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The charge distribution, the electromagnetic field and
the self-energy of an electron are investigated. It is found
that;, as a result of Dirac's positron theory, the charge and
the magnetic dipole of the electron are extended over a
finite region„' the contributions of the spin and of the
fluctuations of the radiation field to the self-energy are
analyzed, and the reasons that the self-energy is only

logarithmically infinite in positron theory are given. It is
proved that the latter result holds to every approximation
in an expansion of the self-energy in powers of e'/hc. The
self-energy of charged particles obeying Bose statistics is
found to be quadratically divergent. Some evidence is
given that the "critical length" of positron theory is as
small as h/(mc) exp (—hc/e').

I. INTRODUCTION AND DISCUSSIONS OF

RESULTS

~ 'HE self-energy of the electron is its total
energy in free space when isolated from

other particles or light quanta. It is given by the
expression

W= T+ (l./87t) ~"(H'+8')dr.

Here T is the kinetic energy of the electron; II
and E are the magnetic and electric field
strengths. In classical electrodynamics the self-
energy of an electron of radius e at rest and
without spin is given by W mc'+e'/a and con-
sists solely of the energy of the rest mass and of
its electrostatic field. This expression diverges
linearly for an infinitely small radius. If the
electron is in motion, other terms appear repre-
senting the energy produced by the magnetic
field of the moving electron. These terms, of
course, can be obtained by a Lorentz transforma-
tion of the former expression.

The quantum theory of the electron has put
the problem of the self-energy in a critical state.
There are three reasons for this:

(a) Quantum kinematics shows that the radius
of the electron must be assumed to be zero. It is
easily proved that the product of the charge
densities at two different points, p(r —(/2)
Xp(r+(/2), is a delta-function e'8($). In other
words: if one electron alone is present, the
probability of finding a charge density simultane-
ously at two different points is zero for every.
finite distance between the points. Thus the
energy of the electrostatic field is infinite as

W, &
——lim~, D~e'/a.
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(b) The quantum theory of the relativistic
electron attributes a magnetic moment to the
electron, so that an electron at rest is surrounded
by a magnetic held. The energy

U „=(1/8~) tH'dr

of this field is computed in Section III and the
result is

U „=e'h'/(6s. m'c'a').

This corresponds to the field energy of a magnetic
dipole of the moment eh/2mc which is spread
over a volume of the dimensions a. The spin,
however, does not only produce a magnetic field,
it also gives rise to an alternating electric field.
The closer analysis of the Dirac wave equation
has shown' that the magnetic moment of the spin
is produced by an irregular circular Auctuation
movement (Zitterbewegung) of the electron
which is superimposed to the translatory motion.
The instantaneous value of the velocity is always
found to be c. It must be expected that this mo-
tion will also create an alternating electric field.
The existence of this field is demonstrated in
Section III by the computation of the expression

U, i
——(I/Ss) t Z, 'dr.

There Z, is the solenoidal part (div. Z, =0) of the
electric field strength created by the electron.
The fact that the above expression does not
vanish for an electron at rest proves the existence

i E. Schroedinger, Berl. Ber. 1930, 418 (1930),



of a solenoidal 6eld2 apart from the irrotational
electric 6eld of the charge. The energies of the
electric and magnetic 6elds of the spin are found
to be equal. The spin movement does not, of
course, give rise to a radiation. The time average
of the Poynting vector is zero.

The electromagnetic 6eld of the spin does not
conti lbutc to the self-cncI gy of thc electron. It ls
shown in Section IV, that the charge dependent
part of the self-energy to a 6rst approximation is
given by

Here p and i are the charge and current densities,
p and A are the scalar and vector potential, re-
spectively. If the self-energy is expressed in terms
of the 6eld energies, the electric and magnetic
parts have opposite signs, ' so that the contribu-
tions of the electric and of' the magnetic 6elds of
the spin-cancel one another.

(c) The quantum theory of the electromagnetic
held postulates the existence of 6eld strength
Auctuatlons ln empty spRcc. These glvc I lsc to an
additional energy, which diverges more strongly
than the electrostatic self-energy. The following
crude calculation may demonstrate how this par-
ticular part of the self-encrgy arises: Let us
consider an electron with radius a. The 6eld
fiuctuatlons ln R vol ulTlc 6 al c of the OI dcr
E' hc/a4 4The mea.n frequency of the fluctua-
tions is I c/II. This field induces the electron to
perform vibrations with an amplitude x eA/mI'
Rnd Rll ellel'gy WII„~I~c A /mv ~8 II/mcQ . Tllls
energy dlvclgcs quadratically fol ln6nltc1y small
radius. The exact value is calculated in Section
IV and is WII,l =limI =Die'h/Irmcli'.

A new situation is created by Dirac's theory of
the positron: The self-energy diverges only loga-
rithmically with in6nitely small radius. This fact

'A solenoidal electric 6eld is necessarily an alternating
6eld for Its 'time average vanIshes In a statlonaly state,
wherea~ the time a~erage of a magnetic 6eld does not
vanish if stationary currents are present.

~ This at 6rst sight unfamiliar result is connected with the
we11-known fact that a system of steady currents increases
its magnetic 6eld energy if it performs mechanical work,
whereas a system of charges decreases its 6eld energy by
performing mechanical work.

4 The Buctuations are of the order of magnitude of the
6eld-strength of one light quantum with wave-length.

has been proved' only for the 6rst approximation
of the self-energy expanded in powers of 8'/Iic.
However it will be shown in Section VI that the
divergence is logarithmic in every approximation.
The main purpose of this paper is to show the
physical signi6cance of the logarithmic diver-
gence and to demonstrate the reasons of its
occurrence.

Let us consider the case of one electron em-
bedded in the vacuum as described by the posi-
tron theory. The va, cuum is represented by the
state in which all negative energy states are
611ed with electrons. The charge density of these
"vacuum electrons" is not observable in the un-
perturbed state of a 6eld-free vacuum. However,
the diRerences between the actual density and

—the unperturbed density are observable.
The presence of an electron in the vacuum

CRuscs R consldcrRble chRngc ln thc distribution
of the vacuum electrons because of a peculiar
CRect of the Pauli exclusion principle. According
to this principle it is impossible to 6nd two or
more clcctlons in a single cell of R volume h ln
the phase space. If two. electrons of equal spin
are brought together to a sInall distance d, their
momentum difference must be at least Il/d. This
cAcct ls similar to R lcpUlslvc fol cc which CRuscs
two particles with equal spin not to be found
closer together than approximately one de Broglie
wave-length.

As a consequence of this we 6nd at the position
of the electron a "hole" in the distribution of the
vacuum electrons which completely compensates
its charge. But we also 6nd around the electron
a cloud of higher charge density coming from the
displaced electrons, which must bc found one
wave-length from the original electron. The total
effect is a broadening of the charge of the electron
over a region of the order II/mc as it is indicated
schematically in Fig. 1. The product p(r —g/2)
Xp(r+ g/2) 18 110 loliger tel 0 for R flIllte distance
g, and is given by the function

ssci 8
G(p) =8'————IIO&I &(I'mc$/II)

lI $ 8$ 2n.

(Section II).Here IIOII&(g) is the Hankel function
of fil st kind. G($) has still R quadratic slllgularl'ty

' V. Keisskopf, Zeits. f. Physik 89, 27 (f934); 90, 81'7
(1934).
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for & =0. It is shown quantitatively in Section II,
that this broadening of the charge distribution ig

just sufficient to reduce the electrostatic self-
energy to a logarithmically divergent expression.

The broadening effect also changes the mag-
netic field distribution of the spin moment. In
positron theory the magnetic field energy is
given by

U,z
——lim i, 0& I e'Ii/(2m. inca')

e'—mc/(4mb) lg (h/mca) j. (2)

This is equal to the field energy of a momentum
distribution spread over a finite region, which is
proportional to the spread of charge described
above. The divergence, which is less strong than
in the one-electron theory, ' comes from the
quadratic singularity of the distribution. The
electric field energy of the spin, however, is not
equal to the magnetic field energy because of the
following effect, which is again based upon the
exclusion principle. The vacuum electrons which
are found in the neighborhood of the original elec-
tron, fluctuate with a phase opposite to the phase
of the fluctuations of the original electron. This
phase relation, applied to the circular fluctuation
of the spin, decreases its total electric field by
means of interference, but does not change the
magnetic field of the spins since the latter is due
to circular currents and is not dependerit on the
phase of the circular motion. Thus the total
solenoidal electric field energy is reduced by
interference if an electron is added to the vacuum.
The electric fieM energy U, i of an electron in
positron theory is therefore negative since it is
the difference between the field energy of the
vacuum plus one electron, and the energy of the
vacuum alone. The exact calculations of Section
III give U,j= —U,g. Thus the contribution of
the spin to the self-energy does not vanish in
positron theory and is by Eq. (2)

W„= —2U „=—1'

—e'mc/(2irh) lg li/(mca) J.
The broadening effect cannot, however, be ap-

plied'to the energy g fi„,&, which is the energy of

' We use the term "one-electron theory" for the descrip-
tion of the electron by means of the Dirac wave equation
without filling up the negative energy states, in order to
distinguish it from the "positron theory. "

Fio. Ia. Schematic charge distribution of the electron.

F&G. ib. Schematic charge distribution of the vacuuIn
electrons in the neighborhood of an electron.

the action of the electromagnetic field Auctua-
tions upon the electron. The effect of an external
field upon an electron in positron theory is to a
first approximation the same as one expects for
an electron with infinitely small radius, since the
effect of the field upon the displaced vacuum
electrons can be neglected. For instance, no
destructive interference effect would occur in the
interaction with a light wave whose wave-length
is smaller than k/mc. The exclusion principle does
not alter the interaction of an electron with the
field as long as one considers that action to a
first approximation to be the sum of independent
actions at every point; it has only an effect on
the probability 'of finding one particle in the
neighborhood of another.

The energy W'fight& in positron theory is there-
fore not different from the same quantity in one
electron theory as shown in Section IV. In the
former theory, however, it is balanced by the spin
energy W, ~ the most strongly divergent terms of
which are just oppositely equal to 8'i& .~. The
sum of S;~ and TV~i„,~ is only logarithmically di-

vergent.
Thus according to positron theory the seH-

energy of an electron. consists of three parts:
(a) The energy W„of the Coulomb field, which

diverges logarithmically because of the character-
istic spread of charge.

(b) The energy W, i, of the oscillatory motion
which produces the spin. This energy, although



ELECTROMAGNETIC F I ELD OF THE ELECTRON

zero in the one-electron theory, is negative and
quadratically divergent in the positron theory.
This is because of the negative contribution of
the magnetic field and the interference effect of
the electric field of the vacuum electrons.

(c) The energy Wii„,i of forced vibrations
under the influence of the zero-point fluctuations
of the radiation field. The energies (b) and (c)
compensate each other to a logarithmic term.

It is interesting to apply similar considerations
to the scalar theory of particles obeying the Bose
statistics, as has been developed by Pauli and
the author. ~ Here the probability of finding two
equal particles closer than their wave-lengths is
larger than at longer distances. The effect on the
self-energy is therefore just the opposite. The
influence of the particle on the vacuum causes a
higher singularity in the charge distribution
instead of the hole which balanced the original
charge in the previous considerations. It is shown
in Section V that this gives rise to a quadratically
divergent energy of the Coulomb field of the
particle. Thus the situation here is even worse
than in the classical theory. The spin term
obviously does not appear and the energy W«„.&
is exactly equal. to its value for a Fermi particle.

A few remarks might be added about the
possible significance of the logarithmic divergence
of the self-energy for the theory of the electron.
It is proved in Section VI that every term in the
expansion of the self-energy in powers of e'/hc

(3)

diverges logarithmically with infinitely small
electron radius and is approximately given by

W(~& s„mc'i(e /hc) "[lg (h/mca)q' $~n

Here the s'„are dimensionless constants which
cannot easily be computed. It is therefore not
sure, whether the series (3) converges even for
finite u, but it is highly probable that it converges
if b=e'/(hc) lg (h/mca) (1.One then would get
W=mc'0(8) where 0(5) = 1 for a value of 5 (1.
We then can define an electron radius in the same
way as the classical radius e'/mc' is defined, by
putting the self-energy equal to mc'. One obtains
then roughly a value a h/(mc) exp (—hc/e')

~%. Pauli and V. Wisskopf, Helv. Phys. Acta 7, 'l09
(&9S4}.

which is about 10 " times smaller than the
classical electron radius. The "critical length" of
the positron theory is thus infinitely smaller than
usually assumed.

The situation is, however, entirely different
for a particle with Bose statistics. Even the
Coulombian part of the self-energy diverges to a
first approximation as W, i e'h/(mca') and re-
quires a much larger critical length that is
a=(hc/e') 1 ~ h/(mc), to keep it of the order of
magnitude of @ac'. This may indicate that a
theory of particles obeying Bose statistics must,
involve new features at this critical length, or at
energies corresponding to this length; whereas a
theory of particles obeying the exclusion prin-
ciple is probably consistent down to much
smaller lengths or up to much higher energies.

II. THE CHARGE DIsTRIBUTIQN oF
THE ELEGTRoN

The charge distribution in the neighborhood
of an electron can be determined from the
expression

G(g) =
J p(r (/2)p(r+ (/2)dr . (4)

here p(r) is the charge density at the point
r G(g) i.s the probability of finding charge simul-
taneously at two points in a distance (. If ap-
plied to a situation in which one electron alone
is present, direct information can be drawn from
this expression concerning the charge distribution
in the electron itself. The charge density is
given by

where P(r), the wave function, is a spinor with
four components P„, p= 1, 2, 3, 4. We write

. for the scalar product of two spinors. r is the
charge density of the unperturbed electrons in
the negative energy states which is to be sub-
tracted in the positron theory. In the one-
electron theory o is zero. The wave function P
can be expanded in wave functions y, of the
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stationary states g of a free electron'.

P(r) = Pa, q, (r). (6)

momenta p of the states, the following result:

exp f(E p)/h
G(t) = e'~ "dp- — = e'~(f) (11)

8m'h'

The following relation holds for the qq

{q*,(r) q, (r) }=1/1',

where V is the total volume of the system. We
denote functions with positive energy values by
p+q and with negative energy values by p q.

We apply the method of quantized waves and
consider the P's as operators acting on eigen-
functions c( ~ ~ N, ~ ~ ) whose variables are the
numbers N, of electrons in different states g. If
the P's are written in the form (6), the a's are
operators which fulfill the well-known relations:

aq*aq ——Nq, aqaq*=1 —Xq.

We now insert (6) into (S) and (5) into (4) and
keep only terms which contain the products of
two a's of the form (8) or the following com-
binations of four u's:

aq aqaq aq =NqN, ,

a o+a o a o
+a

o
=N o(1 No ) . —

All other combinations do not contribute to the
expectation value C(g) of G(&) because they have
no diagonal elements. We obtain then

G(f) =e'P PN, N, +e'Q PN, (1—N, )
q q'

X)
t {q, "(ri)q, (ri) } {q, *(r2)q, (r~) }«

2oe+N, +o'V—. (10)

Here and in the following formulas we put
r~ ——r —$/2, rm ——r+ (/2.

We first apply this expression to a single
electron. We then put r = 0, and Nq = 1 for
g= go Nq= 0 for q&go .'

G(j) =eP~ {q o,*(r~)q, (r~) } {q,*(r2)po, (r2) }dr.

This expression can be evaluated by inserting
the wave functions of a free electron. If go is the
state of an electron at rest, one obtains after
replacing the sum over q by an integral over the

Thus in the one-electron theory, G($) is equal to
the b-function.

We now apply (10) to the vacuum of the
positron theory, that is, we set

N+, 0, ——N ,=1, o =+No.

It is easily seen, that the first, the third and the
fourth term cancel each other. The terms
remaining give

G-.(k) =e'2 Z {q-o *(ri)q+. (r~) }
+q —q' &

x{q,*( )q-, ( )}d

The fact that this expression is different from
zero and even infinite in the vacuum is closely
connected with the charge fluctuations of the
empty space which have been investigated by
Heisenberg and Oppenheimer. Heisenberg has

. shown that the charge fluctuations are infinite if
the region in which they are measured is sharply
limited. This result is due to the electron pairs
produced when the charge is measured in a
sharply defined region.

We are at present interested in the expression

G(f) corresponding to the charge distribution of
one electron. This can be obtained by calculating
G „+&($) for the state in which one electron in

the state+go is present (N„=1 all other N+, =0,
N, =1), and by subtracting the effect of the
vacuum G„.,(]):
G(&) =G-.+~(&) G-.(f) —=

e'(2 —2) l {qoo (ri)q, (ri)}{q.*(r2)q'4(r&)}dr
+

If one inserts the actual solutions yq of Dirac's
wave equation of the free electron, this expression
can be readily evaluated. One obtains after re-

placing the sum by an integral as before:

exp ~(6.p)/&
G(]) =e'mc' ~ dp; (12)

8~3&'Z (p)
W. Heisenberg, Verh. d. Sachs. Akad. 86, 317 (1934);

J. R. Oppenheimer, Phys. Rev. 4V, 144 (1934).
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here Z(P) =c(p'+m'c')l. This integral can be
evaluated and gives:

mc1 8 i (imc
G(k) = e'

It $8)2~ E tt )
Hot'~(x) is the Hankel function of first kind;

this function has a logarithmic singularity for
x=0 and falls off exponentially for x»1. We
obtain thus

and gives rise to transitions from any occupied
state g' to any unoccupied state q. These transi-
tions take place quite independently of the ratio
of h/k to the linear dimensions tt/mc of the
spread of charge.

The energy W, & of the electrostatic field can
be calculated directly from G($):

, tG($)
W. t,

= —',) d g.

e' mc 1

4~'hP
(mc) '

e'] —
[ (tt/2s'mcP)t e

Eh)

for f«h/mc The quadratic singularity of G($) at &=0 gives
rise to a logarithmic divergence of W,&. By substi-
tuting (12) and by performing the integration
over ( first, we obtain the result

for )»h/mc. 4z' h'E(„)P'
This expression replaces the delta-function of the
one-electron theory and indicates a spread of
charge over a finite region of the order of h/mc.
It is of interest to construct a charge density p(r)
for which

)fp(r~) p(r, )dr =G($).

This density is given by

( mc' ) l exp i(g p) /It

&z(p) ) 8~'k'

and for

mc
r«b/mc: p e 25t'7r "'r '"—

;

a

for r»k/mc, p falls oK exponentially.
In order to show that this "spread of charge"

does not reduce the effect of a periodical field
with a short wave-length, let us consider the
operator

~fp(r) exp ik r dr,

which represents an interaction energy between
the charge and a field of wave number k. By in-

serting (5), this operator can be written in the
form

e' P+ (P'+m'c')1
=lim(p „) mc'1g, (13)

m-kc mc

or by putting P = tt/a, where a is a length giving
the "dimensions" of the electron, we get

k
Ws~ lim(. =o) rn'c' lg

Kkc mca

III. THE ELEcTRQMAGNETIc FIELD oF THE

ELEcTRQN

We calculate in this section the solenoidal part,
E, and H, of the electromagnetic field produced
by the electron. It is given by

1 aA, '
E,= —— —, H= curl A'.

c Bt

Here A, ' is the solenoidal part of the vector po-
tential A which is given by

1 p i(r', t
~
r —r'

~ /c)
A'(r, t) =—

c~

A is primed to indicate that this field is pro-
duced by the electron. The current density i is
defined by

i.= ec [f*n.P Jl, etc.

e+cq Gq, Pe'= Pe+&
Here 0.; are the well-known Dirac matrices. We
consider in our approximation the wave func-
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tions P to be the solutions of the wave equations
of the held-free electron. If we expand the wave
functions according to (6) we obtain

g ga,*a, {p,*(r't') n.p;(r't') }
ql

A, '(r, t) =e~~dr'
}r—r'}

{r r'}-
t'=t—

pq and Eq are momentum and energy of the
state g, U is the volume of the space considered,
u, is a normalized spinor. We obtain then for A, '

A.(r, t) =
2mek c {uq*n~uq~}cq*cq~ZE'

U q q'EqBqr —m c —c pq'pq'

X expig(p, —p,) x —(E, —E,)t]/h. (15)

The wave functions yq of the free electron are

1 1 .
yq= uq ex—p (ipq r— iEqt)—

v~

This divergent expression corresponds to the field

energy of a magnetic dipole density concentrated
in a sphere of infinitely small radius a. If one now
calculated expression (16) for the vacuum of the
positron theory (N+q ——0, N q=1) one obtains a
highly divergent expression which represents the
magnetic field energy U„„q(Vac.) producedbythe
current Ructuations of the vacuum. We are in-
terested in the field energy of one electron at rest
which is obtained by calculating U,„(Vac.+1)
for the state (N„=1, p„=0, E„=mc' all other
X+q ——0, N q= 1) and by subtracting the eA'ect of
the vacuum:

Umag= Umaq(Vac. +1) Umag(Vac. )

{uq,*n,u, } {u,*n,uq, }
=2~e'h'(Q —P)p '

+q —q m'(E, —m'c4)'

Averaging over the spin directions gives:

e2k2 r dp
U,g=z

m " Sm'O'E(p)

The field strengths can immediately be computed
from this expression. The time average of the
magnetic field energy, U „is found to be

1 e'
lim(g „) EPO-

27r mck mc

m'c' P+P p

lg
2

1
U, q

——— (curl A')'dr
8 J

e'k'c4+—g(p, p, )'—N (1—qX, )
2 q q

uq*nsuqr uqr*a uq
X (16)

LEqEq' m c c pq pq']

if one uses the relations (9). n, is the component
of e which is perpendicular to p, —p, We apply
this expression first to a single electron at rest
(Xq=1, g=gq', Xq=0, gWgp):

Here Pqis

defined

b Pq ——(P'+m'c')'*. This quad-
ratically divergent expression is just what one
would expect for the field energy of the magnetic
dipole density of the electron if this density is
equal to the charge distribution calculated in
the previous section.

In order to show directly, that this magnetic
field is equal to the "static" field of the magnetic
moment of the spin, we consider the magnetic
polarization (dipole density) M,

2mc

vr {uq,*n.u, } {u,*n.uq, }
Um'q ———e'h'Ppq'

2 q m'(E, —m'c4)'

e2jg2e2g' p dp
Umag = & = lim(a=o) (1&)

m'c'~ Sx'h' 2~ 3m'c'a'

One obtains after averaging over the spin
directions and replacing the sum by an integral:

and calculate the function

J(&) = I M(r P/2) M(r+P/2)dr, —

which corresponds to G(&) (see (4)) and which
provides information about the "spin distribu-
tion" in the electron. If one evaluates this inte-
gral by the method which is used in Section II,
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one obtains IV. THE SELF-ENERGY oF THE ELEcTRQN

t div. M(r, ) div. M(r2)
P 2 dr

~t

The self-energy is calculated in this section by
means of a method which is different from the
usual perturbation method, in order to outline the

which shows' that the spin is distributed in
physical significanc of the different terms. It is

~ ~ ~

exactly the same way as the charge The mag-
1 h h d 1 d h bl

netic field energy of this distribution is given by previously by the author. '
The Hamiltonian of a system of charged par-

ticles and their electromagnetic field can be
written in the form

and can be evaluated by the methods used for the
other calculations in this section and leads to the
expressions (17) for the one-electron theory and
to (18) for the positron theory. Hence we are
allowed to consider them as the Field energy of
the magnetic moment.

The energy of the solenoidal electric field

strength is given by

1 t' (aA, J 2

U&= &~

I } dr
8xc'~ E 8t )

1 (aA) ' & (aA, q'
I+ E IJ c'&, at& ', ~=&&ax, )

1 (a$'& '
——

I

—
}

—(grad 4)' &r
c'Eat )
r(+ 'I p@ iA—}«-

c )

+cP ~{/;*(» p, +Pmc)P;}dr

7r e'h'
ZZ(&, —&~)'

2 c2 c
The summation in the last term is performed over
all particles. The solutions of this Hamiltonian
are restricted by the condition{u,*o&,u, } {u, *n,u, }

X,(1 Nq ). —
$Z,B, m'c4 c'p, p, —5'—

Applied to a single electron at rest, this expression
gives

8k f 6P
U„=~ = ~mag '

m'c'J 8~3
1 f 1

3C=—' (8'+IV)« t p div. Z—d—r
8x 4m~

a&/at+c div. A=0.

By introducing the field strengths instead of the
potentials we obtain the expression

Applied to an electron at rest in positron theory,
one obtains; however,

U, &

——U,&(Vac.+1)—U, &(Vac.)

2me'A, "
(Z —2)(&.—mc') '

C +v

{ug,* u,»} {u,*»,ug„}X-
m'(E, —m'c4) '

and then

= —U .g (2o)
m ~ 8&r'h'Z(p)

The interpretation of this result is given in
Section I.

'The factor -', is s(s+1) for s=-', .

1
J' I py —-i'A

c

+cP {y,*(» p;+Pmc)y, }dr

This is equal to (1) if one uses the relations
div. E=47rp and

T=cg {P,~[» (p —(e/c)A)+Pmc5$}dr
e

The interaction energy

t(p&t& —(1/c)i A) =eH'
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between matter and field contains the electronic
charge e explicitly as a linear factor, so that in
the above notation FI' is explicitly independent of
e; BH'/Be=0. Let us consider the energy W, of
a stationary state s of this Hamiltonian. If the
electronic charge e is increased by de the Hamil-
tonian gets the additional term de H'. Accord-
ing to perturbation theory the increase of W, is
de(H')»„where (H')», is the time average of H'
in the state s, assuming that the electronic charge
has its original value e. We therefore get

e

W, = W, &"+ (EP(e) )»,de,
0

the relations

~4'- —4'= -«p
C

1..
c2

aod we obtain

W' =—
~' ((8'o)»y (H")»,)dx (i—A—p)»,dr.

8gV 2CJ

%e consider now the state s to be the state of an
electron at rest. The charge dependent part W'

of the self-energy can then be written in the form

where W, (') is the value of the energy for e=0.
We now expand H'(e) in a power series of e:

H'(e) =H'&'&+eFI'&'&+

and get from (21)

Here

W'= W.g+ W.p+ Wgl. .~.

1
W, =—~~E 'dr

8 J

(22)

g2

W.= W, &o&+e(H'&'&)„+ (EE'&»)»,+—
2

The second term is zero since W, cannot depend
upon the sign of e, and we obtain by neglecting
all terms containing e in a higher power than the
second

W'= W:—W.(')

is the static field energy of the irrotational field

E,t„' W,~ is defined by

W =—~((&")» (H")»)«—= fE.&
—U-p. (2~)

8m~

It contains the contribution of the field produced
by the spin and is calculated in the previous
section; W&l, & is the energy produced by the
Ructuations of the radiation field,

8 f'
=—(H'&'&)», ———(H')»„=-,' ~l ((&o@)»,——(i A)», )dr.

1
W«..p

————~i Apdr.
2c~

The potentials can be split into two parts

A=A, +A', 4 = 40+4'.

Ao and &0 are the potentials of the field when
oo electron is present. In empty space, Ao is the
potential of the zero-point oscillations and

&0——0. A' and p' is the field produced by the
electron. We then get

In order to calculate W~l„~, we divide i into
two parts i = io+i', where io is the current density
for the field-free case. The term J'ip ' Apdr

vanishes when averaged over the time because
of the absence of phase relations between io and
Ao. The remaining term

1
W&&„,p ————t i' Aodr

2c~

can be evaluated as follows:
i' is to a first approximation given by

——
~

(i Ao) „dr.
2c~

i'= {4o*«4&}+{4&*&p4o}.

Here Pp ——Zaoqo is the wave function unper-
The first term can be transformed by means of turbed by the field and P& is the first approxima-
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tion of the perturbed wave function: We have

4'& = Ert a pa 1

hach

(A o2)Av =—I' dk
q ~' can be calculated by means of the ordinary

perturbation method. The interaction energy
with an arbitrary field A is given by

and we get finally, on replacing k by k,d g fi lly, pl g k byp k,

(25)

—eeA= —en+[A&:&+& exp i(k. r+c
~

k
~
t)

+Ai&—
& exp —i(k r+c~ k~t) j.

e' cdp e' 1
Wi&„.i ———

~

=. —lim(p „&P'.
2&r'mc'~ k

~ p ~

irkc m

The sum is taken over all wave numbers k of
an orthogonal system of plane waves in the
volume V. If we write the wave functions y, of
the free electron in the form (14), we get for p, '

We now collect the results obtained for the other
parts of the self-energy of an electron at rest.
The one-electron theory gives LEqs. (11),
(23) (19)j

I u;*nu, }A&,
&+&

p,

'=earp'

e+icj kj t

s' Z, —Z, +ciki

e2

Wst =lim( =0)—
6

~sp = Uei —Umag= o.

Iu, .*uu, )A&, & &

e
—icjI;I t

~,-Z, -cfkj
kk= Ptf~ —Pg.

The positron theory gives (Eqs. (13), (23), (20))

e2

This expression is introduced into (24) and gives
for the current

i.' = PPX, I u,*n, u, . II u;*au, I

P', &
——lim(p ~) mc' lg

artcc

W, p ——U, ( —U .g ——

)
mc

A&+& expi(k r+c~k~t)
X

&,-&, +clkl
A& & exp i(k—r+c

~
k

~
t)

+ +conj.
Zq —B, —c(k)

We have retained only terms containing products
(8) or (9). It is seen from this expression, that
i' is the same in the one-electron theory and in
the positron theory. In the latter case we have to
consider i =i'(Vac +1) i.'(Vac—) The . .actual
value can easily be evaluated for an electron at
rest. One obtains

1 e'
i'= ———A

Vmc

1
Wii t= —t i Aodr=

2c&

e2

(A 0')A'
2mc

which is immediately understood as the forced
vibrations of a point charge under the action of
an oscillating field A. Wf&„,t is directly obtained
if one replaces A by the field fluctuations Ao of
the vacuum:

e' 1 m'c' P+P p—11m(p oo) PPO — lg
mhc m 2 Sic

TV p is partly balanced by 8'&&„.&. The tota 1

self-energy in positron theory is then given by

3 e5"=——mc'lim(p „)lg
2m hc

P+Po
+finite

terms.
(26)

The self-energy of a free electron in motion can be
obtained by a Lorentz transformation from (26). The
direct calculation from the above methods is ambiguous
because it leads to a difference of terms, each of which
diverges quadratically. The factor of the logarithmically
divergent difference of these terms depends essentially on
the way in which the infinite terms are subtracted. The cal-
culation of the self-energy of an electron at rest is not so
much exposed to these ambiguities because of the spherical
symmetry of the problem, which suggests only one natural
way of subtracting two divergent integrals over the
momentum space, namely, the subtraction of the con-
tributions of concentric spherical shells around the center.
It must be expected, that the value of the self-energy of a
moving electron can only be covariant to the value (26)
if one performs the subtraction appropriately. This is why
the expressions for the self-energy obtained in reference 5
are apparently not relativistically covariant.
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V. THE SELF-ENERGY OF A PARTiu. E OBKVING

THE BOSK-STATI STICS

It has been shown that the quan tization of the
scalar wave equation of Klein and Gordon leads
to a theory of elementary particles with Bose
statistics and charges of both signs. The theory
includes a description of pair creation and of all
related phenomena. The quantitative results are
not very different from the results of Dirac's
positron theory. The formalism has been re-
cently applied to particles with intrinsic angular
momentum. It will be shown here that the calcu-
lation of the self'-energy, however, gives results
quite different from the positron theory. The
energy of the electrostatic field of the electron is
found to be more strongly divergent than in the
classical theory; the energy of the radiation
held diverges quadratically and is equal to the
corresponding energy of a single electron in the
one-electron theory. The qualitative arguments
for this behavior are given in I. The following
calculation is based on the formulas derived
elsewhere. ~

The operator of the charge density is given by

p =ie(f*ir*—Pm),

where P is the wave function and ~r its conjugate
operator:

and obtain for

1'
p(s) =—

~ p(r) exp (—is. r)dr
y8

the following expression:

e Z(k) +Z(l)
p(s) = Z Ca*(k)a(l) —b*(k)b(l)]

2V i: [Z(l)Z(k)]*'

Z(k) —Z(l)
+—,Ca(k)b(1) —a*(k)b'(1)], (29)

[Z(k)Z(i) ]*'

where 1=k+s.
The a(k) and b(k) fulfill the relations

a*(k)a(k) =N(k), b~(k)b(k) = M(k),

a(k)a*(k) = 1+%(k), b(k)b" (k) = 1+3f(k).

The X(k)'s are the numbers of positrons, the
M(k)'s the number of negatrons in the states
with the wave vector k. The electrostatic self-
energy is given by:

, t p(r-0/2)p(r+(/2)
W.i = —',

) drdg

p( —s) p(s)
=2ir VQ

s $2

4 (r)~(r') —x(&')4(r) = &(&—&')

We introduce new variables by means of

P=—P q(k) exp ik r,

7r=—P p(k) exp ik r. —
I

Here 1/V' exp ikr form a set of orthogonal
functions io the volume V.

We further introduce

f Z(k) ) &

~(k) =
I I (.*(k)+b( )),

2 )
1

I
(a'(k) -b(k)),

(2Z(k) ]
Z(k) = c(k'k'+m'c') **

We obtain by introducing (29) and retaining
only the diagonal terms:"

n.e' '

1 (Z(k)+Z(l))'

2V i: ~ s' Z(k)Z(l)

X (~(k)PV(i)+1]+~(k)[~(1)+1])
(Z(k) —Z(1))'

+
Z(k)Z(l)

x yr( )m(1)+ pv(1 )+1][its(1)+1]) .

This expression does not vanish for the vacuum
(X(k) =M(k) =0 for every k). We calculate the
diEerence

W, i ——W,i(Vac. +1)—W.i(Vac.)

'0 The term s=o is omitted. It can easily be shown that
this term does not contribute for V~ ~.
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and assume that the particle is at rest:

e'h f. 1+2m'c'/h's'

16mc& (s'+m'c'/h') l

h x -Z2 m2c~
=e'——lim(p „) —+ lg

mc 4 k' k' mc

vanishes. The second part i2 is in the required
approximation directly given by

i2' = —2e'Aop*p.

We obtain then

Wffuot, = e'~~A, '/*/dr.

This is an expression which diverges quadrati-
cally. By putting P =h/a one obtains By introducing the new variables and retaining

only diagonal elements we findphd'W„=—mc'f
4 (mca

s2 N(k)+M(k)+1
Wfi. .~

=—(&0')a, p
2 ~ Z(k)

We now show that the particle does not produce
a solenoidal electric or magnetic field in the ap- and finally
proximation considered here. The current density

Wff t —Wf/ t(Vac. + ) —Wff t(Vac. )

1=1y+12)

i, =ihce(P grad. f*—P* grad. P),

i2 ———2e'Ap*p.

k+1
i(s) = ', hceP —-(a*(k)a(1)+b(k)b*(1)

[Z(k)Z(l) ]i
—a(k) b(l) —b(k) a(1)), 1=k+ s.

i~(s) is proportional to k+1 and i~ is therefore
irrotational for all transitions which start or end
with a particle at rest. (k+1 is parallel to s if
k=0 or 1=0). Thus iq does not produce a
solenoidal field. i2 is proportional to e' so that
its field does not come into consideration. The
particle does not give rise to a solenoidal field as
long as it is at rest since it has no magnetic
spin moment.

The remaining term of the self-energy is

1
Wn ca= ——i"i' Aodr.

2c~
(22)

i' is defined as the current density produced by
the field Ao. Here the first part i~' can be shown
to be again irrotational. The integral over the
product of i~' and the solenoidal vector Ao

We introduce the new variables (27) into i~
and get

i~=+i(s) expir s,

e2

(&0')A'
2mc

This is identical with the corresponding expres-
sion for the Dirac electron.

VI. THE HIGHER APPROXIMATIONS OF THE SELF-
ENERGY IN TEIE THEORY OF THE POSITRON

It will be proved in this section that the
successive approximations of the self-energy of
the electron vanish in the limit m~0. Further-
more it is shown that the divergence of the self-
energy is logarithmic in every approximation. "

We consider the total system containing the
electrons and the radiation field and calculate
the energy W(s) of the state s of this system.
W(s) can be expanded in a series of approxima-
tions W(s) = Z W'"'(s) corresponding to an
expansion in powers of the parameter e'/hc.
Since this procedure does not give zero for the
vacuum in Dirac's positron theory, the self-
energy of the electron must be defined as the
difference between the energy W(Vac. +1) of the
state in which one electron is present and the
energy W(Vac. ) of the vacuum alone. We confine
ourselves to the calculation of the electrodynamic

"Recently A. Mercier (Helv. Phys. Acta 12, 55 (1938))
has treated the same problem and has obtained a higher
divergence. As he dces not compute the numerical factors of
the divergent expressions, he cannot exclude a factor zero
for the highest divergent terms. The following considera-
tions, however, show that the highest nonvanishing terms
diverge only logarithmically.
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self-energy. The calculation of the electrostatic
energy and the mixed terms in higher approxima-
tion can be made along the same lines.

We now consider the detailed form of the nth
approximation S &"» of the energy of the state s.
S",~"» is a sum of terms containing a product of
2e matrix elements of the interaction energy
which correspond to consecutive transitions of
the total system from one state to another
starting from the state s and returning to it.
The terms have denominators that are products
of energy differences between the original state s
Rnd lIltcl mediate states.

The self-energy of the electron g &"» is given
by the difference

W'"'= W'"&(Vac. +1)—W&"'(Vac.). (30)

Ke now prove that TV&"»=0 for m=0 by com-
paring it with the self-energy of a positron
S"'&"» in the same state:

W""'= WI "&(Vac.—1)—W'"&(Vac.) = W"', (31)

which is equal to the self-energy of the electron.
There is no loss of generahty if we con6ne our
considerations to the self-cnclgy of Rn electron
at rest. The state (Vac.+1) is then specified by:
every negative energy state and the lowest
positive state s+0 occupied; (Vac. —1) means:

.every negative energy state except the highest
one s 0 is occupied. VA now show that

WI"'(Vac. +1)+W'"'(Vac. —1)
= 2 W& "& (Vac.) for m = 0. (32)

Comparing W&"&(Vac.+1) and W&"&(Vac.—1)
wl'tll WI I{VRc.) we Ilotlce:

(a) W&"&(Vac.—1) lacks all terms contalnlng
transitions o'f the electron in the state s 0.

(b) W'" (Vac.+1) contains additional terms
from transitions of the additional electron in

~+0

(c) WI"I (VRc. —1) coIltsllls Rddlt1onai 'ter Ills

from transitions of one of the vacuum electrons
into thc empty state s 0.

(d) W(~)(Va,c.+ 1.) 1Rcks ter Ills colltallllllg tran-
sitions of the vacuum electrons into the state s+0
of the additional electron.

We now prove that the missing terms of (a)
Rlld. (d) RIB 111 tile llllllt III~O Identical wltll tile
additional terms of (b) and (c), respectively.

The only difference between the pair (a)1 {b) and
tile pRII (c), (d) collslsts 111 tllB fRc't 'tllRt the
speci~ed tI"Rnsltlons stal't from a posltlvc ol
from a negative state, respectively. This fact
does not affect the energy differences in the
denominators in the limit m —+0, as in this limit
the energies of s+(1 and s 0 are equal. It remains
to show that the numerators are also unchanged.
This can be seen in the following way: the
transition matrix elements appearing ln the de-
nominator belong' to a chain of consecutive
transitions starting from Rnd returning to thc
initial state of the system. Thus the transition

of transitions of an electron starting from the
state s+o (or from s 0, respectively) and returning
to this state. The transition elements form the
pl oduct:

~~=
I P(~0)II 14 (PI) I I P(PI)~14 (Pl) I

X tO'V .—)~-O(~0) I

Here II; is the interaction energy with the hght
qoantum which is emitted or absorbed with the
ith transition and f(P,) is the wave function of
the electron with the momentum p; which
performs the transition. P(+0) is the wave
function of the state s+0 or s 0, respectively.
After averaging over the two spin states for
every momentum p;, this product can be written
Rs tI Rcc of thc following IIlRtllx '.

IK' Pl+PIIIC'1
8~=Trace HI -',

~
1+ .

( Hu
ZI

Here E;=&(pp+rIPc')& is the energy of the
wave function f(P;1. If we now go to the limit
m~0, all terms with p disappes, r except those
coIltRlnlllg the p 111 'tile las't pRreI1 thesis. (H; does
not contain the operator p.)" Since the trace of
every expression containing n'8 but only one P
is zero, we are allowed to omit the last also, and
it becomes evident that I'+ I' . From (30), (31)——

j' This conclusion does not hoM if one or more of the P&'s

are ~nsc. As 8'&") is an integral over all possible inter-
.mediate momenta p; in the volume V, the terms with one
or more p;~mr contain one or more factors (mc)3 so that
these contributions should be neglected.
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and (32) it follows directly that

W'"& =0 for m =0.

We now prove that this result infers a logarith-
mical divergence of W'"' for finite m. The terms
of W(") contain transitions in which n light
quanta are emitted and absorbed. We write
W'"' as an integral over the wave vectors
k& ~ .k of these light quanta:

P/h P/h

W(")= dkI' ' ' dk F ky' ' 'k 34
~ 0 0

and integrate to a finite limit P/k))mc/k in
order to make W"' finite. The properties of
F(ki . k ) are very simple for all p;»mc where

p; are as above the momenta of the electrons
which change their states in the transitions to
intermediate states (except of course the mo-
mentum pp=0 of the electron under considera-
tion in its initial state). It can be shown that
replacing every ki (I= I n) by ki'=xki gives

F(ki' . k ') =x F(kk k ) if p;»mc,

where N is an integer. This result may be under-
stood in the following way. By means of the
substitution ki' ——xki the momenta p; of the
excited electrons in the intermediate states are
also multiplied by a since the p; are sums or
differences of the momenta of the absorbed or
emitted light quanta. If now k &))mc, all momenta
p; involved are large compared to mc, and the
corresponding energies can be replaced by c

~ p; ~

.
This neglect of mc compared to p; has as con-
sequence that all energy differences E,—E; be-
tween the initial state and the intermediate
states are multiplied by x if one replaces k & by k &'.

Since all terms of W(") have 2n —1 energy
differences in the denominator, the latter is
proportional to x'" '. The numerators consist of
n matrix elements which form expressions like
(33). From the fact that every II„is proportional.
to k, & and from the structure of (33) it follows
that the numerators are sums of terms propor-

tional to x ", x " ' ~ x '". We get, therefore,

z=5n —1

F(ki' k „')= p c,x ' for p;&)mc.
z=3n—]

Not all of these c, need to be different from zero.
If c~ is the first coefficient different from zero,
we can write

F(ki' k ') =crx r=x rF(kk k„) (35)

because we certainly can neglect the terms with
s) $, which are smaller by the ratio (mc/p;) *—&.

We are now interested in the function W&"i(P).
The relation (35) is not valid in the entire region
of integration in (34). The regions in which the
conditions p;)&mc are not fulfilled are restricted
to certain small areas in the 3n-dimensional
space of the wave vectors kI k„. The con-
tributions of these areas can be neglected for
P))mc. We therefore get

P/h P/h

W»" (&:P) —=J dk, '
ji dk. 'k'(k, ' k„')

0 0

=x'" " W'i"'(P)+smaller terms.

The additional smaller terms come from the
regions of integration in which these considera-
tions are not applicable and from the neglected
terms. From this relation follows; that

(e2)" piki f' p) i

W&"' =c] —
) ( Ig —

)
mc'+ smaller

(kc J (mc) ~ ( mc) terms.

Here X=3n &, c —is a numerical factor and
O~t~n because any of the n integrations might
give rise to a logarithm. The factors mc are
applied in order to make the dimensions fit. It
was proved that

lim~. ,=p) W'"' =0.

This is only possible if N —0. This is equivalent
to the fact that W"' does not diverge stronger
than

)e'q" p Pq"
W'"&

(

—
f

mc'f Ig —
f

.
&kc& 4 mc)


