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vacuum is considered more reliable than any
value previously reported.

In measuring coefhcient of linear expansion the
total length observable with the comparator was
only about 4 mm. Temperature measurements
could be made only at room temperature and in

the pyrometer range. Transition points, if they
exist, lie between these limits. Repeated readings
were not satisfactorily consistent. Doubtless the
peculiar properties of uranium described at the
beginning of this section partially account for the
fact. The average value obtained for the coefh-

cient of linear expansion over the range of 25'C to
1000'C is 4X10 ', which is exceptionally large.
No other value has appeared in the literature.
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Calculations of the electronic energy bands in metallic
tungsten are carried out by the Wigner-Seitz-Slater
method. All numerical integrations were carried out on
the M. I. T. differential analyzer. It is found that the d
band is broken up into five sub-bands. Some of these
d bands are found to be about fifteen electron volts in
width. One is about two electron volts in width. The
occupied energy range extends about five electron volts.
The s band starts at a higher energy than the d bands and
is occupied by much less than one electron per atom at
the equilibrium interatomic distance. From the results of
a previous paper, curves of 8 vs. k are plotted for the
principal directions of propagation. From these, curves
of the number of energy levels per unit. energy range were
determined by numerical and graphical methods which
are described in an appendix. It is assumed that the n(Z)

curve for tantalum is not greatly different from that for
tungsten except that there is one less electron per atom.
From the n(F) curves the electronic contribution to the
specific heat is calculated for the two metals and the
results found to be in good agreement with the excess
specific heat at high temperatures for both metals. The
computed value does not agree with low temperature
data on tantalum. There are no low temperature data for
tungsten. Qualitative discussions of the differences in
electrical resistance, temperature coefficient of resistance,
and thermoelectric power of the two metals are given.
The contribution of exchange eEects to the paramagnetic
susceptibility is

'

treated by a rough model and it is
shown that the assumption of the same value of the ex-
change integral for both metals gives satisfactory agree-
ment with observed data.

1
CALCULATIONS of the electronic energy~ bands in solids have been carried out by

either the signer-Seitz cellular method or by
Slater's modification of that method for mono-
valent metals, for calcium, and for a number of
insulators. ' ' No calculations by either of these

' A preliminary report of this work was presented at the
Washington Meeting of the American Physical Society in
April, 1938. Phys. Rev. 53, 673 (1938).

*This work was started at M. I. T. and some of the
senior author's part was done while he was at the Univer-
sity of Toledo, Toledo, Ohio.

2 Na: E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);
46, 509 (1934). Cu: H. M. Kritter, Phys. Rev. 48, 664

methods have been reported for any transition
metals, although some general characteristics
have been discussed by Mott' ' ' in a series of

(1935).Li:F. Seitz, Phys. Rev. 47, 400 (1935);J. Millman,
Phys. Rev. 47, 286 (1935).Ca: M. F. Manning and H. M.
Krutter, Phys. Rev. 51, 761 (1937). C: G. E. Kimball,
J. Chem. Phys. 3, 560 (1935); F. Hund, Physik. Zeits.
36, 888 (1935). C et al. : F. Hund and B. Mrowka, Ber. d.
Sachs. Akad. d. Wiss. 87, 185, 325 (1935). I.iF: D. H.
Ewing and F. Seitz, Phys. Rev. 50, 760 (1936). NaC1:
W. Shockley, Phys. Rev. 50, 754 (1936).

3 J. C. Slater, Phys. Rev. 45, 794 {1934).
4 N. F. Mott, Proc. Phys. Soc. 47, 571 (1935).
~ N. F. Mott, Proc. Roy. Soc. A153, 699 {1936).' N, F. Mott, Proc. Roy. Soc. A156, 368 {1936).
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papers and by Jones and Mottr in a recent paper
which used a different approximation from that
used here. In view of the great interest in the
transition metals, it was believed that the de-
tailed information obtained by the cellular
method would justify the considerable amount of
labor required to compute electronic energy
bands for a transition element by Slater's
method. Tungsten was chosen for this detailed
study because of its practical importance and
because for this metal there is a large amount of
experimental material available. Necessary pre-
liminaries to metallic calculations were self-
consistent field calculations. These have been
completed and reported in this journal. ' Another
necessary preliminary was the extension of
Slater's discussion' of the electronic energy bands
for the body-centered lattice. In his original

paper, Slater used only eight atomic functions
and satisfied boundary conditions at the centers
of only eight faces of the atomic polyhedron.
The difficulty in applying his results to a transi-
tion metal is that, in the eight functions, he
included only three of the five d functions.
Since the transition metals have a partly-filled
d shell in the free atom, all of the d bands may
be partly occupied in the metal, and hence if
only three d functions are included, the band
picture may be quite inaccurate. Slater's method
has been extended to include boundary condi-
tions at all fourteen faces of the atomic poly-
hedron. In setting up the wave function for a
valence electron, the eight functions used by
Slater and in addition the other two d functions,
three more f functions, and a g function were
included. ' The details of this work are given in a
previous paper to be referred to as I. In that
paper relations were obtained between the energy
of a valence electron and its momentum for im-

portant directions of propagation. The relations
are transcendental equations in which the mo-
mentum k appears in certain tangent factors and
the energy appears implicitly in the values of

7 H. Jones and N. F. Mott, Proc. Roy. Soc. A162, 49
(1937).

M. F. Manning and J. Millman, Phys. Rev. 49, 848
(1936). M. F. Manning and L. Goldberg, Phys. Rev. 53,
662 (1938).

~ M. I. Chodorow and M. F. Manning, Phys. Rev. 52,
731 {1934).Some errors appear in Table I of this paper.
A corrected reprint may be obtained from one of the
authors (M. F. M.) at the University of Pittsburgh.

the radial wave functions and their derivatives
at the radii corresponding to half the distance
between nearest neighbors and at half the
distance between next-nearest neighbors. The
values of s~, s2, s&', s2'," etc. were found by
numerical integration as in the Hartree method
of calculating self-consistent fields. The potential
used in this calculation was a modified form of
that found by self-consistent field calculations
for the tungsten atom. For all electrons inside of
the Sp electron, the charge density used was the
same as for the free atom. The results of the self-
consistent field calculation for tungsten indicate
that in the metal there will be a slight over-
lapping of the 5p wave functions. An attempt
was made to allow for this, but it seems probable
that it would have been as satisfactory to neglect
this effect or allow for it by simply renormalizing
the atomic charge density. The self-consistent
field results show that nearly three-fourths of
the charge density of the two 6s electrons in a
tungsten atom lies outside the atomic sphere for
metallic tungsten. This was taken as indicating
that in the metal the s band would contain only
a small fraction of an electron per atom. The
self-consistent field results for the atom also
show that about a third of the charge density
of the four Sd electrons lies outside of the atomic
sphere for the metal. Since in going from the
atom to the metal a charge of over three electrons
must be redistributed, the potential for a valence
electron in metallic tungsten will be quite
different from the potential of a valence electron
in the atom and some correction must be made.
As a first approximation to the potential for a
valence electron in metallic tungsten, the poten-
tial due to the nucleus, inner electrons, and five

5d electrons was used. In finding the potential
due to the Sd electrons, the atomic charge density
normalized to the atomic sphere was used.

With this potential, integrations for the d and s
functions were carried out. The results of the
integration indicated the total width of the d

bands to be about one and a half Bohr units,

"The notation is the same as in the previous paper-
s& stands for the value of the s function of a given energy
at the half-distance between nearest neighbors; s2 is the
value of the s function of a given energy at the half-
distance between next nearest neighbors; and s&' and sq'
are the derivatives with respect to r at the corresponding
1adll.
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and that the bottom of the s band is at a con-
siderably higher energy than the bottom of the
d bands. Since the s band is very broad at this
inter-atomic distance, the number of electrons
per atom in the s band is small. Since there are
spaces in the d bands for ten electrons per atom,
these bands will be somewhat more than half-
filled in tungsten.

For the next approximation, the same core
potential was used as in the first approximation
and the charge densities for the other five valence
electrons were taken from the results of the first
approximation. Since the first approximation
shows that the two bottom d bands which can
accommodate four electrons per atom are quite
narrow, the charge distribution for two of the
electrons was assumed to be the same as for a d
function at the bottom of the d bands and the
charge densities for the other three electrons
were assumed to be those found for d functions
with energies evenly spaced in the lower half of
the d bands. With this new potential, integra-
tions" were again carried out.

As a check on the consistency of the assump-
tions about the potential, the width of the d
bands and curves of d' vs. Z for the different ap-
proximations were compared. The discrepancies

I I t I I 1 I I I I I I ( t

7.5 7.7 7.9 8.I 83 8.5 8.7
P= LOG l 000 &

FiG. 1. Z vs. log r. (B in Bohr units. )

~~ All of the integrations were carried out on the M. I. T.
differential analyzer which was placed at the authors' dis-
posal by Professor S. H. Caldwell of the Department of
Electrical Engineering. The authors wish to thank Pro-
fessor Caldwell and Mr. D. D. Terwilliger for their coopera-
tion during the use of the differential analyzer.

were so small as to indicate that little change
would be produced by further stages of approxi-
mation. For the energy range considered, the d
functions are the most sensitive to changes in
the assumed field and hence the field is probably
as near to being self-consistent as could be ob-
tained without more elaborate methods of calcu-
lation. Furthermore, in the method used here,
all exchange and correlation effects are neglected,
and they would presumably have more eRect

K',

H

K„

K„

FK'. 2. Brillouin zone for body-centered lattice.

than any departures from an exactly self-con-
sistent field.

Rough calculations were also made of the way
the positions of the bottoms of the various bands
change with interatomic distance. Since the
potential used in calculating these curves was
either that of the free atom or that proper for
the normal spacing, the curves of Fig. j. are to
be regarded as schematic. As shown in I, there
will be three bands beginning at the energy for
which d&' =0, two bands beginning at the energy
for which dg'=0, and one band beginning at the
energy for which 3s&'g&'+2s2'g~'=0. There are
other bands at higher energies, but they are not
occupied under ordinary conditions and probably
could not be accurately calculated by the method
used here.

For a more detailed discussion of the electronic
structure, it is necessary to determine the energy
as a function of the momentum. As was discussed
in I, for a general direction of propagation this
would require the solution of a fourteenth-order
secular determinant. This is too complicated for
practical computation. However, for certain par-
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It is to be noticed that, when viewed in con-
nection with the other contours in the same
plane, the zero width Bes. k curves along various
special directions, e.g.. 100, 110, etc. , are not as
surprising as when only a particular direction is
considered. The peculiar shape of the contours
and in particular, the sharp corners, are a con-
sequence of the intersection of two sets of con-
tours, one set with wave functions odd with
respect to reHection in the plane, and the other
with wave functions even. This matter is dis-
cussed further in the appendix.

Graphs similar to Fig. 5 were also drawn for
the other five bands, but they are not reproduced
here. A comparison of the contours for the
various bands show marked differences. The
lowest band is narrow and, as can be seen, the
contours are not at all like those for free electrons.
The next two higher bands are wider, but do not
have the characteristics of free electrons. The
highest three bands are still wider and the con-
tours resemble somewhat those for free electrons.
The density of energy states, m(B), was deter-

Fro. 5. Contours for band I.

mined for each of the bands, the calculation
being carried to energy levels several volts
higher than those occupied in tungsten under
normal conditions. The results for the separate
bands are shown in the lower curves of Fig. 6
and the combined result for all the bands is
shown in the upper curve,

Tungsten has six valence electrons per atom
and the highest energy level which is occupied at
the absolute zero of temperature is indicated by

l6-

l4"

l2-

)0-

8-

2-

0
' .2 '

.4 ' .6 '
~ .b '

l.'0

FIG. 6. n(B) vs. 8 curves for the six lowest bands. The
upper curve is the sum of the six lower curves. n(Z) =No.
of states per unit energy range.

the right-hand vertical line in Fig. 6. Tantalum
immediately precedes tungsten in the periodic
table and has the same crystal structure. The
calculations of n(B) for tungsten shouId be
roughly applicable to tantalum also. The left-
hand vertical line in Fig. 6 corresponds to five
valence electrons per atom.

From the results expressed in Figs. 1 and 6,
some general conclusions about the electronic
structure of metallic tungsten and tantalum can
be drawn. First, it is interesting to note the
position and character of band VI which may
be called the s band. It is seen that the number
of electrons in this band is much less than one
per atom and hence the neglect of s electrons in
computing the potential is justified. More refined
calculations might show an increase in the
number in the s band, but the effect could hardly
be appreciable. The position and nature of this
band are of course in agreement with the very
great "overlap" of the 6s atomic wave functions.

The lowest three bands and particularly band
I probably contribute most of the binding energy
which is known to be very large for these ele-
ments. Calculations of the binding energy" by
the method used here are not practical, but
rough calculations indicate that the zero of
energy is about 0.5 or 0.6 of a Bohr unit below

"N. F. Mott and H. Jones, Properties of Metals and
Alloys (Oxford Press, 1934), p. 146. This book will be
referred to hereafter as M. Br J. F. D. Rossini and F. R.
Bichowsky, Thermochemistry of Chemico( Substances (Rein-
hold, New York, 1936), p. 98.
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the Sd and 6s eigenvalues. This is not incon-
sistent with the observed binding energies (about
225 kilocalories per mole or 9 ev per atom for
tungsten).

The process of formation of the solid from the
separate atoms may be visualized as follows:
At large distances between atoms the configura-
tion is d4s' and the eigenvalues are about the
same for the two types of electron. As the atoms
are brought closer together, the s functions begin
to overlap and the single level is broadened into
a band of levels, while the d levels still maintain
their atomic character. As the atoms are brought
still closer together, the d levels become broadened
into bands, and the s band becomes broadened so
much that the upper levels in this band will have
higher energies than the narrower d band, and
hence there will be transitions from t'he s to the d

band. This process will continue until the mini-

mum of the s curve in Fig. 1 is reached. If the
atoms are brought still further together the
energy changes become more complicated. The
binding energy of the electrons in the s band
will now decrease. Since the d band is only about
half filled, the binding energy of the electrons in
this band will continue to increase. " For the
first row of transition elements, evidence of
various kinds indicates that these two effects
balance each other at about the minimum of the
s curve. For tungsten and tantalum the gain in

binding energy due to the d band more than
balances the decrease in binding in the s band
and the interatomic distance will therefore be
smaller than that corresponding to the minimum
of the s curve. At smaller distances between
atoms, the d band begins to broaden upward
more than downward, corresponding to a re-

pulsive force between atoms. At the actual
interatomic distance there has been a consider-
able redistribution of charge —for tungsten, the
self-consistent field calculations for the atom
indicate nearly three electrons have been dis-

placed from a position outside of the atomic
sphere to a position inside of the atomic sphere.
This large redistribution of charge and the change

"For the noble metals and the elements immediately
preceding them in the periodic table, the d band is full or
nearly full, and this statement will no longer be true. For
these elements the equilibrium distance will thus be deter-
mined to a considerable extent by the behavior of the
s band.

in shape of the d band are responsible for the
repulsive force between the atoms and also for
the comparatively low compressibility of tung-
sten and tantalum.

ELECTRONIC SPECIFIC HEAT

TABLE I. Electronic specific heat for tungsten and tantalu'jn
as deternuned by dQ"erent methods.

Tungsten
Tantalum

EXPERI- EXPERI"
MENTAL MENTAL

THEORETICAL (LOW TEMP.) (HIGH TEMP.)

4.8X10 4T 5.1X10 4T
6 2X10 T 2'? X10 'T 7X10 'T

Sommerfeld, Houston and Eckart, Zeits. f. Physik 47',
1 (1928).

'5 One of the authors (M. F. M.) has discussed the mate-
rial of this section with Professor N. F. Mott, Dr. Frederick
Seitz and Dr. Lloyd A. Young. He wishes to thank them
for their suggestions."E.C. Stoner, Proc. Roy. Soc. 154, 656 (1936).

As was first shown by Sommerfeld, '4 the elec-
trons in a metal contribute to the specific heat a.
term which is proportional to the absolute tem-
perature, and which at ordinary temperatures is
negligible compared with the contribution of the
lattice vibrations. At low temperatures the
lattice contributions are proportional to T', and
hence at very low temperatures the electronic
contribution will be appreciable and may even
predominate. At temperatures above the Debye
characteristic temperature the contribution from
the lattice vibrations approaches the constant
value of 3R. However, Born and Brody have
shown that if lattice vibrations have any
anharmonicity, there will be, at high tempera-
tures, a contribution to the specific heat which
is proportional to the absolute temperature and
may be positive or negative, depending upon the
nature of the anharmonic terms in the potential
energy of the lattice. It is difficult to estimate the
sign of the anharmonic terms, as they will be
positive for some directions of motion and
negative for others. ' It seems, however, to be
reasonable to assume that at temperatures well
below the melting point the anharmonic terms
in the potential will make a negligible contribu-
tion to the specific heat.

The electronic contribution to the specific heat
can be determined from a formula given by
Stoner. "When higher powers of the temperature
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are neglected, this formula is:

(C„),=(5.670/27. 08) X10 4N(ZO)RT, (1)

where (C,). is the electronic contribution to the
speci6c heat of a gram-atom, R is the universal
gas constant, T is the absolute temperature, and
m(EO) is the number of states of both spins per
Rydberg unit of energy at the edge of the Fermi
distribution. The value of n(Zo) for tungsten
found from Fig. 6 is 1'1.6 energy states per
Rydberg unit of energy. For tantalum, the value
is 14.7 energy states per Rydberg unit of energy.

Table I gives all of the pertinent data. The
high temperature data are from measurements by
Magnus and Holzmann. "The data for tantalum
can be fitted quite well by an expression of the
form 3R+AT, where A has the value given.
For tungsten the value given for A is that valid
for temperatures above about 1000'K. The low
temperature data for tantalum are from measure-
ments by Daunt and Mendelssohn" upon the
effect of a magnetic 6eld upon the transition
temperature of a super-conductor. As can be
seen from Table I, the theoretical calculations
for tungsten are in good agreement with the
values for the excess specific heat at high tem-
peratures. For tantalum, the theoretical calcula-
tions check the high temperature value which,
however, is not at all in agreement with the low
temperature value.

When the possibility of error in the measure-
ments or in the reduction of the data is neg-
lected, there are two possibilities of accounting
for the discrepancy between the high and low
temperature data for tantalum. One possibility
is that the formula derived by Stoner is not
applicable at low temperatures because it does
not take exchange or correlation effects into
account. A discussion of this point by Bardeen"
and by Wigner" indicates that the effect of
exchange is to spread out the levels near the top
of the Fermi distribution and thus make the
specific heat lower than is given by the Stoner
formula, and thus increase the discrepancy.
The correlation between electrons of the same

"A. Magnus and H. Holzmann, Ann. d. Physik 3, 602
(1929)."J.G. Daunt and K. Mendelssohn, Proc. Roy. Soc.
A160, 127 (1937).» J. A. Bardeen, Phys. Rev. 50, 1098 (1936)."E. signer, Trans. Faraday Soc. 34, 678 (1938).

spin tends to increase the speci6c heat, but no
calculations have been made. The calculations of
Wigner and Bardeen are based on a free electron
model which is probably not applicable to a
transition metal where the electrons retain much
of their atomic character. Since tungsten has not
been observed to be superconducting and since
it has a high characteristic temperature, it
should be possible to determine the electronic
specific heat by direct measurements at liquid
helium temperatures. The result of such a
determination would help to clarify the points
discussed here.

Another possibility for reconciling the high
and low temperature data for tantalum is to
assume that the difference is due to negative
contributions to the specific heat from the
anharmonic terms in the potential. The accept-
ance of this explanation would imply that the
method used in this paper to calculate the energy
levels in a metal is very inaccurate and that the
numerical agreement with the high temperature
data for both metals is highly fortuitous. It also
implies a larger anharmonicity than seems
reasonable.

It is difficult to obtain information about the
anharmonic contributions to the specific heat
because direct measurements of specific heats at
liquid helium temperatures have been carried
out for only a few metals. For nickel there are
data available for both high and low temperature
specific heats and a detailed analysis of these
data by Stoner" seems to indicate that the
anharrnonic contribution to the speci6c heat is
very small. Another line of evidence indicating
that for nickel there is a large electronic con-
tribution is the fact that for Ni-Cu alloys the
excess specific heat decreases very rapidly with
the addition of Cu.

ELECTRICAL AND RELATED PROPERTIES

The detailed discussion of the resistance of a
transition metal offers unsurmounted difficulties.
Some general features of the problem have been
discussed by Mott. ' His discussion was based
upon a model of two overlapping bands —an s
band with approximately free electron charac-
teristics and a d band with a high density of

2 E. C. Stoner, Phil. Mag. 22, 81 (1936).
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lO-

Fio. 7. n(E) curves for bands II+III, and for bands
IV+V+VI.

states and a high effective mass. His discussion
can be carried over to our case, except that
where he speaks of a d band we shall consider
bands II and III which have a high density of
vacant states and a low value for the effective
number" of free electrons per atom. Where
Mott refers to an s band we shall consider the
highest three bands which have roughly free-
electron characteristics and account for most of
the conductivity. On the other hand, the vacant
states in the lower bands contribute greatly to
the scattering probability and hence make the
mean free path much shorter. This is the essence
of Mott's explanation of the low conductivity of
the transition metals. In Fig. 7 are plotted the
total number of states per unit energy range for
bands II and III and the total number of states
per unit energy range in the three higher bands.
Since the lowest band is filled, it contributes to
neither the conductivity nor the scattering and
therefore is omitted from the graph. If Mott's
explanation of the effect of the density of
scattering states upon the resistance is correct,
the different resistivities of tungsten and tantalum
should be due in part to the greater density of
scattering states for tantalum.

If the relation of the electrical conductivities
of two different elements to their electronic
structure is to be studied, it is necessary to make
corrections for the different amplitudes of thermal

"The effective number of free electrons per unit volume
is given by the formula:

m P BB ' de,
4m-'jPJ Bk,

~
grad. I,Z )

'

See M. A J., p. 97.

vibration at a given temperature, for the
different atomic volumes, and for the different
scattering powers of the ions. Mott and Jones"
have shown that the dependence upon the
amplitude can be eliminated by comparing values
of 0/MO' where &r is the conductivity for a unit
cube, M is the mass of the vibrating ion, and 0" is
the Debye characteristic temperature. As Bridg-
man'4 and Hume-Rothery" have pointed out,
the differing atomic volumes can be taken into
account by considering not the conductivity of a
unit volume, but the conductivity of a cube
containing a constant'number of atoms. This is
equivalent to considering the quotient of 0/r
where r is the atomic radius. For tantalum the
value of o/MrO" is 0.47 and for tungsten the
value is 0.64. The ratio of these two values is
1.36. Neglecting the differing scattering powers
of the two ions, this ratio should be very nearly
equal to the ratio of the number of vacant states
for tantalum to the number of vacant states for
tungsten. The actual value as. obtained from
Fig. 7 is 1.27. The agreement between these
values is an indication of the reasonableness of
the explanation.

Variation of resistance of high temperatures

For temperatures above the characteristic
temperature the change in resistance is caused
chiefly by the increase in the amplitude of
vibration of the scattering ions. There is also a
change caused by the thermal expansion of the
lattice. In addition, there may be an effect due to
the change with temperature of the effective
number of scattering states. A theory for the
latter effect has been given by Mott. "The re-
sistance at a high temperature can be written as

R/T=const. (1+BT)(1+&T'),
where 8 is the resistance, T the absolute tem-
perature, 8 a constant determined from the
thermal and mechanical properties, and A re-
lated to the shape of the n(Z) curve near the top
of the filled states. If one assumes with Mott
that the time of relaxation 7- is proportional to

"M. A J., p. 245.
24 P. W. Bridgman, Proc. Am. Acad. 6Q, 305 (1924).
2' W. Burne-Rothery, The Metallic State (Oxford Press,

1931), p. 5.
2' M. 8r J., p. 270; N. F. Mott, Proc. Roy. Soc. 153, 699

(1936).
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1/n(E), A is proportional to —L3(n')'/n —n"],
where the derivatives are taken at the top of
the filled states. If the n(E) curve for the scatter-
ing bands is concave toward the energy axis in
the neighborhood of the highest occupied levels,
then n" is negative and hence A is negative.
For this case it is to be expected that R/T would
tend to decrease with increasing temperature.
If the m(E) curve is convex, the sign of A will

depend on the comparative magnitude of the
two terms comprising it. Reference to Fig. 7
indicates immediately that A should be negative
for tantalum. Using analytic approximations to
the n(E) curve near the top of the filled states
for both tantalum and tungsten, it was found
that A was positive for tungsten and appreciably
smaller in magnitude than for tantalum. Ac-
tually, the observed resistance" vs. temperature
curve for tantalum i.s definitely concave toward
the temperature axis and the curve for tungsten
is slightly convex in agreement with the above
considerations.

Thermoelectric power

Interpretations of the thermoelectric power
have been given by Mott, ' and by Jones and
Mott. ' "They point out that when the resist-
ance is due to a high density of levels in a
scattering band, the thermoelectric power will be
negative if the density of scattering states
decreases rapidly with Z and positive if the
density of scattering states increases rapidly
with B. From this argument and Fig. 6, we
conclude that tantalum should have a negative
thermoelectric power. The observed values" are

5.0 microvolts/'C and —6.7 microvolts/'C at.
100'C, As Mott' points out, the argument
involving the density of states in the scattering
bands is incomplete as it leaves out any discussion
of the mechanism which produces the entire
effect in a metal like copper or silver. Since these
metals show a positive thermoelectric power of
about 2 microvolts/'C, we might expect that
when the density of scattering states changes
only slightly with energy, the thermoelectric
power would have about'this value. Reference to

".E. Gruneisen, Handbuch der I'kysik 10, 16 ('1928).
SM RJ p 310

29 G. Bore1ius, Handbuch, der Metall-Physik, Vol. I, page
399,

Fig, 6 shows that for tungsten the slope of the
n(E) curve in the neighborhood of the highest
occupied levels is small, so that we should expect
a small, positive thermoelectric power. The
observed values are +0.4 microvolt/'C at O'C
and +3.6 microvolts/'C at 100'C.

PARAMAGNETIC SUSCEPTIBILITY

When exchange effects are neglected, the
formula for the molar paramagnetic susceptibility
is30

xg ——p'm(Ep) E, (3)

where p is the Bohr magneton, n(EO) is the
number of energy states per atom per unit
energy range, and N is Avogadro's number.
When one takes the values of n(E) as 11.6 for
tungsten, and 14.7 for tantalum, the computed
susceptibilities are 28 for tungsten and 35 for
tantalum. The observed values are 45 for
tungsten and 145 for tantalum. " The actual
paramagnetic contribution from the electrons is
greater than these amounts due to the diamag-
netic contribution of the cores and of the valence
electrons. The diamagnetic susceptibilities of the
cores have been estimated by Stoner" and values
of about 35 units found. We can thus say that the
paramagnetic susceptibilities of the valence
electrons must be at least 80 for tungsten and 180
for tantalum. These values are very much greater
than those obtained from the simple formula. The
difference has usually been believed due to
exchange effects. There does not seem to have
been any detailed analysis of the effect of
exchange.

An approximate discussion can be carried out
by the method suggested by Slater" for ferro-
magnetic substances. For each atom there are
e/2 electrons per unit energy range for each
direction of spin. Suppose that v/2 of them
reverse their direction of spin, yielding a magnetic

. moment of vp, per atom. If this takes place in
the presence of a magnetic field II; the changes in
energy accompanying the process are: Rvp/2,

*The authors wish to thank Dr. William Shockley for
discussion about this section.

'0 M. 8r J., p. 185. The n used in this article is twice as
large as that used in this reference."E.C. Stoner, Magnetism and Matter (Methuen, 1934),
pp. 508, 271. .

3' J. C, 51@ter, Phys, Rev. 49, 537 (1936).
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due to reorientation, and v'/4J, due to the fact
that there are more exchange integrals between
electrons of parallel spin than there were in the
unmagnetized state. When the electrons reverse
their spins, they must be lifted to higher energy
levels and this requires an energy v'/2e. Hence
we have

01
~'J/4+II pe/2 = v'/2n (4)

There are a number of appmximations in-

volved in the method of calculation used and it is

dif6cult to estimate the accuracy of the results.
However, the authors believe that the agreement
with experimental results, although usually only
qualitative, indicates that the computations give
a representative picture of the electronic struc-
ture of metallic tungsten and tantalum.

and the expression for the molar susceptibility
becomes

p'n(Zp) N
X&

1 —Jn(BO)/2

It is noted that the correction factor is in the
proper direction and has the correct dependence
upon e to explain the fact that the discrepancy
between the observed value and that calculated
fmm the simple equation is greater for tantalum
than for tungsten. If there were some satisfactory
method of determining J, it would be possible to
compute xg. Since there does not seem to be any
meth'od of computing J, we shall proceed diGer-

ently and use the measured values of x~ to solve
for J. For tungsten this gives

1 —5.8J=28/80; J=.11 Rydberg units. (7)

For tantalum

1 —'I.3J=35/180; J=.11 Rydherg units. (8)

The fact that the values of J for the two
elements come out so nearly equal is evidence for
the part that exchange forces play in determining
the paramagnetic susceptibility. The value of J is
rather large, but there does not seem to be any
independent method of checking it.

Perhaps the most serious approximation is the
complete neglect of exchange and correlation
e6'ects. These effects are important in determining
the binding energy and for this reason no
attempt to calculate it has been made. Exchange
eAects might be expected to cause a contraction
of the wave functions and hence a narrowing of
the bands. For instance, Hartree" has found that
exchange effects produce an appreciable change
in the outer portions of the 3d wave functions for
copper. There are, however, reasons for believing
that this e6'ect will be less pronounced in
tungsten. For all of the electrons inside of the 4f
electrons in tungsten the electrostatic contri-
bution to the potential is so large that exchange
effects will pmduce only a small effect. For the
4f, 5s, 5p electrons the solutions of Fock's
equations will undoubtedly give an appreciable
contraction. As far as the Sd electrons are
concerned, this contraction acts to decrease the
effective electrostatic potential. This decrease in

the electrostatic potential has the opposite e6ect
upon the Sd wave functions from the exchange
effects, which furthermore are not as important
in a partly-61led shell as in a filled shell. Another
reason for discounting the eAect of exchange on

the Sd electrons in tungsten is the fact that
throughout the self-consistent 6eid calculations
for the atom and the metal, these wave functions
were not unduly sensitive to changes in the
assumed field. For copper, Hartree found that the
3d wave functions were very sensitive to the
assumed 6eld.

Another point where errors may have entered
was in the use of the differential analyzer. A

problem as complicated as this could be handled
even on the di6'erential analyzer only by a

compromise between the accuracy desired and the
time required. None of the calculations for either
the atom or the metal was checked by numerical

integration, but certain cmss-checks indicated
that the errors introduced in the computation are
not serious.

In general, it might be remarked that the
entire computational pmcess showed a con-

siderable tendency toward cancellation of errors.
For instance, the principal effect of a change in

the assumed potential is to shift the entire band

@D. R. and %. Hartree, Proc. Roy. Soc. 157, 490
(&936).
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structure in energy without changing its shape.
Slight changes in the curves of s, s', d, d', as a
function of energy produced no appreciable
changes in the E vs. k curves. In addition, it
turned out tha, t the final n(Z) curves were quite
insensitive to changes in the contours in k space.
(See Appendix A.)

The Slater method of computing metallic
wave functions is, of course, only approximate.
In an attempt to estimate the accuracy of the
approximation, Shockley'4 has tested the cellular
method by applying it to the case of a constant
potential where the exact answer is available for
comparison. He finds that when there is a single
occupied band and a number of excited bands at
higher energies, the lowest band will be de-
termined with satisfactory accuracy, but the
excited bands will be much less accurately
determined. The argument is not as definite when
there are a number of occupied bands, all having
about the same energy, but it seems likely that
for this case a11 of the bands will be determined
with some intermediate accuracy. There is also
the point that for metallic tungsten, the wave
functions retain much of their atomic character,
and therefore it might be expected that the
results are better than Shockley's argument
would indicate.

Jones and Mott' have carried out a discussion
of the transition metals, using the approximation
of tight binding. This approximation is more
accurate than the cellular method when the
overlap of the d functions is small and less
accurate when the overlap is large. Using this
criterion and the results of self-consistent field
calculations, it seems that their method might be
more accurate for the first row of transition
elements, and the cellular method for the second
and third rows.

The calculations of which this paper is a
report were carried out under the general
direction of Professor J. C. Slater. The authors
wish to thank him for his helpful comments and
suggestions.

APPENDIX A

We shall outline briefly here the method of obtaining
approximate energy contours and n(E) curves. To obtain
the contours, we have available the Z vs. k curves for the

'4 W. Shockley, Phys. Rev. 52, 866 (1937).

various special directions (6, h, Z, D, G, Ii) and also the
exact contours in the 100 and 110 planes for those states
whose wave functions are odd with respect to reflection
in those planes. From this information, all of which is
obtained from the solution of equations in I, we must
determine the contours throughout the Brillouin zone for
each of the six bands. Mention must be made here that in

classifying the energy levels in bands, all of one 8 vs. k

curve, (obtained from one equation) does not necessarily
belong to one band. The same applies to the exact con-
tours in the special planes which we have mentioned above.
In each band the energy is a continuous function of the
reduced wave vector k and for two bands the energy level
of one (for each k) is always higher than, or equal to, the
corresponding level of the other. Thus, although the
bands may touch at some values of k (degeneracy), they
can never cross. For two B vs. k curves, on the other hand,
this is not true. An B vs. k curve for a particular direction
is determined by the property that all the energy states
have wave functions of the same symmetry. '5 Thus there
is nothing to prevent two Z vs. k curves from crossing and
if two curves for a given direction do cross, the two lower
halves are taken as belonging to one band and the two
upper halves to the other band. This procedure often gives
the energy contours in a band queer shapes, including
corners, where we have shifted from the lower (upper) half
of one 8 vs. k curve to the lower (upper) half of another
curve which intersects the first. In such a shift, the wave
function in the band changes discontinuously with k,
but the energy is continuous.

Our general procedure in finding the contours of a band
was first to find the contours for the developed surface
shown in Fig. 5.These contours were obtained by interpola-
tion between the various lines on the surface, for which
the energy as a function of k is known. The contours inside
the pyramid bounded by the surface of Fig. 5 were ob-
tained by interpolation from the contours on the surface.
We have previously mentioned the possibility of the wave
function in a band changing discontinuously at a point of
degeneracy, with a corresponding peculiarity in the shape
of the contour. This would seem to militate against results
obtained by interpolation, if many of these points of
contact occur distributed throughout the Brillouin zone.
Actually, however, Herring" in a study of the types of
contacts possible, has shown that two bands can touch
only along symmetry axes and planes. ' In terms of our
basic pyramid, this means that corners, or any other
irregularities due to band contacts, will be confined to
the surface of the pyramid only, the surface being com-
posed entirely of symmetry planes. If by some method we
can get the contours on the surface, including any "con-
tact" irregularities, fairly accurately, we can interpolate
the interior contours with confidence since none of these
"contact" irregularities can occur in the interior. In ob-
taining these surface contours, another property of the
"contacts" found by Herring has been useful. He showed
that in any symmetry axis or plane only 8 vs. k curves of

» In the language of group theory, all the states of one 8 vs. k curve
for a particular direction belong to the same irreducible representation
of the'. '. group which leaves a k vector in that direction invariant.

~& e" Herring, Phys. Rev. 52, 365 (1937).
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different s'ymmetries, belonging to different irreducible
representations, can cross. For the symmetry planes con-
stituting the surface of the pyramid, there are two sym-
metry types —contours with wave functions odd under
reflection and contours with wave functions even. Applied
to these contours, Herring's3~ result means that the only
band contacts which can occur on the surface are due to
the intersection of odd and even contours. (By even or odd
contours we mean, of course, contours with wave functions
having these symmetries. ) Intersections between two sets
of even contours or two sets of odd contours are for-
bidden. These statements about the nature of band con-
tacts in symmetry planes, apply only to such -portions of
the symmetry planes as are not symmetry axes. For the
latter, there are more than two symmetry types and we

can no longer speak of odd and even contours. Two sets
of contours which are odd (even) in a plane, may belong
to difFerent irreducible representations of an axis and may
intersect along the axis. This actually does occur in our
case, both b, i and A2' are even in the 110 plane, but these
intersections ofFer no difficulty, as we know the energy
exactly for all the axes. The fact that for all other portions
of the symmetry planes, only odd and even contours can
intersect, gives us a method of determining the contours
in these regions quite accurately, even to the corners
occurring at the intersections.

We can obtain all. of the odd contours in the various
planes from the solutions of equations given in I. For
the even contours, similar equations could be found, but
these would be so unwieldy that no attempt was made to
use them. Instead, the even contours were interpolated
from the known portions of these contours, that is, the
E vs. k curves along the various axes. Since two sets of even
contours cannot intersect, there is no problem of "contact"
irregularities to vitiate interpolation methods. The lowest
energy states along each axis belong to one set of contours,
the next higher states to another set, etc. Having thus
obtained both even and odd contours, we can determine
the intersections of the two and apportion the various
sections among the six bands according to their energy.
With the contours on the surface of the basic pyramid
known, the interior contours for each band can be found

by interpolation.
From these contours, we determine the number of states

per unit of energy, n(B). In practice, it is easier to find

» One of the authors (M. I. C,) wishes to thank Dr. Herring for
enlightening discussions about the results in his paper.

first the number of states with energy less than a particular
energy Z. n(E) is then determined by numerical difFerenti-
ation. For any band the number of states with energy less
than B is proportional to the volume of that portion of
the Brillouin zone contained within the surface of energy Z.
This surface may consist of two or more sheets if the energy
does not vary monotonically within the band. To obtain
approximately the volume contained withiri an energy
surface, we proceed as follows: The basic pyramid of the
Brillouin zone is cut by ten evenly-spaced planes parallel
to the 100 plane. In each of these planes the area enclosed
by the cross section of the energy surface was measured
by a planimeter. From these areas, plotted as a function
of the height above the 100 plane, another integration
gives the volume inside the energy surface.

In obtaining the contours, we have gone through the
somewhat elaborate process of obtaining the odd and even
contours in the symmetry planes separately, and then
putting together pieces of each to obtain the contours of
the individual bands. One could use the simpler, although
theoretically less justifiable method of interpolating the
contours of each band directly from the known energy
states along the axis, that is, connect the lowest states
along each axis by one set of contours for the lowest band,
the next higher states by another set of contours for the
next higher band, etc. As previously pointed out, such
procedure tends to smooth out any irregularities in the
bands. One cannot say a priori how important these
irregularities will be and how seriously smoothing them
out will afFect the final results. Therefore, the more elabo-
rate method which locates these contacts would seem to be
preferable. We have also used the simpler method of
interpolating each band directly. The resultant contours,
of course, had no corners, but did resemble quite closely
the contours found by the more accurate method. The
change in the n(B) curves would be even smaller than in
the contours. In general, the entire process of determining
the n(E) curves turned out to be surprisingly insensitive
to the assumed interpolations between known directions.

Note added in proof: —The value of 27)&10 4T for the
low temperature electronic specific heat of Ta was taken
from a paper by Mott and Jones (reference 7). A closer
examination of the data given by Daunt and Mendelssohn
makes us believe that this value is higher than the data
warrant and that for Ta the experimental uncertainties are
considerably larger than' for other elements measured by
Daunt and Mendelssohn.


