
REFLECTION OF ELECTRONS 8 Y METALS

where I'" is the ordinary hypergeometric function
of four variables. Although the exchange integral
(T4) is easily evaluated for a particular value of
n, we have been unable to obtain a simple, closed
expression for n generally. Table lI contains the
results of energy calculations for the 1s3d and
1s4d configurations of He I, obtained with the
use of the hydrogenic energy integrals. The
agreement with experiment is excellent. Indeed,
the calculated is4d energies are slightly below the
experimental values, which is due to the departure
of the hydrogenic functions from exact orthogo-

.nality. It may be noted that the parameter
p(4d), which would possess the value 2 if the
functions were exactly orthogonal, departs from
that figure only in the fifth decimal.

TABLE II. Results for He I 1ssd and 1s Id.

p,(3 3D)
W(3 3D)~a(
W(3 ~D)ex

is8d

2.00000
4.11114
4.11126

2.00003
4.06261
4.06257

v(3 'D)
W(3 ~D)~a(
W(3 D)exp

is8d ised

2.00000 2.00002
4.11109 4.06257
4, 11123 4.06255

The wave functions derived in this investi-
gation have been utilized by one of us5 to calcu-
late transition probabilities for a number of
lines of He I.

It is a pleasure to record our thanks to
Dr. P. M. Morse for his interest and guidance in
this problem, and to Dr. D. H. 1VIenzel for many
valuable discussions of the properties of hypergeo-
metric functions.
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The specular reflection of electrons by metallic surfaces is considered. It is assumed that the
potential energy of an electron is constant {= —Vo) in the interior of the metal, and account is
taken of the image force acting on an electron outside the metal (Nordheim's problem). The
reflection coeKcient R is computed for the range of values of Vo which is of interest in con-
nection with real metals, and for the range of values of energy of the electrons in which R has
appreciable values. In the Appendix there are given some values of the function I' (iy)/I'(iy),
for real values of y, which were computed incidentally.

1. INTRODUCTION

'HE chief purpose of this article is to give the
results of some numerical calculations of

the reflection coefficient for a beam of electrons
impinging on the plane face of a thick metallic
body. We make use of the crude and simple
assumption that the potential energy of an
electron is constant in the interior of the metal,
and we take account of the electrostatic image
force acting on an electron outside the metal.
Most of the analytical features of the problem
have been discussed in an article by Nordheim

' L. Nordheim, Proc. Roy. Soc. London A121, 626-639
(1928). Unfortunately, Nordheim's article contains a
number of typographical errors, which render the formulae

but his work was not carried to the point of
obtaining numerical results, such as are given
here.

2. GENERAL FORMULA FOR THE REFLECTION
COEFFICIENT

We employ a rectangular coordinate system,
and assume that the metallic body occupies the
space to the left of the plane @=0. The potential
energy of an electron at the point (x, y, s) is
assumed to be given by the equations:

V(x, y, s) = —Vo, x=xo,
= —e'/4x x=x

unreliable. All formulae used in the present work have
been derived independently.
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Here e denotes the absolute value of the elec-
tronic charge; and xo is determined by the
equation Vp ——p'/(4xp), so that V(x, y, s) is con-
tinuous. Vo is a positive parameter, the value of
which is to be selected in accordance with the
metal under consideration.

Ke confine our attention to electrons having
total energy K One solution of the wave equa-
tion,

+2$+k2(E V)P —0 k2 —'g pm/k2

for these electrons is represented by. the equa-
tions:

P=B, exp (ik[ x(E.+ Vo—)'

+(P.y+P.s)/(2m)']I
(1)

=[ApW~, &(~)+BoW & '( —~)]

Xexp [ik(P„y+P.s)/(2m)'], x~xp.

Here P„a,nd P, denote arbitrary constants, and
the symbols E, $, and ), are defined by the
equations

E*=E—(P,'+P*')/(2m),

g = 2zkxB.—:,

X= ik—p'/(SE ')

The symbols Wz, ;(&) and W ", ;(—P) denote the
usual confluent hypergeometric functions. ' The
three constants Il, A~, and I2, are subject to
the two. relations,

B'exp [ ikxp—(E.+ Vo) l]
=A pW)„;(2ikx pE, ')+BpW g, ;( 2i—kxpE, i),

—(E + Vp) iB'exp [ ikxp(E—+ Vo)']

=2E,l[ApW'g '(2ikxoE l)

—BpW' g, '( 2ikxo—E l)],

which are consequences of the requirement that
the functions P, 8$/Bx, 8$/By, and BP/Bs, be
continuous at every point of the plane x=xo ~

The physical significance of the solution (1)
can be determined easily with the aid of the
following asymptotic representations of the func-
tions W~y. '(&$):

- [l-(~~--:)'][-:—(~~--:)']"
I
l-(~~-~+I)']

W~g, ;(~()-e+l&(a&)~" 1+ P
n~l n!(a()"

It is found that the wave function

A Wx. (~) exp [ik(P,y+P*s)/(2m)']

represents an incident beam of electrons moving
toward the surface of the metal, and that the
wave function

BoW g, p(
—$) exp [ik(P„y+P,s)/(2m)']

represents a reflected beam of electrons moving
away from the surface. (For x(xo our wave

function P represents a transmitted beam of
electrons moving toward the left from the plane
x=xp. ) It is clear that E is the total energy of
an electron diminished by the kinetic energy
associated with the component of momentum
parallel to the surface of the metal.

The intensities of the incident and reflected
beams are proportions, l to IAoI' and IBpI',
respectively; and hence the reflection coefficient
is R=IBo/AoI'. By Eqs. (2), we have the
following formula for the reflection coe%cient:

2E W y y(2ikxpE '*.)+(E + Vp) Wy y(2ikxoE ')

—2E *W g, y(
—2ikxpE *)+(E + Vp)'*W y, y(

—2ikxoEz )

3. THE LIMIT QF R As E APPRQAcHEs ZERQ under which R has its greatest value. In order to

The limit of R as E approaches zero is of 'Demonstrations of the properties of the confluent

interest, because this is the condition of grazing hypergeometric functions which we use are to be found in:
E. T. Whittaker and G. N. Watson, 3IIodern Analys~s

incidence, and also because this is the condition {Cambridge University Press, 4th ed. , 1927), Chapter XVI.
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small we have, approximately,

Rp
4kV

and that when Vp is large we have

7l k6
Rp 1—

Up'

In conclusion, we call attention to the fact
that if we had left the image force out of account,
that is, if we had assumed the potential energy
to be

FrG. 2. R0 —— lim R as a function of V0.
@ ~Q

means of Eq. (5), and the values obtained by
extrapolating the curves calculated by means of
Eq. (4) to the line Z, =0. Actually, it is estimated
that the calculated values of R are correct to
better than one-tenth percent in neighborhood
of E,= 1 electron volt, and to about one percent
in the neighborhood of E„=20electron volts.

The asymptotic formulae (3) are of no value
in computing R for such values of 8 as those
shown in Fig. 1, but they do enable us to de-
termine the asymptotic behavior of R for very
large values of 8„.This behavior is represented
by the formula

Vp4
R~-

4e4k'E '

V(x, y, s) = —Vo, x(0,
=0, K)0,

the reHection coefEicient would have been given
by the equation

(Q + p'0)1 —jF r 2

(&.+ ~0) '+&*'

For the values of Up and E which are of interest,
this formula gives values of R which are greater
than those given by (4) by a factor which is of
the order of ten. Hence, when actual values of R
are required, we can by no means neglect the
eRect of the image force.

APPENDIX

The values of r'(iy)/r(iy), for real values of y, which we
have computed incidentally, may conceivably be useful in
other work. Hence, we record them here. The eight decimal
places shown are believed to be quite correct.

The reHection coefficient 80 given by Eq. (5)
is. a function of the single variable Vp. The
values of Vp appropriate to the cases of real
metals lie between ten and twenty electron
volts. However, in order to show the nature of
the function Rp more completely, we have
plotted it, in Fig. 2, for a considerably greater
range of values of Vp. It is easily shown, by
means of the known representations of the
Bessel functions for large and small values of
their arguments, . respectively, that when Vp is

0.1
0.2
0.3
0,4
0.5
0.6
0.7
0.8
0.9
1.0

r'(iy)/r(iy)

—0.56529779 +i(10.16342116)
—0.53073041 +i( 5.32064142)
—0.47675489 +i( 3.79986145}
—0.40786794 +i( 3.09770369)
—0.32888636 +i( 2.71268857)
—0.24419658 +i( 2.47826542)
—0.15733613 +i( 2.32420192)
—0.07088340 +i( 2.21654578)
+0.013452015+i( 2.13738747)
+0.09465032 +i( 2.07667405)


