SINGLE CRYSTAL DIFFRACTION

oxyquinoline precipitate was converted into
molybdic oxide and placed on the focal circle to
cover a wave-length region from 0.74A to 0.62A.
This chemical procedure is desirable because
deuteron bombardment of molybdenum yields a
number of masurium activities. Among theseis a
two-day body which strongly emits molybdenum
radiation probably as a result of electron capture.
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The method of analysis of double spectrometer rocking
curves developed by L. P. Smith is reconsidered. Although
from Smith's very general viewpoint, six experimental
curves are needed for a complete analysis, it is shown that
for rocking curves from calcite, taken with the usual type
of double spectrometer, it should be possible to deduce
the shape of the single crystal diffraction pattern from two
rocking curves, the (1,4+1) and (2,42). A method of
modifying the equations of the instrument to allow for a
simple type of mosaic structure is indicated.

The equations have been applied to rocking curves of
Mo Koy from calcite, supplied by L. G. Parratt. The
method requires resolution of the observed curves into
Fourier components, and a numerical method of doing

INTRODUCTION

HE object of this work is to determine, from
observed two-crystal spectrometer rocking
curves, the shape of the single crystal x-ray
diffraction pattern applicable to a certain pair of
calcite crystals. This function, g(6), represents
the fraction of the incident intensity of a beam of
parallel, monochromatic x-rays which is reflected
by the crystal when incident at a glancing angle
differing by 6 from the corrected Bragg angle.
Knowledge of g(6) is desirable for two reasons.
First, a comparison may be made with the
Darwin-Ewald-Prins! theory. Such a comparison
should shed valuable light on the nature of the
* Now at Rutgers University.
1C. G. Darwin, Phil. Mag. 27, 325 and 675 (1914);
P. P. Ewald, Ann. d. Physik 54, 519 (1917), Zeits. f.

Physik 2, 232 (1920), Physik. Zeits. 26, 29 (1925); J. A.
Prins, Zeits. f. Physik 63, 477 (1930).

this is described. The reliability of the components ob-
tained can be tested by predicting the (1,—1) curve with
them and comparing with experiment. In this way it is
found that the curves are consistent as regards Fourier
components of long period and large amplitude, but in-
consistent in the short period, small amplitude components.
A single crystal pattern is deduced, based mainly on the
observed (1,—1) curve, with asymmetry as indicated by
the (1,41) and (2,+2) curves. It indicates that the crystals
used do not have the flat-topped Darwin-Ewald-Prins
diffraction pattern. Possible causes of the short period
discrepancy have been investigated, but an adequate
explanation has not been found.

imperfection of an almost-perfect crystal. Second,
2(6) may be applied as a correction to measured
wave-length distributions. Because g(f) has a
finite width, an observed emission line, absorp-
tion edge, etc., is always distorted by the
crystals. Data such as those of Parratt? show that
the distortion is not a simple process, and
knowledge of the entire shape of the diffraction
pattern is therefore needed to make the cor-
rection. Although for many purposes crystals
may be found, such as etched quartz, which
possess adequate® resolving power in the second
or even the first order, occasions arise when,
because of intensity difficulties, imperfect crys-
tals must be used. An example is the use of the
two-crystal spectrometer as an approximate

2 L. G. Parratt, Rev. Sci. Inst. 6, 387 (1935).
3 L. G. Parratt, Phys. Rev. 46, 749 (1934).
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monochromator. Furthermore, for long wave-
length work, relatively imperfect crystals of large
grating space must be used.

Previous experimental study of the problem by
Allison,* Parratt,® Renninger,® and others has
been indirect. Observed values for the parallel
position rocking curve width, percent reflection,
and coefficient of reflection were compared with
predictions of the Prins theory, for wvarious
crystals and wave-lengths. For a certain pair of
calcites, Parratt and Miller” found fairly good
agreement at long wave-lengths, but at A=0.71A
the percent reflection was much too small, and
the (1, —1) width too great. An advance was
made when L. P. Smith® pointed out the power
of the Fourier transform method for the problems
of the two-crystal spectrometer, and much of the
work in this paper is based upon his analysis.
Smith showed that the true wave-length distri-
bution of an x-ray line, edge, etc., can be found
from proper combination of six observed curves.
His quite general treatment does not require
specular reflection of each ray from the crystal
face. As a result, the definition of g(6) given above
has no meaning; nevertheless functions closely
related to the diffraction patterns of the two
crystals, assumed different, could be found. No
application was made to observed curves.

In this paper, simplifying assumptions, appli-
cable to actual calcite specimens, are made in
Smith’s analysis, and the effects of a simple type
of mosaic structure and of vertical divergence are
included. It turns out that g(6) can be found
from two observed curves, the (2, +2) curve
being to a sufficient approximation the true line
shape. Mosaic structure is introduced as follows:
The crystal face is assumed to be covered by
blocks which are large enough (say, 10~ cm on an
edge) so that no radiation completely traverses a
block, and diffraction effects due to the finite
number of planes in a block can be ignored. The
function g(#) is considered applicable to each
block. A parallel incident beam is then reflected
from the crystal face as a divergent beam,
although specular reflection is assumed for each
block. The amount of divergence depends on the

4S. K. Allison, Phys. Rev. 41, 1 (1932).

5 L. G. Parratt, Phys. Rev. 41, 561 (1932).

6 M. Renninger, Zeits. f. Krist. 89, 344 (1934).

7L. G. Parratt and F. Miller, Phys. Rev. 49, 280 (1936).
8 L. P. Smith, Phys. Rev. 46, 343 (1934).
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probability distribution function for orientation
of the blocks; by letting the distribution function
become infinitely sharp we pass to the case of a
perfect crystal.

MATHEMATICAL THEORY

Following Smith, we will denote by upper case
symbols the Fourier transforms of functions

denoted by corresponding lower case symbols.
Thus

if F(t) = const. X f f)eiteds, )

then f(x)=const.><wa(t)e”i“dt. (2)

The broad restrictions on f(x) required for this
inversion to be possible are fulfilled for the
functions under consideration. We will also have
use for a transform of the type

%(15)=const.><jv flx)ei=*dx, 3)

which may be called a Fresnel transform, denoted
by corresponding script symbols.

For each of the three observed rocking curves
an integral equation can be set up and the Fourier
transform written down. The angles involved are
illustrated for a parallel position in Fig. 1; the
derivation of Egs. (4) to (7) follows the general
scheme of Chapter IX of X-Rays wn Theory and
Experiment, by Compton and Allison.® It is
assumed that both crystals are rotated by equal
amounts in recording the curves. By this method

\/ 1
'?—ak“caysm_ A 4 g(

F1c. 1. Crystal arrangement in a parallel position.

? A. H. Compton and S. K. Allison, X-Rays in Theory
and Experiment (D. Van Nostrand Co., 1935). References
are there given to contributions of Schwarzschild, Spencer,
Laue, and others to the theory of the instrument.
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of ““double rotation’1:1* the effect of inhomo-
geneity in the focal spot or the crystal surfaces is
almost completely eliminated. It must be re-
membered that if each crystal is rotated by an
amount B about its own axis, either the x-ray
tube must be rotated by 28 or crystal B must
be rotated about crystal 4, in order for the
effective beam from the center of the focal spot
to strike the same regions of the crystals. The
two cases are identical mathematically, and the
former is assumed in drawing Fig. 1. Vertical
divergences, and vertical deviations of the mosaic
blocks, are not shown in Fig. 1, and it is due to
these that terms involving ¢ and ¢ are introduced
into the arguments of the g functions by con-
siderations similar to those accompanying Fig.
IX-11 of reference 9. The terms in £, which is a
wave-length variable, recognize the fact that,
according to the Bragg law, change in wave-
length of an elementary ray can compensate for a
change in the glancing angle introduced, say, by
horizontal divergence. The nomenclature and
resulting equations may easily be extended to
positions (71, &=ns), where #:%7..

For an (n, —n) curve, we obtain from Fig. 1
the equation

pn(8) = const. X f f f } f f f m(@)s(®)

X3 (E)f(o)f (o )f($a)f(¥5)
Xega(B+atoa—anps?—an.d® —anf)
Xgs(—B+a+204+08r

—2au4? — 0Bt —and? —anf)

Xdadodidosdopdyadyp. (4)

B =deviation of crystal B from the central posi-
tion in which the glancing angle of the
central ray is 6.

a=horizontal divergence of a ray from the
central ray.

¢ =verticaldivergenceofaray from thecentralray.

o4, og=horizontal deviations of mosaic blocks
from the cleavage plane.

Y4, ¥p=vertical deviations of mosaic blocks from
the cleavage plane.

@n=3No(8600/0No) =12 tan .

10§, W, M. DuMond and A. Hoyt, Phys. Rev. 36, 1702

(1930).
1 S, K. Allison, Phys. Rev. 44, 63 (1933).
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£=2(N—Xo)/No.

pl(ﬁ)» 71(6)’ and 7’2(6) are the (11 —_1)v (17 +1>1
and (2, +2) rocking curves, for double
rotation.

m(e) and s(¢) are slit functions, determined by
the geometry of the slits and the focal spot
intensity distribution.

f(a4), etc., are the mosaic distribution functions
postulated in paragraph 3, and assumed
similar for the two crystals.

7(#) is the true emission line shape.

g4(0) and gp(d) are the crystal patterns of the
two crystals.

The integrations are extended to infinite limits

because all of the functions involved become zero

sufficiently rapidly.

We must now assume m(a) to be ‘‘very wide”
and hence constant over the effective range of a.
This is justified since the rocking curves are only
a few seconds wide, whereas the beam defined by
the slits and focal spot is many minutes wide.?

Upon multiplication of Eq. (4) by e?*#dB and
integration, the integral splits into 8 single
integrals as follows:

f wpn(ﬁ) exp (248)dB = const.

x[ :s<¢>d¢ f_ :j(sws [ :fm)exp (itox)doa
X fwf(aB) exp (itop)dop

xf :f(\h) exp (— anitgs?ifs

X f_ () exp (—asitgs?)din

Xff ga(Bta+toa—anps®—a.dp®—ank)

Xexp [iH(B-Fatos—aupa®—au$? —and)]
X gp(—B+a+204+0p—2a4°
— B — 0 —ant) exp [it(B—a—204—o0p
420042 any 52+ 0nd? +and? +a,£) JdadB. (5)
or :

P,(2t) =const. X F2())F*2(a.t)Ga()Gp*(t). (6)
_;Z—'Ff;is—a;sumption is also made by Smith, and is surely

valid for an (n, —n) curve. For an (n, +n) curve its
validity is more certain in double rotation.
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The asterisk indicates a complex conjugate. The
derivation of Eq. (6) uses the fact that

‘fjﬂn@+w+avxx—y+wdwy

Ao fon]

For an (n, +n) curve, (antiparallel position),
the equation analogous to Eq. (4) is

mm=fffifffmwmw

Xj(E)f(04)f(o8)f(a)f (¥5)
Xga(B+atoa—anpa®—a.d?—ank)
Xgp(B—a—204—0p—2a042—ay5?
—and?—anf)dadddidosdopdadys.  (7)
This yields
R (26) = const. XS(2a.£) T (2a.t) F()
X (@nt)F(3ant)Ga(t)G(2). (8)

The parameter ¢ is to be interpreted as the
analogue of # when a’ periodic function f(x) is
written as a Fourier series ZA, cos (nx—§).
Thus we speak of the “‘ith”’ component of a
curve. Since our functions are not periodic, the
parameter ¢ has nonintegral values, and P,(2¢),
etc., are continuous functions of .

For the present we will assume the pattern for
crystal 4 to differ from that for crystal B only by
a constant real factor. The validity of this
assumption will be discussed below. Let g:(6)
and g»(6) denote the single crystal patterns in the
first and second orders. From the three experi-
mental curves we get three equations in the
parameter f:

(1, —1): Py(2¢) =const.
X F () (@) G1()G*(®),  (9)

(1, +1): Ry(2¢) =const.

X&(2a18)J(2a:8) F()F(a:)F(3a:8) G*(#),  (10)
(2, 4+2): Ry(2t) =const.
XS (2a9t) J(2ast) F2()F(a2t)F (3a:t)G2(8).  (11)
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Elimination of J from Eqgs. (10) and (11) gives
R1(2¢)
R2(2a1t/a2)
Fz(a;[lf/dg)
1o
F(8)

G1%(t) =const. X

Gzz(alz/aﬁ)]. (12)

Also, we must have
| P1(2t) | X | R2(2a1t/asz) | = const. X | R1(2¢) |

X |%*z(aﬂ)Fz(alt/(lz)G22(d1t/ag) I . (13)
Since the effect of §§ will be small compared with
that of F, and since G can be estimated from the
(2, —2) rocking curve, Eq. (13) offers a method
of estimating the mosaic distribution function,
and hence of determining the crystal pattern
21(8) from (12). To a very good approximation,
for calcites of ordinary perfection, the expression
in brackets in Eq. (12) can be regarded as
constant, which amounts to assuming infinite
resolving power in the second order and assuming
perfect crystals.

It is instructive to discuss a few well-known
properties of the instrument from the point of
view of the Fourier transforms, Egs. (9) to (13).
No attempt is made to give references to the
first discussions in the literature of some of these
points. It must be borne in mind that the
Fourier transform of a symmetrical function is
real, while the Fresnel transform of even a
symmetrical function is, in general, complex.
Also, a narrow curve has a wide transform, and
vice versa, since many high components are
required to represent a sharp curve. Thus, in
particular, the transform of a witch (Hoyt®
curve) given by 1/(14x%/a?), of half-width a, is
proportional to et

(a) If the crystal patterns are identical in shape and
there is no mosaic structure, then Eq. (6) shows that P,(2¢)
is real, and all the (#,—#) curves are symmetrical. The
converse is not true, however. If we write G4=G4'+1G4",
etc., a real P,(2¢) implies only that G4Gs* is real, i.e.,
G4'' /G4’ =Gp"/Gg’. This can be satisfied in two ways:
either ga(f) is proportional to gg(f), and the patterns
(in general asymmetrical) have identical shapes, or
G4’ =Gg" =0, in which case the patterns are both sym-
metrical, but not necessarily alike. The first case has been
assumed in deriving Egs. (9) to (13), since the (n,—n)

13 A, Hoyt, Phys. Rev. 40, 477 (1932).
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curves are always observed to be symmetrical. It can easily
be seen that if the second case is true, then Eq. (13) still
holds, since then Gp*=Gpg, and G:? becomes (G3)a(Gs)p.
Mosaic structure would not affect this conclusion, barring
a fortuitous coincidence of the odd parts of § and GaGg*.

(b) If the vertical divergence is negligibly small then &
reduces to a constant. Vertical divergence has no effect
on an (n,—n) curve, but since &(a.t) is not always real,
asymmetry will be introduced into an (#,4#) curve even
by a symmetrical slit function.

(c) The effect of mosaic structure will be to widen each
curve, since F and § surely decrease with increasing ¢
for small £. Any positive function exhibits such a behavior.

(d) If the true line shape and diffraction pattern are
both witches of widths w; and wj, respectively, then the
(1,—1) curve is a witch of width w,=2w,, and the (1,4+1)
curve is a witch of width w,=w;+2w,=w;+w,. This
follows immediately from the properties of the exponential
et and the witch is obviously the only function for
which the widths add in such a simple manner. Using the
Fourier transform method, an observed curve can be
corrected for the finite width of the diffraction pattern,
by dividing the transform of the observed curve by the
square of an assumed or derived single crystal pattern
transform. Ordinarily a witch of half the width of the
(n,—n) curve will suffice for this correction. Methods
based on asslimptions of witches, error curves, etc., have
previously been applied only to widths of emission lines.

ArprLiCATION TO AcTUAL CURVES

Three rocking curves were recorded by Pro-
fessor Parratt for MoKa; at 0.71A on the
direct-reading spectrometer of Richtmyer and
Barnes.® Maximum vertical divergence was
4.5X 1072 radian. Voltage was kept low enough
so that radiation of half the wave-length studied
was not excited. Background was 0.5 percent in
the first order, and 4 percent in the second order.
The crystals were A;Bjs of reference 2, after
repeated etching and grinding according to the
method of Manning.!® Crystals A,B, of reference
2, of which an extended indirect study had
already been made,” were found to have deteri-
orated badly since 1935. The percent reflection
could be brought only to 40 percent compared
with 66 percent in 1935. The crystals used have
a percent reflection of 50 percent, and represent
the most nearly perfect crystals available after
an extended search. While not as nearly perfect
as some specimens previously reported, they are

“ T, K. Richtmyer and S. W. Barnes, Rev. Sci. Inst. 5,

351 (1934).
% K. V. Manning, Rev. Sci. Inst. 5, 316 (1934).
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F1G. 2. Rocking curves of Mo Kai on calcite, recorded
by L. G. Parratt. All of the data for the wings are not
plotted.

comparable with crystals commonly used in
x-ray spectroscopy.

The observed curves are plotted in Fig. 2.
From 70 to 100 ordinates were observed for
each curve. The (2, +2) curve, rs(8), was
symmetrical, and accurately a witch of full
width 0.268 x.u. Such a shape has been observed
previously for MoKa;, but is not typical of all
lines. It is interesting to observe that both
classical!® and modern!'” theories predict such a
shape for an x-ray emission line.® The (1, +1)
curve, 71(8), of width 0.384 x.u., was not a
witch, and showed an extremely slight asym-
metry which was probably real. The origin was
taken as the intersection with the baseline of the
locus of midpoints of horizontal segments; as so
defined it differed by only 0.007 x.u. from the
location of the peak. The odd part of 71(8) was
thus very small (maximum value 3 percent of
the peak) and its effect on |Ri|?=R,2+R,"?
was entirely negligible. Correction of the (n, +#»)
curves for overlap of Kay was important only
for 71(8), and was carried out in a direct manner.
The overlapping factor* was only 0.010 for
(1, 4+1) and 0.005 for (2, +2). The correctness
of the procedure was indicated by comparison
of the two wings of a curve. No differences were
found. The (1, —1) curve, p1(8), was symmetri-
cal, as expected, and had a width of 0.0868 x.u.
All of the observed curves were found to decrease
as the inverse square for abscissas farther than

16 N. C. Mandersloot, Jarb. d. Rad. u. Elektrotek. 13,
16 (1916); G. E. M. Jauncey, Phys. Rev. 19, 68 (1922).

17V, Weisskopf and E. Wigner, Zeits. f. Physik 63, 54
(1930); F. Hoyt, Phys. Rev. 38, 860 (1930).

18 See, however, remarks by A. Hoyt, reference 13.
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about two full widths from the peak. E.g., for
73(B) a least-squares solution using 14 ordinates
gave a value of —2.0 for the exponent.

A straightforward numerical method was
adopted for the Fourier analysis, after trial
showed the rolling sphere Henrici type analyzer
to be unsuited to precise determination of short
period components. The method of Robertson!?
was modified slightly as follows: A series of
1000 cardboard strips was prepared, each con-
taining the sequence N, N cos 6°, N cos 12°- - -0,
written from top to bottom to the nearest
integer. To analyze a curve, ordinates were read
off a large graph, spaced ¢ units apart. Corre-
sponding strips were hung, 15 at a time, on a
plywood strip, and the appropriate products

flx) zlons tx read through diagonal rows of holes

in a cardboard screen. The algebraic sums of the
visible numbers were proportional to the real
and imaginary parts of F(4), where fo=/(30q).
By discarding alternate strips and using the
remainder again, F(}t,), F(%t), etc., were rapidly
obtained. Three selections of ordinates at spac-
ings of, say, 0.002, 0.0025, and 0.003 x.u.
sufficed to give about 15 well spaced compo-
nents,” and the area of the curve gave F(0).
The even and odd parts of a curve were analyzed
separately, integration extending from 0 to + .
A formula for

£

[ X" cos txdx,
N

with # in general not an integer, was developed
in such a form that the contributions of the
wings to the Fourier components could be easily
inserted in the analysis; for cos Ni=1 and
N0, the integral is n/(2N"t1). As a check on
this numerical method several arbitrary curves,
including asymmetrical ones, were broken down
into components with the aid of the strips, and
then synthesized, also with the strips. Satis-
factory agreement, to within about 1 percent,
was obtained.

19 J, M. Robertson, Phil. Mag. 21, 176 (1936).

20 Robertson’s procedure for obtaining higher compo-
nents amounts to using different screens. This must lead
to error for high components; thus a sine component of
30 times the ¢ value of the fundamental would have argu-
ments spaced 180° apart and would vanish, regardless of

the curve being analyzed. In Robertson’s application to
crystal structure work this is not- serious,
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REsuLTs AND CONCLUSIONS

In Figs. 3 and 4 are shown the transforms of
the three observed curves, plotted logarithmi-

cally. The ¢ values are determined by the

angular unit used in plotting the curves, which
in this work was 34.29 seconds, corresponding to
1 x.u. in the (1, 41) position. Since p:(8) was
much narrower than the other two it was
possible to be certain of Pi() for much larger
t values. The uncertainties represented by
vertical lines indicate twice the fotal contribu-
tions of the wings to the transforms, using the
inverse square assumption. This is a very liberal
estimate, since the wings were observed to follow
this rule out to abscissas much larger than those
at which the numerical analyses were stopped.
The error introduced by.the numerical analysis
itself is, for the components plotted, too small
to be drawn. The fact that 7s(B) is a good
approximation to a witch is shown by the
straightness of its transform when plotted in
this manner.

In Fig. 4 is plotted also logio | PiR:|. If F, §,
and G, are infinitely sharp, Eq. (13) shows that
log | P1R;| should be parallel to log |Ry], as in
the dashed line. It is seen that there is agreement
among the components of long period and large
amplitude (small £). Although definite disagree-
ment is indicated among the components of
short period, the amplitudes of these range from
1/5 to 1/100 of the most intense amplitudes.
Lacking other sets of data, it seems best at
present to interpret Fig. 4 as indicating a

S
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F1G. 3. Fourier transforms of the observed (1, —1) curve,
|Py|, and of the observed (2, +2) curve, |R:|. The scale
of ordinates is arbitrary.
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F1c. 4. Upper curve: Product of the curves of Fig. 3.
Lower curve: Fourier transform of the observed (1, +1)
curve, |Ri|. The dashed curve is parallel to the upper
curve, and should coincide with the lower curve, according
to Eq. (13).

general, but not detailed, confirmation of the
theory of the double spectrometer.

In order to obtain the single crystal pattern
21(0), the most certain procedure is to obtain
|Gi| from the observed (1, —1) curve, using
Eq. (9). The (1, +1) and (2, +2) data can then
be used to find the ratio of real and imaginary
parts of G1(f). Thus Gi(¢), and hence g:(6), are
completely determined, and the pattern so found
automatically predicts the correct (1, —1) curve.
Of course, G; could be found directly from the
(1, +1) and (2, +2) curves by Eq. (12), but the
other method is more accurate since it places
reliance upon the curve which is, in width, most
nearly like the desired function.

Application of the first method yields curve 4
of Fig. 5. The observed percent reflection of 50
percent served to fix the scale of ordinates. This
curve is almost symmetrical, since the (1, +1)
curve showed only very slight asymmetry, and
the (2, +2) curve none at all. The predicted
Prins curve is plotted as B of Fig. 5, and is the
average for the two kinds of polarization. Such
an average is allowable for the small glancing
angles involved here. The pattern derived from
experiment shows no evidence for the flat top
of the Darwin-Ewald-Prins theory. It should be
mentioned that Fourier analysis of the (1, —1)
curve was carried out to large enough ¢ values
(>500) to make certain that the round top of

763

Fig. 54 is significant, and not due to neglect
of higher components.

Curve A of Fig. 5 is derived by the most
trustworthy method, and represents our best
estimate of the single crystal pattern of the
crystals used. Nevertheless, too much confidence
should not be placed in the derived curve on
account of the discrepancy of Fig. 4 among the
higher components. That this discrepancy is
serious becomes evident when the single crystal
pattern is computed directly from the anti-
parallel curves. The resulting g(8) is over twice
as wide as curve 4, and yields a (1, —1) width
of 0.21 x.u. This is unthinkably large compared
with the observed 0.087 x.u. The only reasonable
explanation is that one, or both, of the observed
antiparallel curves has been distorted in some
unknown fashion. It is easiest to imagine that
the true (1, +1) curve is narrower than that
observed; a width of 0.31 x.u. instead of 0.38
would bring about agreement. (This figure was
obtained from the slope of the dashed line of
Fig. 4, allowing 0.01 x.u. for the (2, —2) width).
It should be emphasized, however, that such an
arbitrary correction is entirely outside of the
observational error.

No adequate explanation for this inconsistency
among the higher components has been found.
Among the possible reasons for it which have
been considered are: (¢) Making the correction
for finite resolving power in the second order
tends to ‘increase the discrepancy, and the
correction would be only about a 4 percent
change in the slope of the upper line of Fig. 4,
in the wrong direction. (b) The effect of the
perhaps oversimplified mosaic structure of para-

SINGLE CRYSTAL
PATTERNS

00 005 0 XU 005 00

Fic. 5. 4: Single crystal pattern deduced from the
observed rocking curves. B: Diffraction pattern predicted
by the Prins theory.
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graph 3 will also tend to increase the discrepancy,
since the mosaic distribution function is surely a
positive function, and its transform decreases
with increasing i Qualitatively, the effect of
mosaic structure can be seen as follows: Each
of the three curves is widened by about the same
amount by such a mosaic structure. Therefore
one would expect the observed r; to be wider
than the true 7;, but narrower than that pre-
dicted from the observed p; and rs, since both
of the latter have been widened. The opposite
is observed. (¢) The assumption that m(a) is
“very wide” was made in deriving Egs. (6) and
(8). If there is mosaic structure, the effective
range of a will no longer be of the order of the
diffraction pattern width, but will be comparable
to the width of f(¢). As mentioned above, f(c)
must be narrow, otherwise the (1, —1) curve
would be broadened. Hence the assumption of
m(e) constant is justified. (d) For the slits used,
the maximum vertical divergence is so small that
at {=20 the function &(a) is still 99.5 percent
of its value at ¢=0, using a slit function s(¢)
=1—|¢/¢max|. (¢) Possible dissimilarity of the
two crystals is discussed above. It was shown
that the only kind of dissimilarity consistent
with the symmetry of the (1, —1) curve would
not affect the validity of Eq. (13), on which
Fig. 4 is based. (f) Close consideration of the
original curves and their treatment rules out
explanations in terms of observational or compu-
tational error, improper correction for over-
lapping of MoKas, or incorrect treatment of
the wings.
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The essential point of the analysis presented
here is that for ordinary calcite crystals the
second-order resolving power is so high that
only a small, easily estimated correction is
needed to obtain the true line shape. In theory,
at least, not only the single crystal diffraction
pattern can be deduced, but also the distribution
function of the mosaic blocks. When the method
is applied to L. G. Parratt’s precisely recorded
rocking curves of MoKa;, a general agreement
among the long period Fourier components
indicates that the theory of the double spec-
trometer is not entirely wrong. The serious and
definite discréepancy among the short period
components, however, is difficult to explain.
The conclusion that the single crystal pattern
(Fig. 54) shows no evidence for the flat top of
the Darwin-Ewald-Prins theory is valid regard-
less of this discrepancy, since the doubtful
assumption concerns only the asymmetry of the
pattern.
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