
OCTOBER I, I939 PHYSICAL REVIEW VOLUME. 56

Variational Atomic Wave Functions

LEO GOLDBERG

Harvard College Observatory, Cambridge, massachusetts,

AND

ALBERT M. CLOGSTON

George Fastman Research Laboratory of Physics, 3IIassachusetts Institute of Technology, Cambridge, massachusetts

(Received August 3, 1939)

The energy tables constructed by Morse, Young, and Haurwitz to facilitate the variational
computation of wave functions-for atoms containing 1s, 2s, and 2p electrons ha've been extended
to include 3p and 3d electrons. The best parameters, total energies, and term values are given
for the states (1s3d) 'D, 'D; (2p') 'P 'D 'S; and (1s'3d) 'D of the atoms He, Li, Be, B, C, N, 0, F
and Ne, and for (1s3p) 'P, 3P of He I. It is shown that the observed energies of the 1snd states
of He I are very accurately reproduced with the use of hydrogenic radial wave functions for both
the 1s and nd electrons.

N an earlier paper, Morse, Young and
~ - Haurwitz' described the construction of a set
of tables that were employed to calculate simple,
variational wave functions for atomic states
involving 1s, 2s, and 2p electrons. The tables have
now been extended' to include 3p and 3d electrons,
and the present note gives the results of vari-
ational calculations on the states 1s3P, 1s3d, 2P',
and 1s'3d. The following wave functions were
utilized in the computations:

1s ug(r) = (p'a'/v) le-&"

2p u, (r) = (p'c'/x-) ir cos Oe
—&'",

3p u&(r) = (2p'/15~%')'*r cos e

&& [(5/q) Ae-~'" —re-~"]

those states. We have accordingly assumed in the
is3P calculations for He I that ay=2.00. The
value of cp, in the 1s3p calculations must be-
equivalent to that obtained for 1s2P. Therefore,
the ratio c/a =P is taken as constant for 1s2P and
1s3p. Eq. (2) then becomes

A = (d+Pa)'/(1+Pa)'

where P('I") =0.275, and P('P ) =0.245.
The procedure followed in obtaining the best

values of the energies and the parameters is
precisely that outlined in the earlier paper. We
define the following integrals:

u'T„= Jt u„V'u—„dv, u V„=2~l (u. '/r)dv,

»(r) =(~'f"/»~)'"(3 co" ~ —1)e "'"
u V. =2)f[u.'(r~)u '(r2)/ri2]dv~dv2,

The constant t A, which makes N6 orthogonal to N3,

is given by'.
A=(d+ ) /(1+ ) (2) IJ&nm = 2Jl [un(rr) un(rn) um(rl) um(r2) /r12]dv ldv2 ~

(4)

In order to avoid the use of more than three
parameters in the calculations for the 1s3p
configuration, we have made the following
simplification to eliminate the parameter c. An

inspection of the results obtained by Morse,
Young and Haurwitz' for the 1s2s and 1s2p
configurations shows that the screening of the
inner electron by the outer one is negligible for

' Morse, Young and Haurwitz, Phys. Rev. 48, 948 (1935).' The extensions to the tables are being mimeographed;
those interested in obtaining copies should write to the
Physics Department, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

The energy 8"of any atomic state is then

W'= p,'T+IJ, V, (5)

where T is a linear combination of the T's, and U

a linear combination of the U's and X's. Both 1
and U are independent of p, and hence the energy
is minimized analytically with respect to this
parameter. We obtain

y = —V/2T,
and

W= —V'/4T.
696
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TABLE I. Wave fnnction parameters and energies.

ATOM He Li Be
TWO-ELECTRON STATES

B C Ne

2cp
Wca)
Termca~ X 10

1.672
1.398—0.2856

2.6/2
3.570—0.5959

{2p') 3P State
3.672 4.672 5.6/2
6.741 10.913 16.085—1.016 —1.546 —2.185

6.672
22.257—2.935

"/.672
29.429—3.794

8.672
37.601—4.762

9.672
46.772—5.841

2cp, 1.630 2.630 3.630
W,a) 1.328 3.458 6.587
Termca] X 10 ' —0.2932 —0.6082 —1.033

(2p~) 1D State
4.630 5.630 6.630

10.717 15.847 21.976—1.567 —2.212 —2.966

7.630
29.106—3.829

8.630
37.236—4.802

9.630
46.365—5.886

2cp
Wca~
Termca, [X 10

1.566 2.566 3.566
1.227 3.293 6.360—0.3043 —0.6262 —1.058

{2p') 'S State
4,566 5.566 6.566

10.426 15.492 21.559—1.599 —2.250 —3.011

7.566 8.566 9.566
28.625 36.692 45 ~ 758—3.882 —4.862 —5.952

a
ap3'
Weal
Wexp
Tel 1Ilca 1

Ter mexp

ap,3'
Weal
Wexp
Tel meal
Ter mexp

6.00
2.00
1.00
4.1111
4.1113
12190
12209

6.00
2.00
1.00
4.1111
4.1112
12190
12206

4.50
3.00
2.00
9.4447
9.4450
48800
48834

4.50
3.00
2.00
9.4443
9.4447
48760
48804

4.00
4.00
3.00

17.0006

(1s3d) 3D State
3.75 3.60
5.00 6.00
4.00 5.00

26.7789 38.7790

3,50
7.00
6.00

53.0022

3.43 3.38
8.00 9.00
7.00 8.00

69.4465 88.113

3.33
10.00
9.00

109.005

4.00
4.00
3.00

16.9997

{1s3d) 'D State
3.75 3.60
5.006 6.00
4.00 5.00

26.7772 38.7768

3.50
7.00
6.00

52.9989

3.43
8.00
7.00

69.4428

3.38
9.00
8.00

88.108

3.33
10.00
9.00

108.999

109700 195030 304720 438830. 59/280 780000 987500

109800 195210 304960 439190 597680 780600 988200

He(1s3p) 'Po State He(is3p) 'Po State

a
ap

dp
3p
Wca~
W,xp
Ter meal
Termexp

ATOM

6.29
2.00
1.54
0.490
0.954
4.115
4.116
12600
12730

Li Be

6.15
2.00
1.00
0.325
0.975
4.109
4.110
12000
12080

THREE-ELECTRON STATES
B C

0
ap
3'
Wcai
Wexp
Term«~
Term, »
D3/2 ~51 0 cal

'D3(2 —'D5i2 exp

8.06
2.69
1.00

14.5556
14.6710

12200
12203

0.036

5.54
3.69
2.00

27.6399
27.7520

48800
48828

0.58

(1s'3d) 'D
4.69
4.69
3.00

44.9458
45.0603
109900
109861
2.91

State
4.2/
5.69
4.00

66.4740
66.5721
195200
195292
9.26

11.3

4.01
6.69
5.00

92.2244

305000 439200
305210 439506

22.4 46.7

597700
598004

86.2
108

780900

147

3.84 3.72 3.63
7.69 8.69 9.69
6.00 7.00 8.00

122.1970 156.3919 194.8106

The results of the present calculation are
shown in Table I. No difhculty was encountered
in obtaining energy minima for any but the
3'P' level. For this state the energy was 6rst
computed over the range from d =2.00 to d = 1.00.
It appeared from the run of the energies that the

minimum lay close to the value d=1.00. This
value of d corresponds to the same average
screening in both the inner and the outer parts
of the electron orbit. In order that the mini-
mization might be carried out accurately, the
energies were computed for values of d less than
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unity. These computations indicated a point of
inflection at d = 1.00. The failure of the energy to
minimize properly is probably due to the fact
that the 3 'I" function was made orthogonal to
an approximate 2 'P' function rather than to the
true one. It is difficult to visualize a value of d
less than unity, which would mean a more
effective screening for r small than for r large.
Ke have consequently adopted the value
d = 1.00 as close to the correct one. The resulting
energy, obtained from the minimization with
respect to a, is in satisfactory agreement with
the observed term value. Furthermore, the
average effective charge, 3p, , is 0.975, as compared
with the value 0.97 obtained for the 2 'I" level.

The quantity 3' may be regarded as the
average effective charge on the 3d electron.
Table I shows that 3' =Z for the 1s3d and
1s'3d configurations throughout the He I and
Li I isoelectronic sequences. This result means
that the screening by the inner electrons is
probably negligible for the entire array of 1snd
and 1s'nd configurations. Ke may consequently
seek to derive general expressions for the energy
integraJs by adopting hydrogenic 1s and nd wave
functions. We write the hydrogenic functions in
the follov ing form:

u„=(p,'/~)'e ~r,

5p'( n+2)!
Nttg = (3 cos' 8 —1)r'

2' '4' (n —3) !(5!)'
ye—~r»~F( —n+3, 6, pr/n), (9)

where Ji is the confluent hypergeometric function:

n n(n+1)
F(n, y, x) =1+ x+ x'+ . (10)

1!v 2!vb+1)
The parameter p, is retained as a scale constant,
which may be evaluated from (6). The functions
(9) will be exactly hydrogenic, provided that
p=Z. The extent to which p deviates from Z
measures the degree by which the functions
deviate from orthogonality.

To calculate the energies, we need to evaluate
the following integrals:

T~d =— r'e ""'"(p/r p,'/4n')—
p

XF'( n+3, 6, pr/n)dr, —

.yF( —n+3, 6, pr2/n)

(2n+1~

& 2n )
&&F(—n+3, 6, pr, /n)dr, jdrm, (14)

where
N'= n'(n+2)!/(n —3)!(5!)'. (15)

The quantities 1„&and V„z are made up of
integrals of the form

f
~oo

r ~R'(nd)dr,
0

(16)

where R(nd) is the radial part of the hydrogenic
nd wave function. Values of this integral for
different values of k have been tabulated by
Condon and Shortley. ' With the aid of their
Table II, ' we find

'I' e=1/4n', V e= 1/n'. (17)

The quantity V»„& may be evaluated by the
process of integrating. (13) term by term and

applying the well-known' transformations among
the hypergeometric functions. We obtain

n(n2 —1) (n2 —4) (2n)»-6

5!(2n+1)2"

-7n+4 /x
2n+ 1 ( 4n')

4n' —23n+33
+ F( -n+2,

24n'(2n+ 1)

1]",q-
—n+2, 7,—~, (18)

' E.U. Condon and G. H. Shortley, The Theory of Atonnc
Spectra, p. 117.

4 Cf. Forsyth, Differentia/ Equations, p. 192.

2+2 oo

V e —— r'e ""'"F'( n+—3, 6, pr/n)dr, (12)
p e

2' 2 oo

rse —pr/m(1 +re—2pr e 2pr)—
IJ, ~ 0

XF'(—n+3, 6, pr/n)dr, (13)

16 -™ (2n+1qX,„e= p'N—' rq' exp —
p(

— —irS, E2n)
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where I'" is the ordinary hypergeometric function
of four variables. Although the exchange integral
(T4) is easily evaluated for a particular value of
n, we have been unable to obtain a simple, closed
expression for n generally. Table lI contains the
results of energy calculations for the 1s3d and
1s4d configurations of He I, obtained with the
use of the hydrogenic energy integrals. The
agreement with experiment is excellent. Indeed,
the calculated is4d energies are slightly below the
experimental values, which is due to the departure
of the hydrogenic functions from exact orthogo-

.nality. It may be noted that the parameter
p(4d), which would possess the value 2 if the
functions were exactly orthogonal, departs from
that figure only in the fifth decimal.

TABLE II. Results for He I 1ssd and 1s Id.

p,(3 3D)
W(3 3D)~a(
W(3 ~D)ex

is8d

2.00000
4.11114
4.11126

2.00003
4.06261
4.06257

v(3 'D)
W(3 ~D)~a(
W(3 D)exp

is8d ised

2.00000 2.00002
4.11109 4.06257
4, 11123 4.06255

The wave functions derived in this investi-
gation have been utilized by one of us5 to calcu-
late transition probabilities for a number of
lines of He I.

It is a pleasure to record our thanks to
Dr. P. M. Morse for his interest and guidance in
this problem, and to Dr. D. H. 1VIenzel for many
valuable discussions of the properties of hypergeo-
metric functions.

' Goldberg, Astrophys. J., in press.
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The specular reflection of electrons by metallic surfaces is considered. It is assumed that the
potential energy of an electron is constant {= —Vo) in the interior of the metal, and account is
taken of the image force acting on an electron outside the metal (Nordheim's problem). The
reflection coeKcient R is computed for the range of values of Vo which is of interest in con-
nection with real metals, and for the range of values of energy of the electrons in which R has
appreciable values. In the Appendix there are given some values of the function I' (iy)/I'(iy),
for real values of y, which were computed incidentally.

1. INTRODUCTION

'HE chief purpose of this article is to give the
results of some numerical calculations of

the reflection coefficient for a beam of electrons
impinging on the plane face of a thick metallic
body. We make use of the crude and simple
assumption that the potential energy of an
electron is constant in the interior of the metal,
and we take account of the electrostatic image
force acting on an electron outside the metal.
Most of the analytical features of the problem
have been discussed in an article by Nordheim

' L. Nordheim, Proc. Roy. Soc. London A121, 626-639
(1928). Unfortunately, Nordheim's article contains a
number of typographical errors, which render the formulae

but his work was not carried to the point of
obtaining numerical results, such as are given
here.

2. GENERAL FORMULA FOR THE REFLECTION
COEFFICIENT

We employ a rectangular coordinate system,
and assume that the metallic body occupies the
space to the left of the plane @=0. The potential
energy of an electron at the point (x, y, s) is
assumed to be given by the equations:

V(x, y, s) = —Vo, x=xo,
= —e'/4x x=x

unreliable. All formulae used in the present work have
been derived independently.


