr. C, G.
Found and Dr. W. Shockley for several dis-
cussions on this subject.

' H. S. Taylor, J. Chem. Phys. 6, 331 (1938}.
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The theory of transport in gases taking into account
the full effect of quantum statistics is extended to include
mixtures as well as one-component gases. The method of
Lorentz, Hilbert, and Enskog, which was used previously
in the development of the quantum theory of transport
in a single component gas, is used again in this more general
case. As is to 'be expected, all transport equations have
formally the same dependence on velocity, temperature,
and pressure gradients as in the classical statistics, the
effects of diffraction and interference introduced by the

quantum statistics appearing only in the coefficients
themselves. Expressions for the viscosity, heat conduc-
tivity, pressure diffusion, and thermal diffusion coefficients
into which assumptions with regard to the interaction
laws may be introduced have been obtained. It is expected
that these expressions may form the basis for calculation
based on plausible assumptions as to the interaction that
will provide a relatively good test of these laws as well

as of the theory itself.

INTRQDUcTIGN

HE study of transport phenomena in gases
has been recognized as a most promising

field of investigation having as its objective the
determination of intermolecular forces. The
study of viscosity, heat conductivity and diGu-
sion by numerous early investigators together
with the rigorous analytical treatments of the
subject given by Enskog and Chapman have
demonstrated fully the sensitivity of the method
and the practicality of the calculations which
lead to the possibility of detailed comparisons
between theoretical results and . experimental
observations.

With the introduction of the quantum sta-
tistics, the study of transport phenomena in
gases took on a further significance, which was

to be found in the possibility of an experimental
test of these statistics. Certain discrepancies
between observational data and the results of
calculations based on the classical theory of
Chapman and Enskog had already appeared.
These discrepancies, which were observed for all
transport coefficients, were at first attributed to
the assumption of incorrect interaction laws on
the basis of which the theoretical results were
obtained. That this interpretation of the dis-
crepancies was inadequate was demonstrated by
Massey and Mohr' for the case of viscosity and
heat conductivity in single component gases.
The considerable improvement in the theoretical
results obtained by these authors when quantum-

i H. S. W, Massey and C. B.0. Mohr, Proc. Roy. Soc.
A141, 434 (1933):A144, 188 (1934}.


