REFLECTION OF ELECTRONS BY METALS

where F is the ordinary hypergeometric function’
of four variables. Although the exchange integral
(14) is easily evaluated for a particular value of
n, we have been unable to obtain a simple, closed
expression for # generally. Table II contains the
results of energy calculations for the 1s3d and
1s4d configurations of He I, obtained with the
use of the hydrogenic energy integrals. The
agreement with experiment is excellent. Indeed,
the calculated 1s4d energies are slightly below the
experimental values, which is due to the departure
of the hydrogenic functions from exact orthogo-
nality. It may be noted that the parameter
w(4d), which would possess the value 2 if the
functions were exactly orthogonal, departs from
that figure only in the fifth decimal.
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TaBLE I1. Results for He 1 1s3d and 1s4d.

1s3d 1s4d 1s3d 1s4d
(3 3D) 2.00000 2.00003 u(31D) 2.00000 2.00002
W(33D)eqy 4.11114  4.06261 W(31D)ea  4.11109  4.06257
W(3D)egp 4.11126 4.06257 W3 D)exp 4.11123  4.06255

The wave functions derived in this investi-
gation have been utilized by one of us® to calcu-
late transition probabilities for a number of
lines of He I.

It is a pleasure to record our thanks to
Dr. P. M. Morse for his interest and guidance in
this problem, and to Dr. D. H. Menzel for many
valuable discussions of the properties of hypergeo-
metric functions.
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The specular reflection of electrons by metallic surfaces is considered. It is assumed that the
potential energy of an electron is constant (=— V) in the interior of the metal, and account is
taken of the image force acting on an electron outside the metal (Nordheim’s problem). The
reflection coefficient R is computed for the range of values of ¥ which is of interest in con-
nection with real metals, and for the range of values of energy of the electrons in which R has
appreciable values. In the Appendix there are given some values of the function IV(sy)/T'(iy),
for real values of y, which were computed incidentally.

1. INTRODUCTION

HE chief purpose of this article is to give the

results of some numerical calculations of
the reflection coefficient for a beam of electrons
impinging on the plane face of a thick metallic
body. We make use of the crude and simple
assumption that the potential energy of an
electron is constant in the interior of the metal,
and we take account of the electrostatic image
force acting on an electron outside the metal.
Most of the analytical features of the problem
have been discussed in an article by Nordheim {1

LL. Nordheim, Proc. Roy. Soc. London A121, 626-639
(1928). Unfortunately, Nordheim's article contains a
number of typographical errors, which render the formulae

but his work was not carried to the point of
obtaining numerical results, such as are given
here.

2. GENERAL FORMULA FOR THE REFLECTION
COEFFICIENT

We employ a rectangular coordinate system,
and assume that the metallic body occupies the
space to the left of the plane x=0. The potential
energy of an electron at the point (x, v, 2) is
assumed to be given by the equations:

V(xv Y, Z) = VOr
= —¢?/4x,

unreliable. All formulae used in the present work have
been derived independently.

X=Xy,
X=Xo.
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Here e denotes the absolute value of the elec-
tronic charge; and x, is determined by the
equation Vo=e€?/(4x,), so that V(x, v, 2) is con-
tinuous. Vy is a positive parameter, the value of
which is to be selected in accordance with the
metal under consideration.

We confine our attention to electrons having
total energy E. One solution of the wave equa-
tion,

VA +ERAE—V)Y=0, k=8xm/h

for these electrons is represented by- the equa-
tions:

Y=DBiexp {tk[ —x(E,+ V,)?

+ Py +0:2)/2m)]},  x=x0, M
= [Asz, 5(5) +32W—x, %(— E)]
Xexp [ik(pyy+p.2)/(2m)t], x=x,.

Here p, and p. denote arbitrary constants, and
the symbols E,, £ and \, are defined by the
equations
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E,=E— (Py2+Pz2)/(2m)y
£ =2ikxE,},
N= —1ke?/(8E.}).
The symbols W, ,(£) and W_,, ;(—£) denote the
usual confluent hypergeometric functions.? The

three constants Bi, 4., and B, are subject to
the two. relations,

"Biexp [ —ikxo(E.+ Vo)}]

=AW, 1(2tkxoELY) +BoW_y, 1(—2ikxoELY),
— (B4 Vo)iBrexp [—ikxo(E.4+ V)] (2)
= ZEE%[A QW’)\, *(Zikonﬁ)

——BZW/_)\, g(“Z%konﬁ)],
which are consequences of the requirement that
the functions ¢, dy/dx, dy¥/dy, and dy¥/dz, be
continuous at every point of the plane x=ux,.

The physical significance of the solution (1)
can be determined easily with the aid of the

following asymptotic representations of the func-
tions W, 3(£8):

3)

W, %<is>~e¢%f<is>ﬂ[1+ 5

n=1

It is found that the wave function
AWy, 3(£) exp [Gk(pyy+p.2)/(2m)t]

represents an incident beam of electrons moving
toward the surface of the metal, and that the
wave function

BoyW_y, 1(—§) exp [ik(p,y+p.5)/(2m)¥]

represents a reflected beam of electrons moving
away from the surface. (For x<x, our wave

« [3—(EA=D1I0h— (A= %—(ﬂ:)\—%-f-%)z]J

nl(£E)"

function ¢ represents a transmitted beam of
electrons moving toward the left from the plane
x=x,.) It is clear that E, is the total energy of
an electron diminished by the kinetic energy
associated with the component of momentum
parallel to the surface of the metal.

The intensities of the incident and reflected
beams are proportional to |A4:|? and [B.|?
respectively ; and hence the reflection coefficient
is R=|B,/A:|® By Egs. (2), we have the
following formula for the reflection coefficient:

2EAWh, y(2ikxoE ) + (Eot VoW, 1(2ikxoEL) |2

R:

3. Tae Limit oF R As E, APPROACHES ZERO

The limit of R as E, approaches zero is of
interest, because this is the condition of grazing
incidence, and also because this is the condition

—2E AW, y(— 2ikxoE) 4 (E ot Vo) Won, y(—2ikxoE,2) |

(4)

under which R has its greatest value. In order to

2 Demonstrations of the properties of the confluent
hypergeometric functions which we use are to be found in:
E. T. Whittaker and G. N. Watson, Modern Analysis
(Cambridge University Press, 4th ed., 1927), Chapter XVI.
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calculate the limit, we go back to the equation
oy &2
—+ kZ[Eﬁ-—]\P =0,
dx? 4y

set E, equal to zero, and obtain a reflection
coefficient R, by means of a calculation which
is independent of the above, but is parallel to it.
We find that R, is given by the formula

fr' (x0) +1k Voifa(xo)
fZI (xo) +ik Vo%f2(xo)

2

: (5

where
Fi(x) =2} J1(kext) —1 Vi(kex?)],
Ffo(x) =x3 [ J1(kex?) +1 Vi(kex?) .

Here J;and Y; denote the usual Bessel functions.
It can be proved that R, is in fact equal to
lim R. Since the proof is rather long, when it

E,—>0
is given completely and rigorously, it will be
omitted.?

4, NUMERICAL CALCULATIONS AND RESULTS

Our numerical results are given graphically,
in a self-explanatory form, by the curves of
Figs. 1 and 2. Only a few remarks about the
calculations are necessary.

The values of the confluent hypergeometric
functions and their derivatives, which were
required, were computed by means of the
formula

1 1
Wi, 3(§) =————e ¥

I‘(l——)\)e
fett f: [I"(n—)\)__I"(n—i—l)_l"(n)]
n=1 r(n—)\) I‘('ﬂ-{-l) F(n)
INCEO NI
X
nln—1)IT(=NT(1—=N\)
o T'(n—NX\)
+e i log £ 3 &

Sl - DI (—NT (=)

3 The author merely established the equality Ro
= limOR on the basis of general function-theoretic

Ey—>
considerations. A paper by W. C. Taylor (J. Math. and
Phys. 18, 34-49 (1939)), which has just appeared, contains
formulae, relating specifically to the confluent hyper-
geometric functions, from which the equality can be
inferred at once.
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Fic. 1. Reflection coefficient R as a function of E,.
(Curves 1, 2, 3, 4, 5, 6 are for V, equal to 10, 12, 14, 16,
18, 20 electron volts, respectively.)

and the formula which is obtained by applying
the ordinary formal operations of differentiation
with respect to & to this.* This formula was
obtained by a process which is indicated, but
not carried out completely, by Whittaker and
Watson.? In order to make use of these formulae
(with the aid of the available tables, and of the
equations I'(z+1)=32I'(z) and I'(z41)/T(z+1)
=I"(2)/T(2)+1/2), it was necessary first to com--
pute a short table of values of I'(z)/I'(z) for
pure imaginary values of z. This was done by
means of the relation

I‘,(Z)
I'(z)

1 N
=—y——+ X (=" nt1)s
2 n=1

NS,

P} nN“(n—}-z)’

using a- value of N large enough so that the
series

o 1

) D —

n=1 p¥NHt1(n+3)

converged with satisfactory rapidity. (v denotes
Euler’s constant, and ¢ denotes the Riemann
zeta-function.)

The substantial accuracy of the complicated
numerical calculations was strongly indicated by
the agreement between the values of the reflec-
tion coefficient, for E,=0, calculated directly by

4 For imaginary values of A and £, W_y, 3(—£) is merely
the conjugate of Wy, (£).
5 See also Nordheim'’s paper.



702 L. A.

SR %

102 10° 104 10
Vo IN ELECTRON VOLTS

F1G. 2. Ro(= 1im0R> as a function of V.
B,—

means of Eq. (5), and the values obtained by
extrapolating the curves calculated by means of
Eq. (4) to the line E,=0. Actually, it is estimated
that the calculated values of R are correct to
better than one-tenth percent in neighborhood
of E,=1 electron volt, and to about one percent
in the neighborhood of E,=20 electron volts.

The asymptotic formulae (3) are of no value
in computing R for such values of E, as those
shown in Fig. 1, but they do enable us to de-
termine the asymptotic behavior of R for very
large values of E,. This behavior is represented
by the formula

Vet
AeR2E,

The reflection coefficient R, given by Eq. (5)
is. a- function of the single variable V,. The
values of V, appropriate to the cases of real
metals lie between ten and twenty electron
volts. However, in order to show the nature of
the function R, more completely, we have
plotted it, in Fig. 2, for a considerably greater
range of values of V,. It is easily shown, by
means of the known representations of the
Bessel functions for large and small values of
their arguments, respectively, that when Vj is
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small we have, approximately,
Vo
0= ’
4k%e

and that when TV, is large we have

rke?

Roy~1— -
oF

In conclusion, we call attention to the fact
that if we had left the image force out of account,
that is, if we had assumed the potential energy

to be
V(xr Y 2) =—"V

=0,

x<0,
x>0,

the reflection coefficient would have been given
by the equation

(Ex+ VO)%“Ex%
(Ex"l' VO)%_‘_E;‘%

For the values of Vyand E, which are of interest,
this formula gives values of R which are greater
than those given by (4) by a factor which is of
the order of ten. Hence, when actual values of R
are required, we can by no means neglect the
effect of the image force.

2

APPENDIX

The values of I'(2y)/I'(4y), for real values of y, which we
have computed incidentally, may conceivably be useful in
other work. Hence, we record them here. The eight decimal
places shown are believed to be quite correct.

y T'(iy) /T (y)

0.1 —0.56529779 +4(10.16342116)
0.2 —0.53073041 +4( 5.32064142)
0.3 —0.47675489 +4( 3.79986145)
0.4 —0.40786794 +4( 3.09770369)
0.5 —0.32888636 +i( 2.71268857)
0.6 —0.24419658 +4( 2.47826542)
0.7 —0.15733613 +4( 2.32420192)
0.8 —0.07088340 +4( 2.21654578)

0.9 +-0.0134520154-43( 2.13738747)
1.0 +0.09465032 +-4( 2.07667405)




