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Note on the Scattering of Neutrons by Protons
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Expansions for the computation of s wave scattering for square wells are arranged in a form
convenient for numerical substitution. Eft'ects of p wave scattering are estimated using Bethe s
neutral form of meson theory. It is found that effects of the order of 50 percent in the angular.
distribution may be expected for 16-Mev neutrons.

The p wave phase shifts have been calculated
using Bethe's "neutral" form of meson theory. '
For a meson mass p = 177 m the p wave scatter-
ing cross section is 0.12)&10 '4 cm' at 16-Mev
neutron energy. This is to be compared with the
experimental scattering cross section 0.6X10 "
cm' which includes the effects of all angular
momenta and the s wave cross section 0.56 X 10 '4

cm' for the square well with range e'/mc'. The
p wave effects are seen to be appreciable and
perhaps ultimately detectable for this p, . Proton-
proton scattering experiments suggest, ' on the
other hand, p = 330 m. Estimates for this shorter
range of force ( fi/pc) give 0.01X10 '4 cm' for
the scattering cross section due to the p wave at
a neutron energy of 16 Mev. This amount is
practically undetectable. The presence of p scat-
tering can be looked for by studying the angular
distribution of scattered neutrons or of recoil
protons. Some modifications of the usual phase
shift analysis are necessary on account of the
spin-orbit-spin coupling. These are discussed at
the end of the note. An effect of 50 percent on
the angular distribution is expected at 16 Mev
using @= 180 m and roughly —', of this amount
for @=330m.

INTRQDUcTIQN

~~OBSERVATIONS on the scattering of neu-
trons by protons have been made' ' in the

energy range 0—16 Mev. The present note com-
pares the experimental results with theoretical
calculations. signer's approximate formula' for
a "square well" (potential having a constant
value through a distance ro) is amplified by the
addition of three more terms in the range of
force. It converges satisfactorily in the above
energy region. The virtual level for. the singlet
state is introduced in such a way that corrections
for the range of force can be conveniently made.
The above calculations take account of s scatter-
ing only. The observations on fast neutrons fall
below the theoretical curve for ro ——e'/nsc', the
value for ro suggested' by experiments on the
scattering of protons by protons. ' These calcula-
tions are of a provisional character, since the
interactions obtained from field theories should

supplant the use of arbitrary potentials. The
"cutting off" of potentials which has so far been
found necessary in field theories makes the pre-
diction of phase shifts doubtful, however, and
the formula for the square well has been thought
to be of interest as a temporary way of esti-
matin effects of ran e and neutron ener
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' E. 0. Salant, R. B. Roberts and P. Wang, Phys. Rev. mass difference will be neglected through-
SS, 984 (1939).

2 H. Aoki, Phys. Rev. 55, 795 (1939). out).
R. Ladenburg and M. H. Kanner, Phys. Rev. 52, 911 @=mass of meson.

(1937).
F. T. Booth and C. Hurst, proc. Roy. Soc. p],Qg, 248 re=mass of electron.

(1937). A=kinetic energy of incident neutron.
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a=relative velocity of proton and neutron be-
fGI e CG11181GQ.

f =distance betmccn ploton Rnd neutron.
A. =Is/(Ms/2); k=2sr/h. ; p=kr.
f0=radius Gf square well.
F='f tlQles radlR1 mRvc function) QorMallzcd to

unit amplitude at .
D», Da=deptha of squRrc mclls 1'epresenting,

respectively, proton-neutron interaction
ln the Singlet and triplet stRtcs.

+0», E03=phRsc shifts foI' slnglct Rnd tI'lplct

pRI tlR1 mRvcs Gf zero ol bltR1 RngulRI'

HlGGlentUHl.

B»=cQclgy Gf 5 vlI'tual level of dcutcIGQ.

(—Zs) = ~binding energy of deutemn in normal
state i.

c», ca=intercepts'GQ Rxls Gf f Gf tRngcQts to I'
fol zero cQcIgy neutrons, for slnglct Rnd

triplet states. A positive c corresponds to
taQgcnt cutting Rx18 GQ left of orlgln.

c», ca=scattering cIGss 8ectlons foI' 81Qglct Rnd

triplet states.
tI =scattering angle in center of mass system.
o (8) = total scattering cross section per unit solid

angle
e= J'o(8)dQ.
Zis defined by Eq. (8); s defined by Eq. (10).

x = (rdF/Fdr)r =vs.

q i ——1+F-'/F.i, ys ——1 —E'/Zs.
~,= [eve, /I s3~»„~,=ps{—zs)/as3~»s.

5-ScxTvERING

The total neutron-proton scattering cross sec-
tion 18 given by

If the neutron energy is Sufticiently lorn so that
only the s (I.=O) partial wave need be con-
sidered,

ei ——(As/ir) sin' Zsi, es = (hs/s) sin' Zss.

For a square mell, mhere the potential energy
hRs the constRnt RII1ount —D for f +f0 Rncl 18

zero for f QPO, onc obtalI18

sin' Zs ——{p cos p —x sin p)'/(p'+ps), , (1)

%herc the valUC of p fol f= f0 18 Usccl. Herc

x = (rdF/Fdr)r =.s ——L(M(D+Z')/lss)&rs3 cot
x L(~(D+&')/~')'» 3 (2)

Tflglet Stkte

One mlshe8 to obtain 9'3 as R function of thc
binding energy (—Zs), Z and rs. It is first
necessary to ehminate the well depth D3, this is
performed mith the help of the aeries'

Ds ~s 2 4 t32 8 y+—+1—+~ —— )~s
&s 4xss xs s' &s' 3s')

p32 320)
+( i., + ". (3)

Exp»ding Eq. (1) in a series in xs, one, obtains
after a straightformard calculation:

Sln EO3

Gs ——1—4/m' —ps/4 =0.5947 —0.25 ps,
G,= —',—4/~s+32/~'+(1/~s ——;)~s

=0 2556 —0 2320y3'
Gs ———',—4/s s+48 jm' —320/mrs

+(—-', +2/s' —8jm') ys
+ (—1/48+1/2m') ass
=0,0880—0.1295ys+0.0298y3~.

4mA'
Finally es ——(A.s/ir) sin' Zss ——

M(F.' —F- )
X t:1+~s+Gs~s'+Gs~s'+Gus'+ .3 (5)

For 'y3=2.3 thc tcfIQ GqÃ3 vRQlshcs Rnd the 6rst
tmo terHls Rrc R good approxiTnation.

81Qglet StR'te

There 18, Rccordlng to prescQt vie%'8, Qo stable
singlet protori-neutron state. The depth B» can
be determined from a knowledge of ei(Z=O),
mhich results froM the cxpcrlnMntR1 vRluc of e
for thermal neutmns and the computed es(X=0).
(For the relevant formula see Eq. (8.6) of
B.T.E.) It is, however, possible to avoid using Di
ln thc cxpRQslon for es by the proper introcluction
of a virtual level. The de6nition of a virtual
level 18 solTlcwhat arbitrary ) Rnd tlM actURl
dednition chosen for thc pl Gblcm 1Q hRQd 18

dcslgIlecl to give thc cxpRnsloQ foI Sln Xo» R forIQ

closely similar to Eq. (4).for sin' Zss. Let the
energy of the virtual level be de6ried as a positive
energy Z» such that
[(M'(Di —Zi)/ass) &rs3 cot

xL{M(Di—zi)/lss)&rs3=(Mzi/Iss)&rs. (6)
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—G3xg'+ G4xg'—

which is similar to Eq. (4), and finally

op= (A'/vr) sin' E'og ——

cV(E'+Eg)

X[1—x&+G2xP —Gsxg'+G4xg' — . ], (7)

where the G's are defined as in Eq. (4), but with

y~ substituted for ys.
The virtual level is determined by the range

and the quantity BI', defined by

4~5'/(cVE&') =o&(E= 0). (8)

The quantity E&' is the energy of the virtual
level for sero range One ca. n evaluate o~(E=O)
from the experimental cr(thermal) and the com-
puted o3(E=O). Comparing Eqs. (7) and (8),

(1/E, ') = (1/Eg) (1—xg+Gp'xg' —G3'xP+ ),

where the upper suffixes on the 6's indicate that
they are to be evaluated at E=O. One obtains
the series

Ep ——E&'[1—(E&'/e) i+0.8447(E&'/e)
.—0.6666(EP/e)'+

where
s =. . Ti,'/(Mr 0').

(9)

(10)

The above series gives the virtual level for an
assumed range in terms of the virtual level for
zero range. For zero range, Z~=Z~', and the
virtual level has a fairly direct physical meaning:
for vanishing range of interaction the position of
the virtual level determines o~(E=O) in' the
same way as the binding energy (—E3) deter-
mines o3(E=0).
Numerical formulae

Using the values of the fundamental physical
constants as given by B. T. E., p. 1022, one may
rewrite Eqs. (5) and (7) in a form convenient

This definition may be compared with the con-
dition for the stable 'S normal level of .the
deuteron, namely

[(M(D,+E,)/0') pro 1 cot
X [(M( 3+Ea)/fP) l O] = —(M( —Es)/5') l

From Eq. (6) one finds

sin'Xp~

for numerical computation, if the range is kept
fixed and the energy is varied.

5.21X10-24
eg ——(A'/ r7) sin' Zpa ——

(E' —Eg) Mev

X[1+xa+0 5947xa'+0. 2566xg'+0. 0880xg4

+ . +yg( —0.25xP —0.2320x,' —0.1295x,4)

+0.029873 x34+ ~ ~ j cm', (11)

5.21X10 "
o &

= (A'/x) sin' Xo ~
——

(E'+E,) Mev

X[1—xi+0.5947xP —0.2566xP+0.0880x~'

+ +yg( —0.25xP+0.2320xP —0.1295xi')

+0.0298' 'x 4 ~ j cm' (12)

The fundamental physical constants are in-
volved only in the number 5.21X10 '4 cm'. The
pure numbers occurring inside the square brackets
are independent of these constants. Graphs of
the square brackets against energy are suffi-

ciently linear to allow graphical interpolation.
In each case the square bracket represents a
correction for the range of force.

Using Eg= —2.17 Mev, and o(thermal) =14.8
X10 "cm' reported by Simons, "one finds, with

ro ——e'/ c'rn, the value E&=0.0978 Mev for the
position of the virtual level, while for zero range
E~'= 0.112 Mev. For these values of rp,

and B3,

5.21X10-'4
0'3 = [1.974 —0.1880yg

(E/2+2. 17) Mev

+0.00513'P — ]cm2; (13)

5.21X10-24
o t —— [0.8738 —0.00413'~

(E/2+0. 0978) Mev

+0.0000104'~' — $ cm'; (14)

y3= 1+E/4.34; yg
——1+E/0. 1956.

These series have been checked against exact
solutions. For E(10 Mev, Eq. (13) gives results
less than one percent too small, and Eq. (14) less
than one percent too large. For X=12 Mev,
0 (exacts) 0 789 X 10 " cm'; e(series) 0.780 X10
cm'-. In Fig. 1, e, a~, and e3 are plotted, using the
above series, in the energy range 0—16 Mev.

"L.Simons, Phys, Rev. SS, 792 (1939).
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determining the term in cos 0 in an analysis of
the scattering cross section per unit solid angle,
in the center of gravity system, in powers of
cos 8.

Taking into account s and p waves only, one
obtains for the cross section per unit solid angle
in the center of gravity system

3(A)P
p (8) —

l l
sin' Zpp'

4 E2pr)

lg IV1ev

FIG. 1. Abscissae: energy of incident neutrons in Mev.
Ordinate: neutron-proton scattering cross section for
square well according to Eqs. (13), (14), with range
r0=e'/mc'. Only the effect of s waves is included. Curves
e1,e3 are for singlet and triplet states, and e =e1/4+3e3/4.
Experimental points: A—Aoki; 8—Booth and Hurst;
C—Ladenburg and Kanner; D—Zinn, Seely and Cohen;
E—Salant, Roberts and Wang.

With the same values of rp, E~ and E3, one
finds Di 11.52 ——Mev, D p

——21.0(2) Mev for
the well depths; and a~ ——1..918&(10 " cm,
a3= —0.585)&10 "cm for the intercepts.

The s wave scattering cross section for a square
well with rp e'/mc' is——plotted in Fig. 1 as a
function of the energy. The experimental value
for the point Z includes an unknown amount of
d and p scattering. Estimates regarding the latter
will now be discussed.

5
+6 sin Epp —cos (5p Zpp) sin 8p

9

3
+—cos (8i —Zpp) sin 5i

9

1
+—cos (8p —Zpp) sin 5p cos 8

9

+(5 sin 8p+3 sin' 5i+sin' 5p) cos' 8

3 1
+ ——(sin 8,—sin 8p)' ——(sin 5p —sin 8p)'

3

8g —8g—3 sin 6~ sin 62 sin'
2

~p-~2——sin 8p sin Sp sinP —(3 cos' 8 —1)
3 2

+-l —
l

»n'Epl+6sinEplcos(Z1 Epl)

P-SCATTERING

The quadrupole moment of the deuteron indi-
cates that nuclear potentials contain terms of the
form f(r)[3(air)(spr) —r'(Oiep) j so that different
phase shifts are expected for 'Pp, 'P~, 'P2. The
phase shift analysis of the experimental data
must be made, therefore, taking into account the
differences of these three phase shifts. It must
also be modified" to take account of the fact
that a d wave arises out of the s wave, and that
for this d wave the angular distribution contains
no terms in (3 cos' 0 —1)', but only terms in
(3 cos' 8—1). The usual formulas for the angular
distribution are not applicable, and the general
formulas are complicated. Nevertheless it is
possible to look for the effects of the p wave by

'2 J. Schwinger, Phys. Rev. 55, 235 (1939).

)&sin Ei cos 8+9 sin' Ei cos' 8 . (15)

Here bp, 5&, b2 are the phase shifts for Pp,
'P2', and X~ is the phase shift for 'P~. The part
of the expression in curly braces with the coeffi-
cient 4 is due to triplet scattering. The s phase
shifts for triplets and singlets are Kpa, Epi,
respectively. The last set of terms due to triplet
scattering contains the factor (3 cos' fj 1). —
These terms do not vanish for 8=m/2 as is the
case for bp

——b~ ——82. The necessity of terms of
this type may be seen by considering the special
case bp/0, 8~=8~=0. The terms in sin' 8p cos' 8

are then seen to cancel as they should since the
Pp part of the incident wave has no total
angular momentum. The interference term in
sin %pa sin bp cos 0 is present, however, in agree-
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ment with the fact that the 'S» part of the
incident wave has an angular momentum. The
terms in 3 cos' 8—1 =222(cos 8) do not alfect the
integral of the cross section over all solid angles,
and thus have no inHuence on absorption meas-
urements. Since the d wave which is coupled to
the s wave also gives rise to a term in P2(cos 8)
for a.(8) it is presumably not practical to try
to disentangle these two contributions. The
terms in cos 0 are, on the other hand, not affected
by the d wave, and can be used as a direct test
of a combination of effects of Bo, b», b2, E'». Using
the neutral form of theory given by Bethe, with
p, = 177 m, numerical integrations for 8= 16
Mev give 80 = —18.7, 8» =23.7, 8g = —5.2',
E» ——10.7'. For these values of the phase shifts
one has as the combined effect of s and p waves:

4~a(8) = [1+0.56 cos 8+0.62 cos' 8
—0.17(3 cos' 8 —1)jX0.58X10 "cm'

Here the first term in brackets represents the
combined effect of 'S and 'S. The term 0.56 cos 0

is due to the interference between s and p waves,
and the last two terms in brackets are due to the
p waves. The contribution to 4s.a(8) in cos 8 is,

0.3(2) X10 "cos 8 cm'

which can be compared with the experimental
value

o =0.6X10—'4 cm'

for the a,verage over solid angles of 4m a(8). The
analysis of a(8) into powers of cos 8 may be
expected, therefore, to show an appreciable
term in cos 8.

The above effect is sensitive to the range.
Using a meson mass p 330 m numerical integra-
tions give bo = —6.1', 8» =3.7', b2 = —1.8',
Ej=4.0 . For these values the terms in cos 8

contribute 0.1X10 "cos 8 cm' to 4~a(8),
which is about —', of the amount for the cosmic-
ray mass of the meson and at the maximum
of the solid angle average. The effect is obviously
sensitive to the range of force; the important
contributions to the p phase shifts come roughly
from the regions r =5/pc to r= 3k/pc The e6'ect.
is not sensitive to the choice of the method of
"cut-oH" ("straight" or "zero").

The presence of p scattering affects e. The con-
tribution to e at Z = 16 Mev due to the p wave
is 0.12X10 '4 cm' for p, =177 m and 0.007X10—"

cm' for p =330 m, in a total of 0.6X10 '4 cm'
For the cosmic-ray mass of the meson one
should, therefore, decrease the experimental
value by ~20 percent at 16 Mev in order to
obtain the net effect of the s and d waves. For
the proton-proton range of force the correction
is of the order of one percent and is insignificant.
The interaction of 'P2 and 'G2 has been neglected
above.

Effect of p wave

APPENDIX I

~ikzS &ikzS ~ikzS

with weights of -', for each. Here S», So, S» are
spin functions for the two particles corresponding
to magnetic quantum numbers 1, 0, —1. The s
and p parts of the above waves can be expressed
in terms of linear combinations of products of
angular and spin functions corresponding to the
states 'Po, 'P», 'P2. Thus, for example,

pe' *Sy = FpSy+f(12~)~F&L( P2)&+( P&)&J/2**.

Here ('P;) is an angular-spin function for a 'I'
state with total angular momentum j and mag-
netic quantum number m. The normalization is
such that the integral over all solid angles of
the sum over spin coordinates is unity. The
customary notation for Fo, I'» is used. ' The inter-
action between the particles changes the differ-
ential equations satisfied by the radial factors.
For 'Po, 'P» there are then separate differential
equations. For 'P~ there is besides a coupling to
'G2 which is neglected here. The scale with which
the radial solutions must be introduced in place
of Iio, F» must be chosen so that the resultant
wave is haik'+part in e'&. For large p this condition

The usual scattering theory must be modified
if the phase shifts are different for 'Po, 'P», 'P2,
'P». Since the meson interaction energy is
diagonal in the spin of the two particles the
incident wave may be considered as a statistical
mixture in the proportions 4, 4 for singlet and
triplet states. The cross section is then ob-
tained as

a(8) =ha~(8) +4a3(8).

For o~(8) the usual considerations apply. For
a.3(8) the incident wave may be considered as a
statistical mixture of the three states
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determines completely the form of the radial
functions in terms of the phase shifts. "Thus for
instance Fo ——sin p is replaced by

sin p+e'&o+~o» sin Zpo.

Proceeding in this way one obtains

(pe"*5~)„=e'&&+~o"sin ZooS&

+(12or)&e'&(2 '(oPo) ie"o sin 8o

+2 l(oPg)ge'" sin b, I;
(pe'"'So),.= e "o+~oo& sin ZpoSp

+ (12or)~e'& ( (2/3) '*(oPo) pe" sin 6o

—3 '('Po)oe"o sin 8oI;

The meson potential responsible for the p waves
is large at small r, but the phase shifts are small.
In such cases a transformation of the radial
equation is useful. This is first put in the form

d'8/dx'+go'(x) 8+g '(x)$ = 0

where x is r expressed in convenient units (such
as fl/pc in the present case). It is supposed that
the solution of

d'F/dxo+ g oo(x) F=0

is known, and the problem is to calculate the
phase shift Z of g relative to that of F. Intro-
ducing

(Pe' o' 5&), =e'"+~o" sin ZpoS &

+(12or)&e'& I 2 &(oPo) ~e~' sin 8,

—2-i(oPg) pe~' sin bg}. one finds

trd@ dF p
s=F'~

&Pdx Fdx)
(II.1)

Here the index s|, means that the contribution
to the scattered wave due to e" is taken. The
choice of signs of the linear combinations in
('P;) is made so that

('Po) o ——I', '5 ('P,),= 2—o( Y'roSg+ I' 'Sp) .

(oPo)o ——3 l(I'g 'Si —I'/So+ I'g 'S r).

—+—+~'gi'=0;
dx I"'

—x/p
tan E=

(1/n) + (xG/p F)

One also has

(II.2)

(II.3)

The functions Yl. are angular functions normal-
ized to unity for integration over solid angles.
The orbital angular momentum and magnetic
quantum numbers are, respectively, L, m. The
function I'P= (3/4or)& cos 8. The others are de-
termined by the requirement that the angular
momentum matrices have the standard form. "
A comPutation of oZ„((Pe'o*S—„)„,(Pe'o*S„)„),
with the scalar product applying to the spin
coordinates only, gives the contribution to the
triplet scattered wave which corresponds to the
cross section used in the text (Eq. (15)).

AI PENDrx II.
Calculation of small phase shifts due to concen-

trated potentials

If the potential causing the phase shift is
suSciently small, Taylor's formula is convenient.

"N. F. Mott and H. S. W. Massey, Theory of Atomic
Collisions (Oxford Press, 1933), Chap. II.

'4 E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Cambridge Press, 1935}.

d (1 xG) F'gg'—
I
-+-- I=

dxEs p FJ
(II.4)

Eq. (II.2) is used to obtain g by numerical
integration. The occurrence of I"'gP is convenient,
since in Taylor's approximation J'F'g &'dx is
proportional to E. The method has an apparent
disadvantage if the potential in addition to
being large in absolute value locally has also
moderate values over an appreciable distance.
One must then play safe and integrate to
sufficiently large x. If there is any phase shift the
term in vP/F' in Eq (II.2) .makes q variable.
It is then convenient to use Eq. (II.4) because
(a) the desirability of carrying the integration
farther can be judged by estimating J'F'gPg 'dx
which determines the relative change of the
denominator in Eq. (II.3); (b) a numerical check
can be obtained by carrying the integration of
Eq. (II.2) to two large values of x and checking
by means of Eq. (II.4) the two values of
1/g+xG/pF.


