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Expansions for the computation of s wave scattering for square wells are arranged in a form
convenient for numerical substitution. Effects of # wave scattering are estimated using Bethe's
neutral form of meson theory. It is found that effects of the order of 50 percent in the angular
distribution may be expected for 16-Mev neutrons.

INTRODUCTION

BSERVATIONS on the scattering of neu-

trons by protons have been made!® in the
energy range 0-16 Mev. The present note com-
pares the experimental results with theoretical
calculations. Wigner's approximate formula® for
a ‘‘square well” (potential having a constant
value through a distance 7,) is amplified by the
addition of three more terms in the range of
force. It converges satisfactorily in the above
energy region. The virtual level for the singlet
state is introduced in such a way that corrections
for the range of force can be conveniently made.
The above calculations take account of s scatter-
ing only. The observations on fast neutrons fall
below the theoretical curve for ro=e?/mc?, the
value for 7, suggested’” by experiments on the
scattering of protons by protons.® These calcula-
tions are of a provisional character, since the
interactions obtained from field theories should
supplant the use of arbitrary potentials. The
“cutting off”’ of potentials which has so far been
found necessary in field theories makes the pre-
diction of phase shifts doubtful, however, and
the formula for the square well has been thought
to be of interest as a temporary way of esti-
mating effects of range and neutron energy.
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The p wave phase shifts have been calculated
using Bethe’s “‘neutral” form of meson theory.®
For a meson mass py=177 m the p wave scatter-
ing cross section is 0.12X107%* cm? at 16-Mev
neutron energy. This is to be compared with the
experimental scattering cross section 0.6X 1024
cm? which includes the effects of all angular
momenta and the s wave cross section 0.56 X 10—
cm? for the square well with range e*/mc? The
p wave effects are seen to be appreciable and
perhaps ultimately detectable for this x. Proton-
proton scattering experiments suggest,!® on the
other hand, x=330 m. Estimates for this shorter
range of force (~7#/uc) give 0.01 X107 cm? for
the scattering cross section due to the p wave at
a neutron energy of 16 Mev. This amount is
practically undetectable. The presence of p scat-
tering can be looked for by studying the angular
distribution of scattered neutrons or of recoil
protons. Some modifications of the usual phase
shift analysis are necessary on account of the
spin-orbit-spin coupling. These are discussed at
the end of the note. An effect of ~50 percent on
the angular distribution is expected at 16 Mev
using =180 m and roughly % of this amount
for u=330 m.

NoTATION

M=mass of proton or neutron (neutron-proton
mass difference will be neglected through-
out).

w=mass of meson.

m=mass of electron.

E=kinetic energy of incident neutron.

E’=energy in frame of center of gravity =E/2.
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SCATTERING OF NEUTRONS BY PROTONS

v=relative velocity of proton and neutron be-
fore collision.

r=distance between proton and neutron.

A=h/(Mv/2); k=2n/A; p=Fkr.

ro=radius of square well.

F=r times radial wave function, normalized to
unit amplitude at «.

Dy, Ds=depths of square wells representing,
respectively, proton-neutron interaction
in the singlet and triplet states.

Ko1, Kos=phase shifts for singlet and triplet
partial waves of zero orbital angular
momentum.

E;=energy of 1S virtual level of deuteron.

(—E;) = |binding energy of deuteron in normal
state].

a1, ag=1intercepts on axis of 7 of tangents to F
for zero energy neutrons, for singlet and
triplet states. A positive a corresponds to
tangent cutting axis on left of origin.

@1, o3=scattering cross sections for singlet and
triplet states.

6 =scattering angle in center of mass system.

o(9) =total scattering cross section per unit solid
angle.

o= [d(0)dQ.

E.° defined by Eq. (8); ¢ defined by Eq. (10).

X= (1’dF/Fd7’)r=ro.
Y1i= 1+EI/E1, Y3= 1 —E'/Ez.
x1=[ME,/1?ro; xs=[M(—Es)/#*]*r,.

S-SCATTERING

The total neutron-proton scatfering cross sec-
tion is given by
0‘=%[3ﬂ'3+0‘1].
If the neutron energy is sufficiently low so that

only the s (L=0) partial wave need be con-

sidered,
o1=(A%/7) sin? K¢1; @3=(A%/7) sin? Kos.

For a square well, where the potential energy
has the constant amount —D for <7y and is
zero for 7 >r,, one obtains

sin? Ko=(p cos p—x sin p)?/(p*+x?), (1)
where the value of p for =7, is used. Here

x=(rdF/Fdr)r=ro=[(M(D+E’")/5%)¥,] cot
XL(M(D+E") /1)), (2)
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Triplet state

One wishes to obtain o3 as a function of the
binding energy (—E;), E and 7o It is first
necessary to eliminate the well depth Djs; this is
performed with the help of the series”

D; =2 2 4 32 8
———=-—+~+1-——+(—-—— s
E3 4x32 X3 7t 372

32 320

——— Ja - )

Expanding Eq. (1) in a series in x3, one obtains
after a straightforward calculation:

sin2K03
[1+xa+sz3
0 s
+Gw+Gaxst+- -+ ], (4)
where
Gy=1—4/72—v3/4=0.5947 —0.25v3;
Gs=3%—4/m4+32/7*4+(1/7*—3)vs
=0.2566—0.2320v3;;
Gi=1— 4/7r2+48/1r4 320/
+(—1+2/7*—8/7%)vs

+(—1/484-1/27%) v s
=0.0880 —0.1295v5-+0.0298 2.

4rh?

M(E' —Es)
X[14x5+Goxs?+Gax®+Gaxst4--- 1. (5)

For y3=2.3 the term Gax3* vanishes and the first
two terms are a good approximation.

Singlet state

There is, according to present views, no stable
singlet proton-neutron state. The depth D; can
be determined from a knowledge of ¢1(E=0),
which results from the experimental value of o
for thermal neutrons and the computed o3(E=0).
(For the relevant formula see Eq. (8.6) of
B.T.E.) Itis, however, possible to avoid using Dy
in the expansion for e3 by the proper introduction
of a virtual level. The definition of a virtual
level is somewhat arbitrary; and the actual
definition chosen for the problem in hand is
designed to give the expansion for sin? K a form
closely similar to Eq. (4).for sin? Kos. Let the
energy of the virtual level be defined as a positive
energy E; such that
[(M(Dl *—'El)/ﬁz) ’}7‘0] cot

XL(M(D1—Er) /1)¥ro]= (ME./#%)*r.

Flnally 0g3= (A2/7'r) sin? K03=

(6)
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This definition may be compared with the con-
dition for the stable %S normal level of the
deuteron, namely

[(M(D3s+Es3)/h*)ry] cot
X[(M(Ds+E3) /82y ]= — (M(— E3) /%) ro.

From Eq. (6) one finds
sin2 K()l 1

[1—x14Gax,?
—Gye3+Guert— -+ ;
which is similar to Eq. (4), and finally
4rh?
M(B'+Ey)
X[1—x14+Gox:2—Gax1?* +Gaxrt— - - -], (7)

2

p v1x?

o1= (A2/7r) sin? K01=

where the G’s are defined as in Eq. (4), but with
v1 substituted for vs;. '

The virtual level is determined by the range
and the quantity E,° defined by

4r#?/(ME,®) =0.(E=0). (8)

The quantity E,° is the energy of the virtual
level for zero ramge. One can evaluate ¢(E=0)
from the experimental o(thermal) and the com-
puted ¢3(E=0). Comparing Egs. (7) and (8),

(1/E10) = (1/E1)(1 —x1+G2°x12—G3°x13+ . ‘),

where the upper suffixes on the G’s indicate that
they are to be evaluated at E=0. One obtains
the series

E,=E\[1—(E\%/¢)'+0.8447(E"/¢)
~—0.6666(E,*/e)t+---7,  (9)
where

o=/ (Mre). (10)

The above series gives the virtual level for an
assumed range in terms of the virtual level for
zero range. For zero range, E;=E% and the
virtual level has a fairly direct physical meaning:
for vanishing range of interaction the position of
the virtual level determines o1(E=0) in the
same way as the binding energy (—Es) deter-
mines o3(E=0).

Numerical formulae

Using "the values of the fundamental physical
constants as given by B. T. E., p. 1022, one may
rewrite Eqgs. (5) and (7) in a form convenient
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for numerical computation, if the range is kept
fixed and the energy is varied.

5.21X10-%
(E'—Ej3) Mev
X[14x3+0.5947x5*+0.2566x5+0.0880x *
+ - +v3(—0.25x22—0.2320x5* — 0.1295x5*)

g3= (A2/7r) sin? K03=

+0.029873%s4+ - - - Jcm?,  (11)
5.21X10-24
o= (A2/7l") Sirl2 K01=m
(E'+E1) Mev
X[1—2x140.5947x2—0.2566x3+0.0880x:*
+ - +y1(—0.25x240.2320x:* — 0.1295x %)
+0.0298y:%x:4- - - Jem?  (12)

The fundamental physical constants are in-
volved only in the number 5.21 X 10724 cm?. The
pure numbers occurring inside the square brackets
are independent of these constants. Graphs of
the square brackets against energy are suffi-
ciently linear to allow graphical interpolation.
In each case the square bracket represents a
correction for the range of force.

Using E3= —2.17 Mev, and ¢(thermal) =14.8
X 1072 cm? reported by Simons, one finds, with
ro=¢?/mc?, the value E,;=0.0978 Mev for the
position of the virtual level, while for zero range
E;°=0.112 Mev. For these values of 7y, E;
and Es,

5.2110-2¢
g3=
" (E/242.17) Mev

[1.974—0.1880ys

+0.00513y32— - - - Jcm?; (13)
5.21X10~%
o= [0.8738 —0.00413,
(E/2+0.0978) Mev
4+0.0000104y,2— - - - Jcm?; (14)

ys=1+FE/4.34; v1=1+E/0.1956.

These series have been checked against exact
solutions. For E<10 Mev, Eq. (13) gives results
less than one percent too small, and Eq. (14) less
than one percent too large. For E=12 Meyv,
(oxacty =0.789 X 10724 cm?; 0 (seriosy =0.780 X 10724
cm?. In Fig. 1, ¢, 01, and o3 are plotted, using the
above series, in the energy range 0-16 Mev.

11 L, Simons, Phys. Rev. 55, 792 (1939).
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Fic. 1. Abscissae: energy of incident neutrons in Mev.
Ordinate: neutron-proton scattering cross section for
square well according to Egs. (13), (14), with range
ro=e2/mc?. Only the effect of s waves is included. Curves
01,03 are for singlet and triplet states, and 0 =01/4+303;/4.
Experimental points: A—~Aoki; B—Booth and Hurst;
C—Ladenburg and Kanner; D—Zinn, Seely and Cohen’;
E—Salant, Roberts and Wang.

With the same values of 7y, E; and E; one
finds D;=11.52 Mev, D3=21.02) Mev for
the well depths; and a;=1.918X10"2 cm,
as=—0.585X 10712 cm for the intercepts.

The s wave scattering cross section for a square
well with ro=e?/mc? is plotted in Fig. 1 as a
function of the energy. The experimental value
for the point E includes an unknown amount of
d and p scattering. Estimates regarding the latter
will now be discussed.

P-SCATTERING

The quadrupole moment of the deuteron indi-
cates that nuclear potentials contain terms of the
form f(7)[3(o1r) (o2r) —7%(0102) ] so that different
phase shifts are expected for 3P,, 3Pi, ®P,;. The
phase shift analysis of the experimental data
must be made, therefore, taking into account the
differences of these three phase shifts. It must
also be modified”? to take account of the fact
that a d wave arises out of the s wave, and that
for this & wave the angular distribution contains
no terms in (3 cos® §—1)2%, but only terms in
(3 cos? 6—1). The usual formulas for the angular
distribution are not applicable, and the general
formulas are complicated. Nevertheless it is
possible to look for the effects of the p wave by

12 J. Schwinger, Phys. Rev. 55, 235 (1939).
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determining the term in cos 6 in an analysis of
the scattering cross section per unit solid angle,
in the center of gravity system, in powers of
cos 6.

Taking into account s and p waves only, one
obtains for the cross section per unit solid angle
in the center of gravity system

3/7A\2
a(6) =—(—) {sin"’ Koz
4\27

5
+6 sin Koa[a COS (52*‘K03) sin 52
3
+§ COSs (51—K03) sin 51

1
+6 cos (80— Ks3) sin 60] cos 6
~+ (5 sin? 8343 sin? §;+sin? §,) cos? §
3 1
+[—;(sin §1—sin 62)2——3—(sin 8o—sin §,)2

01— 02

— 3 sin §; sin 8, sin?

4 00— 02
—g sin §, sin 8y sin? ~-———~](3 cos?6—1) }
2 .

17A\2
+Z("—) {sin2K01+6 sin Km COSs (Kl'—K()l)
™

Xsin K cos 849 sin? K cos? 0}. (15)

Here 6o, 61, 62 are the phase shifts for 3P,, 3P,
8P,; and K, is the phase shift for 1P;. The part
of the expression in curly braces with the coeffi-
cient £ is due to triplet scattering. The s phase
shifts for triplets and singlets are Ko Ko,
respectively. The last set of terms due to triplet
scattering contains the factor (3 cos? #—1).
These terms do not vanish for §==/2 as is the
case for 6p=201=26,. The necessity of terms of
this type may be seen by considering the special
case 007#0, 6;=02=0. The terms in sin? §, cos? @
are then seen to cancel as they should since the
P, part of the incident wave has no total
angular momentum. The interference term in
sin K3 sin 8o cos 0 is present, however, in agree-
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ment with the fact that the 3S; part of the
incident wave has an angular momentum. The
-terms in 3 cos? 6 —1=2Py(cos 6) do not affect the
integral of the cross section over all solid angles,
and thus have no influence on absorption meas-
urements. Since the d wave which is coupled to
the s wave also gives rise to a term in Py(cos 6)
for ¢() it is presumably not practical to try
to disentangle these two contributions. The
terms in cos 6 are, on the other hand, not affected
by the d wave, and can be used as a direct test
of a combination of effects of &, 81, 2, K1. Using
the neutral form of theory given by Bethe, with
u=177 m, numerical integrations for E=16
Mev give Go= —18.70, 61=23.7°, Op= —,5.20,
K,=10.7°. For these values of the phase shifts
one has as the combined effect of s and p waves:

470 (0) =[140.56 cos 6-+0.62 cos? 0
—0.17(3 cos? 6—1)7X0.58 X 10724 cm?.

Here the first term in brackets represents the
combined effect of S and 1S. The term 0.56 cos 6
is due to the interference between s and p waves,
and the last two terms in brackets are due to the
p waves. The contribution to 4we(6) in cos 6 is,

0.3(2) X 10724 cos 0 cm?,

which can be compared with the experimental
value
¢=0.6X10"% cm?

for the average over solid angles of 4r¢(6). The
analysis of ¢(f) into powers of cos # may be
expected, therefore, to show an appreciable
term in cos 4.

The above effect is sensitive to the range.
Using a meson mass p~330 m numerical integra-
tions give &=—6.1°, §;=3.7° &,=—1.8°
K;=4.0°. For these values the terms in cos
contribute ~0.1X1072%cos # cm? to 4wa(6),
which is about } of the amount for the cosmic-
ray mass of the meson and at the maximum ~#%
of the solid angle average. The effect is obviously
sensitive to the range of force; the important
contributions to the p phase shifts come roughly
from the regions #="%/uc to r=3%/uc. The effect
is not sensitive to the choice of the method of
“cut-off”’ (‘“straight’ or ‘‘zero’).

The presence of p scattering affects . The con-
tribution to ¢ at E=16 Mev due to the p wave
is 0.12X10~24 cm? for =177 m and 0.007 X 1024
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cm? for u=330 m, in a total of ~0.6X10~24 cm?.
For the cosmic-ray mass of the meson one
should, therefore, decrease the experimental
value by ~20 percent at 16 Mev in order to
obtain the net effect of the s and d waves. For
the proton-proton range of force the correction
is of the order of one percent and is insignificant.
The interaction of 3P, and 3G has been neglected
above.

ArpPENDIX I
Effect of p wave

The usual scattering theory must be modified
if the phase shifts are different for 3P, 3P;, 3P,
1P;. Since the meson interaction energy is
diagonal in the spin of the two particles the
incident wave may be considered as a statistical
mixture in the proportions %, % for singlet and
triplet states. The cross section is then ob-
tained as

a(0) =101(0) +103(6).

For ¢1(f) the usual considerations apply. For
o3(6) the incident wave may be considered as a
statistical mixture of the three states

6“”51, eiszO’ eisz_l

with weights of % for each. Here Sy, So, S_; are
spin functions for the two particles corresponding
to magnetic quantum numbers 1, 0, —1. The s
and p parts of the above waves can be expressed
in terms of linear combinations of products of
angular and spin functions corresponding to the
states 3Py, 3P4, 2P,. Thus, for example,

pet*2S1=FoS1+2(127) Fi[ (3P3) 1+ (3P1)1 /2%,

Here (3P;)n» is an angular-spin function for a 3P
state with total angular momentum j and mag-
netic quantum number m. The normalization is
such that the integral over all solid angles of
the sum over spin coordinates is unity. The
customary notation for Fy, F; is used.” The inter-
action between the particles changes the differ-
ential equations satisfied by the radial factors.
For ®P,, 3P; there are then separate differential
equations. For 3P, there is besides a coupling to
3Gy which is neglected here. The scale with which
the radial solutions must be introduced in place
of Fy, F; must be chosen so that the resultant
wave is e***part in e*. For large p this condition



SCATTERING OF NEUTRONS BY PROTONS

determines completely the form of the radial
functions in terms of the phase shifts.!* Thus for
instance Fy=sin p is replaced by

sin p--eietXod) gin K3,
Proceeding in this way one obtains
(pe?*2S1) o = e P03 gin K35y
+ (127)te? {273 (3P3) 12 sin &,
+273(3P) 1?1 sin 81}
(pet*2Sp) . =P+ gin K3S,
4 (127)%e {(2/3) 2 (3P3) 0e™? sin 6,
—3=3(3Pg) e sin 8o} ;
(pei*2S_1)se=€*P1K0) gin K¢3S_;
4+ (127)%et {272 (3Py)_1e®2 sin 8,
—27%(3P ) _1e™ sin 8y}.
Here the index s¢ means that the contribution
to the scattered wave due to e*** is taken. The

choice of signs of the linear combinations in
(®P;)m is made so that

(PPy)e= Y1515 ((P1)1=27%(¥:°S:1+ V11S0);
(PPo)o=3"H Y151 — V%S4 V1 1S_y).

The functions Y™ are angular functions normal-
ized to unity for integration over solid angles.
The orbital angular momentum and magnetic
quantum numbers are, respectively, L, m. The
function Y,°=(3/4r)* cos 6. The others are de-
termined by the requirement that the angular
momentum matrices have the standard form.!4
A computation of 3Z,((pe**%S,)sc, (0€#%S,)sc),
with the scalar product applying to the spin
coordinates only, gives the contribution to the
triplet scattered wave which corresponds to the
cross section used in the text (Eq. (15)).

AprPENDIX II.

Calculation of small phase shifts due to concen-
trated potentials

If the potential causing the phase shift is
sufficiently small, Taylor’s formula is convenient.

13 N. F. Mott and H. S. W. Massey, Theory of Atomic
Collisions (Oxford Press, 1933), Chap. I1.

# E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Cambridge Press, 1935).
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The meson potential responsible for the p waves
is large at small 7, but the phase shifts are small.
In such cases a transformation of the radial
equation is useful. This is first put in the form

d*F/dx~+-go*()F+ 2.2 (®)F =0,

where x is 7 expressed in convenient units (such
as #/uc in the present case). It is supposed that
the solution of

d*F/dx*+go¥(x) F=0

is known, and the problem is to calculate the
phase shift K of §§ relative to that of F. Intro-
ducing

a¥y dF
p=F ——w— (IL.1)
&dx Fdx
one finds
dn n?
—4—4 F%¢,2=0; (11.2)
dx F?
—x/p
K=—--—/—————. (I1.3)
(1/m)+(=G/pF)
One also has
d /1 xG F?g,?
—(—-l———): . (11.4)
dx\n pF n?

Eq. (IL.2) is used to obtain n by numerical
integration. The occurrence of F?g,? is convenient,
since in Taylor’s approximation S F?g2dx is
proportional to K. The method has an apparent
disadvantage if the potential in addition to
being large in absolute value locally has also
moderate values over an appreciable distance.
One must then play safe and integrate to
sufficiently large x. If there is any phase shift the
term in 7?/F? in Eq. (I11.2) makes 5 variable.
It is then convenient to use Eq. (I1.4) because
(a) the desirability of carrying the integration
farther can be judged by estimating S F2g:2y%dx
which determines the relative change of the
denominator in Eq. (I1.3); (b) a numerical check
can be obtained by carrying the integration of
Eq. (I1.2) to two large values of x and checking
by means of Eq. (I1.4) the two values of
1/n4xG/pF.



