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Kapur and Peierls gave a derivation of the nuclear dispersion formula which differed from
other treatments in defining the compound states by means of wave functions in coordinate
space. We have carried through the derivation starting out in a similar way, but avoiding
certain disadvantages of their treatment, which mainly consist in too restricting assumptions.

HE dependence of the cross section for
nuclear scattering on the energy of the

incident particle is described by the nuclear
dispersion formula. In this formula the cross
section consists of two parts: One of them, the
so-called "potential scattering;" is a smooth
function of the energy. The other part, the
"resonance scattering, " consists of a set of terms
with resonance denominators containing the
energy and decay constant of the compound
states which cause the resonance phenomenon.

Derivations of this formula have been given

by Breit and Wigner, ' Bethe and Placzek, '
Kalckar, Oppenheimer and Serber, 'and. Kapur
and Peierls. 4 The authors mentioned first treat
the problem by perturbatio~ methods similar to
the Weisskopf-Wigner theory of the dispersion
of light by atomic systems. Kapur and Peierls
have given a different treatment which they
characterize as a perturbation calculation with
perturbation of the boundary conditions rather
than of the Hamilton operator. Their method
promises to give a derivation which introduces
the compound states in a simpler manner, by
diAerential equations and boundary conditions
in coordinate space rather than by inequalities
between matrix elements.

The advantage of their treatment is that they
can start from a simple model: one particle
inside a potential wall. They show how one can
generalize this model to cover all cases of nuclear
reactions. As far as this generalization is con-
cerned we take over their results. But we wouM
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like to improve on the treatment of the model
itself, because there are certain disadvantages
connected with their way of treating it.

The main objection is that Kapur and Peierls
have made more stringent assumptions than the
other authors to prove the dispersion formula.
They assumed in fact that the width of all the
compound states does not exceed their distance. '
This would prohibit the application of the
dispersion formula on actual nuclei and is, as we

shall prove, an unnecessary assumption.
Another objection against Kapur and Peierls'

treatment lies in the following fact: For mathe-
matical convenience only, a radius ro is intro-
duced outside of which the potential vanishes.
Their distinction between resonance and po-
tential scattering as well as their compound
states turn out to be dependent on this parameter
ro. An increase of ro changes both resonance
and potential scattering and only the total result
is unchanged. We shall change the definition of
the compound states slightly, thereby avoiding
also another disadvantage of Kapur and Peierls'

treatment, which consists in the dependency of
energies and wave functions of the compound
states on the energy of the incoming particle.

Our way of treatment diAers from Kapur and
Peierls' perturbation calculation mainly in that
it is not an expansion in an orthogonal system.
We investigate the singularities of the cross
section which occur at certain complex values of
the energy. Those singularities which lie near
enough to the real axis, cause a sharp resonance
maximum on the real axis and we can replace
the cro~s section there by its singular part added
to a smooth function of the energy. States with
these singular values of the energy we call the

~ Reference 4, p. 285.
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compound states of the model. Their physical
significance is easily seen: The cross section
being the ratio of the intensities of outgoing
and incoming wave becomes singular if there
is only an outgoing wave. Our compound states
are therefore the "radioactive" states of the
system.

We use the same model and notation as Kapur
and Peierls. For higher angular momenta, we
only consider one particle moving with zero
angular momentum in a potential V(r) It i.s

assumed that U(r) =0 for r )r p. Pz(r) is the wave
function multiplied by r; it is a solution of the
Schrodinger equation

between r =0 and r = ro and obtain, using the
boundary conditions,

A2

4-(» )Lik.4z(ro) —4z'(ro) 3
2m

rp

+(W„—8) y„yzdr =0.
0

This gives for the denominator in S/I:
yz'(rp) i kit

—z(ro)

W jV ro

ik„yzdr+i (k„k)ikz (r—p)
(5'/2m) y„(ro) o

O'Pz" /2m+ (8—U) Pz =0

with the boundary condition &AD=0 for r=0.
For r)ro we have

using

W„—Z

(k'/2m) y„(ro)

70 4„(ro)ez(r,)
Q„Qgdr+i

pz ——(I/k) sin kr+Se""

with k = (2m'/5')'. The scattering cross section
is given by

a = 4m.
~
S/I

~

'.

We consider now S/I as function of Z, including
complex values of P. Expressing S and I by
gz(rp) and pz'(rp) we have

S pz(rp) cos krp lflz (rp)(sin krp/k)
Zk70

I itz'(r p) ikyz(ro)—

We look for singularities arising from vanishing
denominator. The energies W„ for which the
denominator vanishes are defined by the eigen-
value problem:

k'y„"/2m+ (W„—V) y„=0

with the boundary conditions

P =0 at r=0

(2)

and'
with

y„' —Qy„=o at r =r,
k„= (2mW /fP)'.

To obtain S/I in the neighborhood of a singu-
larity W, we multiply (1) by g„and (2) by Pz
and subtract. We integrate the resulting equation

(k'/2m)(y„"@z-y "y.)+(W„—Z)y„y, =o

' Taking here k„ instead of 0 makes the compound
states independent of the energy of the incoming particle,
and as we shall show later, it makes the distinction between
resonance and potential scattering invariant. against
changes of r0.

2m W„—E

k+0
Assuming that the eigenvalue W is not de-
generate we have in the limit Z~W„: pE—+p„
and

2m
yz' ikyz~(—W„—Z) @„'dr+i

0 2k„

For the numerator of S/I we obtain

Qz(rp) cos krp —Qz'(rp) sin kro/k —+p„(rp)e '"""'

1 (k'/2m)ik '(ro)e """"'s/I=, +f(&) (3)
W~ —& "' 4 ~'(ro)

Q„'dr+i
~ 0 2k

where f(E) is a regular function in the sur-
rounding of S' .

The factor multiplying 1/(W„—2), and W„
itself, depend only on properties of the model
not on 8 and they are invariant against changes
of rp, as long as V(r) =0 for r) rp. To show this
let us define a wave function q by changing ro
into r~)rf) in the definition of p; this definition
will be satisfied by y „=A p „. The boundary
condition is fulfilled since

(r) —gp (r) —gQ (rp)eio~(r —ro) for r )r&
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9"„ is therefore unchanged. For the factor of where b„ is a phase determined entirely by the
1/(W„—E) we get properties of the compound state n and inde-

pendent of ro. We thus obtain from (3)

r p ts, 2ikn(r1 —rp) 1
4.'«+ @.'(«)

0 2ik„

ri ~2(r)
yn2df+ t

0 2k„

2(y bg2ikn(rl —rp) .g
—2iknr1(

S/I =
8"„—Z

(l'i'/2nz)
I @„(r,) I

's''
pro 't

I@.l'd + I@-( o) I""'"""'+""'
0 2k

s2ik„(ry rp) o—r, using (4)
+iy„'(«)

2k„
(5)S/I =

g „—8 imp„
~2i(knrp+$5n)

k„A2

As y tends towards zero k becomes real and
the last term in the denominator of (5) becomes
negligible, so that we have in this limit

SII= . +f(E)8„—-',iy„—8 2k„
(6)

We now subtract from S/I the sum of all
singularities with small y . The difference

gibnVn
F(E) =S/I

(E„E)—-2iy„2k„—

which is obviously the same factor as in the
original formula. In defining in the limit of
long-life compound states contributions to the
cross section due to the singular part of S/I as
"resonance scattering, " and those due to the
regular part as "potential scattering, " we have
made a definition which is independent of r0.
We therefore can choose rp as large as we want
and do not need to carry out additional consider-
ations to include a screened Coulomb field or
centrifugal forces, as Kapur and Peierls had
to do. '

We can write the resulting Eq. (3) in a
different form: From Eq. (2) and its conjugate
complex we derive the equation

A2 rp

I+-(«)I'=
2m k+0* 0

is a smooth function of the energy for real K
(4) For the cross section 0 we obtain the dispersion

formula;

where y is defined by E„—(i7 /2) = W„with
Z„and V„real. For sufficiently small values of
y„we can multiply p„by a suitable constant A
of absolute magnitude 1 so as to make Ap real
in the region where it contributes (except for
terms of the order y„) to the integral J;"Ip I'dr. '
We can thus write in this limit

rp rp

0 0

With this fixed value for A we have then

~4-(«) =
I 4-(«) I

s""""'+""'

~ Reference 4, p. 286.
This is possible if the phase varies slowly in regions

which contribute the main part of the integral. That this
is the case can be easily proved.

Vn gi~n

= 4m Q' +F(E)
(E„—E) ——',iy„2k„

F(E) is called the potential scattering term
although it actually consists —at least partly-
of contributions from broad levels.

We have thus proven the dispersion formula
in the limit of long lifetime of the levels con-
tributing to the resonance part. The existence
of broad levels overlapping each other and any
number of resonance levels does not affect our
derivation.

The author is indebted to Professor F. Bloch
and his nuclear seminar for the stimulus to this
paper and for valuable discussions.


